Efficient solution of extended Multiple-Phased Systems

Elvio Gilberto Amparore
Dipartimento di Informatica
Universita di Torino
Torino, Italy

amparore@di.unito.it

ABSTRACT

Multiple-Phased Systems (MPS) are systems whose beha-
viour can be split in a set of successive periods, called phases.
We concentrate on the Phase Petri nets (PPN) formalism for
the representation of state-based MPS, whose state space
is a Markov Regenerative Process (MRP). MPS have been
traditionally evaluated using an ad-hoc method. In this pa-
per we show how the recently developed Component Method
for general MRP deals with MPS. The application of this
method also allows for more general MPS system, namely
where the phases can be interrupted or influenced by the
behaviour of the modeled system The advantages of this
approach is assessed on a Scheduled Maintenance Systems
model using two tools, DEEM and GreatSPN.

1. INTRODUCTION AND STATE OF ART

Multiple-Phased Sytems (MPS) [1] are systems whose be-
haviour can be split in a set of successive periods, called
phases. Also called Phased Mission System (PMS) in other
works, as in [2], since they can easily describe systems in
which the behaviour is described as a mission, structured
into multiple phases, each described by a different dura-
tion, system configuration, desired task, etc. MPS have been
shown to be useful also in modelling systems with scheduled
maintenance [3] (Scheduled Maintenance Systems - SMS).
In a MPS, the standard question is to compute the relia-
bility of the system, i.e. the probability that the system
survives the mission, but optimization also plays a role [4],
especially for SMS to determine the best maintenance pol-
icy, as well as sensitivity analysis [3, 5] to allow to reason
about the structure of the mission and their parameters.

There has been a significant amount of work, especially in
the late nineties and also more recently, on MPS. Different
techniques have been used for modelling and solving these
systems, from combinatorial methods like reliability blocks
and fault trees to state-based techniques. Combinatorial ap-
proaches based on reliability blocks and fault trees have been
reported for example in [6, 7]. State-based approaches build

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and t
hat copies bear this notice and the full citation on the first page. To co
py otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

VALUETOOLS 2016, October 25-28, Taormina, Italy

Copyright © 2016 EAI 978-1-63190-141-6

DOI 10.4108/eai.25-10-2016.2267064

125

Susanna Donatelli
Dipartimento di Informatica
Universita di Torino
Torino, Italy

donatelli@di.unito.it

Markovian systems either through an ad-hoc language as in
EHARP [6] or through a high level modelling formalism as
Stochastic Petri Nets as in [8]. It is well known what are
the relative advantages and disadvantages of combinatorial
methods over state-based ones, but when the objective of
the MPS analysis goes beyond the computation of the reli-
ability of the system at the end of the mission, state-based
approaches can provide a plus, like computing the proba-
bility of the system states at time ¢ or associate a reward
structure to the system states.

The use of a high level formalism based on Petri nets, as
promoted in [8], seems to have a good trade-off between the
modelling power (class of systems that can be specified) and
the amount of human intervention in the definition of the
model, as claimed in the same paper.

In this paper we start from the class of MPS generated by
Stochastic Petri Nets as in [2]: the phases are described as
a Petri net (the Phase Net) which only includes determinis-
tic transitions and immediate ones, with exactly one deter-
ministic transition enabled in each phase; And the system
behaviour is again a Petri nets (the System Net) that only
includes exponential and immediate transitions. Transition
enabling and firing rates in the System Net may depend on
the marking of the Phase Net and this permits a description
of the system that is compact (a single net) but that is able
to describe a behaviour that may differ from phase to phase.

An MPS net is indeed a Deterministic and Stochastic Petri
Net (DSPN) [9,10], or more precisely, a non-ergodic DSPN,
since phases (the mission) always come to an end. DSPNs
have the requirement that at most one deterministic tran-
sition is enabled in any one state, which is indeed true for
MPS. The stochastic process of a DSPN is a Markov Re-
generative Process (MRP) [11] which has been widely used
in the modelling community since it can describe more com-
plex behaviours than a continuous time Markov chain, while
still allowing an analytical solution.

A MRP is a stochastic process defined by a sequence of
time instants called renewal times in which the process loses
its memory, i.e. the age of non-exponential (general) events
is 0. The behaviour between these points is then described
by a time-limited stochastic process, and we consider MRP
in which the time limited stochastic process is a CTMC.
MRPs have been studied extensively in the past [10, 12],
and many solid analysis techniques exists.

The limitations imposed on the Phase net allow Mura et
al. to show in [2] that the solution of the MPS can be decom-
posed in a sequence of transient solutions of Markov chains.
The DEEM tool [1] implements this method. Although not

recent, DEEM can still be considered the state of the art tool
for MPS definition and solution.

In [13] a component-based solution technique for non-
ergodic MRP has been defined. The MRP process is de-
composed into smaller components that are solved in isola-
tion with the cheapest possible technique. Indeed there are
cases in which the solution of a component is equivalent to
the transient solution of a CTMC. The method has been
implemented inside the GreatSPN tool [14] as a solver for
non-ergodic DSPNs and it is also part of the model-checker
MC4CSLTA [15] of the stochastic logic CSL™ [16].

This paper shows that the Component Method applied
to MPS nets identifies the same components and has the
same time complexity as the ad-hoc techniques developed
for MPS and implemented in DEEM. Moreover we show that
the Component Method can solve an extended class of MPS,
that we shall term X-MPS. This extension has a practical
relevance since it lifts many of the limitation imposed on
MPS, for example an event in the system net may now stop
and/or restart a phase, and the Phases net can also include
exponential transitions.

On the other side the memory requirement of the DEEM
solver is smaller, since the state spaces of the single phases
are built in isolation and the state space of phase i is built,
used and destroyed before the one for the i + 1 phase. Ba-
sically DEEM builds the state space by chunks, only when
needed, in a sort of on-the-fly solution. The Component
Method is a general technique for non-ergodic MRPs and
DSPNs, and therefore cannot build the system phase by
phase since it does not know about phases.

An important aspect of DEEM is that it is specifically
designed for MPS, so it has a lot of interesting features
that makes the modeller activity simpler (like the separa-
tion of the description of the phases and of the basic sys-
tem, the heavy use of marking dependencies and the rich
reward structure). The result of this investigation indicates
that a good way to follow is the integration of the best MPS
characteristics of DEEM and GreatSPN in a single tool.

The paper develops as follows: Section 2 defines the nec-
essary background on the Component Method for MRP so-
lution (in 2.1) and on MPS and the DEEM tool (in 2.2). Sec-
tion 3 shows the application of the Component Method to
MPS, enlightening the extension to the current MPS DEEM
models in Section 4. Section 5 studies the efficacy of the
proposed technique through a set of numerical experiments
on a standard and extended MPS models. Finally Section 6
concludes the paper and outlines future possible extensions
and integration activities.

2. BACKGROUND
2.1 Component based solution of MRP

We assume the reader is familiar with the definition of
Markov renewal sequence and of (time-homogeneous) Markov
regenerative process built on a Markov Renewal sequence.
A full description can be found in [17] and in [10] for a defini-
tion and notation of MRP related to DSPN. In this paper we
use German’s notation as in [10] and [13]. In MRP the pro-
cess behaviour among regeneration points is a discrete-time
Markov chain, called the embedded Markov chain (EMC),
while the process behaviour between two regeneration points
is described by a continuous-time process, called the subor-
dinated process. In this paper we consider only the class of

126

MRP where the subordinated process is a CTMC.

A MRP can be represented as a discrete event system (like
in [18]) with a finite state space, where in each state a gen-
eral event g is taken from a set G. As the time flows, the
age of g being enabled is kept, until either g fires (A event),
or a Markovian transition, concurrent with g, fires. Marko-
vian events may actually disable g (preemptive event, or Q
event), clearing its age, or keep g running with its accumu-
lated age (non-preemptive event, or Q event). Matrix Q
accounts for the rates of the exponential transitions whose
firing does not disable any general (deterministic) transition;
Matrix Q accounts for the rates of the exponential transi-
tions whose firing disables a general (or deterministic) one;
And matrix A has, for each entry A;;, the probability of
ending in state j when the general transition fires in state .

The embedded Markov chain (EMC) P is defined in terms
of the Q,Q, and A in a standard manner (see [10] for ex-
ample), but even if the three matrices are sparse, matrix P
is usually dense and expensive to compute, due to the ma-
trix exponential terms. This problem has been solved in [10]
with the matriz-free technique (actually P-free), based on
the idea that P can be substituted by a function of the Q, Q,
and A (sparse) matrices of the MRP. These functions are
used in vector xmatrix products with P so that they can be
computed without the need of constructing and storing P.

A non-ergodic EMC allows to distinguish transient and
recurrent states, and specialized solution methods can be
devised to compute the probability distribution of recur-
rent states. The work in [13, 19] introduces an efficient
steady-state solution for non-ergodic MRPs, called Compo-
nent Method, which computes the outgoing probability flow
from transient to recurrent subsets of states, called compo-
nents. In graph terms components corresponds to the union
of one or more strongly connected components (SCC) of the
MRP state space and they must satisfy the requirement that
the component graph (the condensed graph in which each
component is condensed in a single node) is a directly acyclic
graph (DAG). The method is also given in matrix-free terms,
so the components and their characteristic matrices are com-
puted directly on the state space and on the Q,Q, and A
matrices of the MRP, and there is no need to compute the
expensive and dense matrix P.

The basic idea of the Component Method is readily ex-
plained unrealistically assuming that matrix P is available.
If the MRP is non-ergodic it is indeed possible to rearrange
the order of its states so that the EMC matrix P is in upper-
triangular form (the reducible normal form, or RNF):

T | . |

T P

Ryt

P= 1)

.Rm

Matrix P has k > 0 transient subsets and (m — k) recurrent
subsets of states, with m > k. Let S; C S be the set of states
in subset i, hereafter called the component i. Alternatively,
the upper triangular form of P can be seen as if the S;
subsets form a DAG of components. A standard way to build
an RNF for a non-ergodic process is to take as S; sets the set
of strongly connected components (SCC) [20] of the graph
built by considering P as an adjacency matrix. Transient

SCCs are the S; for i < k, and bottom SCC (BSCC) are
the S; for the recurrent classes (k < i < m). Indeed SCCs
are the finest partition of P that result in an acyclic set of
components. A convenient numbering of the S; can then be
found visiting in topological order the component graph.

When P is in RNF, the steady-state probability of being
in the recurrent states can be computed using the outgoing
probability vectors p,. The outgoing probability vector w,
gives for each state s € (S\ S;) the probability of reaching
s in one jump while leaving S;. Vector p, is given by:

W, = (ai +Z(Ii~uj)) A-T) T F, i<k ()

J<t

where «; is the vector of initial probability for the states in
Si. We adopt the matriz filter notation of [10] where: 17 is
the matrix derived from the identity matrix of size |S| where
each row corresponding to states that do not enable g are
set to zero; And IZ is the same for states that do not enable
any general transition (exponential states). Since matrix in-
version is usually expensive, a product of a generic vector u
with (I — Ti)_1 can be reformulated as a linear equations
system x- (I —T;) = u. This system can be computed itera-
tively using vector xmatrix products with T;. Each vectors
p; may depend on the previous (i — 1) outgoing probability
vectors, implicitly defining a computational order. Given
the p,; vectors, the steady state probability of the recurrent
subsets S; is given by:

k
T = (ai + Z(Iz . uj)) ~n1er;O(Ri)", kE<i<m (3)

Jj=1

The Component Method computes first equation (2) for all
transient components, taken in an order that respects the
condition j < 7 of the formula, and then computes the prob-
ability for the recurrent subsets based on equation (3).

When the P matrix is available in RNF, the computation
of (2) and (3) is straightforward.

In [13] the matrix-free method is generalized for the case
of the reducible normal form of Eq. 1 giving rise to a matria-
free component method, Component Method for short. This
generalization provides: 1) a derivation of the m subsets S;
(components) which is based only on Q, Q and A; 2) the
matrix-free form of the sub-terms T;, F; and R, to be used
in Eq. (2) and (3). The computation of the products of a
generic vector u with the matrix-free form of T; and F; is
given by:

uTi

I - (as(w) + by(w) + ci(u))
(1 1) - (a;(u) + by(u) + ei(w)

(4)
(5)

uFi

where I; is a matrix derived from I where rows of states not
in §; are zeroed, I; is the same for the augmented set S;, and
A =LA, Q; = L-Q. The augmented set S, of component
i is the closure over Q of the states S; of components 4,
that is to say the augmented set of a component is made by
the states of the components plus all the states that can be
reached through Markovian events that do not disable any
general (that is to say all states that are reachable before
the next regeneration point).

127

The vector terms az(u), b;(u) and c;(u) are:

az;(u) = u- (Z r -eQ?‘Sg) A
9€G
89
b;(u) = u- (Z I / eQixd$> Q
geG 0
ci(w) = u- (IF - diag(QF)QF)

with QF =1, - QP = I, - 1P . Q. These terms describe how
the process evolves between two regeneration points. Vec-
tor a;(u) and b;(u) are the probability distribution of the
next regeneration state reached with the firing of the general
event (a), or with the preemption of it (b). Vector ¢;(u) is
the probability distribution of the next regeneration state
when there are no general events enabled in the starting
state. Note that the computation of a and b on a subset S;
of states has to consider all the states in the augmented set
S;. Eq. (4) and (5) assumes that the subsets {8;} have been
identified.

The advantage of working at the component level is not
only the trivial one of solving many small models instead
of a single much bigger one, but that the cheapest available
solution for each component can be used. It is sometimes
possible that the component’s solution do not bear the full
complexity of the solution of a MRP.

Although it is intuitive and usually true that solving many
small matrices is less expensive than solving a big one, in
the matrix-free Component Method this is not always true.
Indeed as the solution of a single components may actually
require to consider states that are not part of that compo-
nents (due to the construction of the augmented set), so
that often it is convenient to aggregate small components
into a bigger one. The work in [19,21] already identifies
a need for aggregating the components into bigger ones,
and often the performance of the algorithm depends on the
number, size, and solution complexity of the components.
The aggregation is defined through a set of rules, to decide
which components can be aggregated together, and could
be done using a greedy heuristic (fast) or integer linear
programming (ILP) [22] (optimal but slower). The Com-
ponent Method, including the component optimization and
the greedy heuristics, have been implemented as part of the
GreatSPN solver for non-ergodic DSPNs. GreatSPN [14] is a
tool for Petri net definition and analysis developed mainly at
the University of Torino during the last 30 years. GreatSPN
has been recently renovated to include a new Java-based in-
terface with colored and plain token game simulation, model
checking for branching and stochastic logics, a new solver for
DSPN, and additional facilities for model composition and
for performing multiple experiments. GreatSPN, including
the solution used in this paper, is available upon request
visiting its web page [23].

2.2 Background: MPS and DEEM

In this paper we consider definition and notation of MPS
in [1,8], in which the mission is divided into m phases of
deterministic duration d;, and the system behavior in each
phase is described by a CTMC with state space S; and rate
matrix Q;. The MPS is defined using a restricted class of
DSPN called Phased Petri net (PPN) [24].

In a PPN the system is described by two Petri nets [25]:
a phase net (PhN), which defines the phase structure and

a system net (SN), which describes the stochastic behavior
of the system components during each phase of the mission.
Marking dependent rates and guards can be used to make
the SN behaviour dependent from a specific phase, and the
probability of immediate transitions in the PhN can depend
from the marking of the SN: this allows the choice of the
next phase to depend upon the state of the SN.

A number of limitations have been imposed on the PhN
and SN and on their dependency, partly to provide a guide-
line to the modeller, and partly to allow for a decomposable
solution [1,2]: L1) The PhN can only have deterministic and
immediate transitions - no exponential delays are allowed,
L2) the reachability graph of the PhN should be a DAG (di-
rected acyclic graph), L3) each phase is described by a single
tangible marking of the PhN which enables a single deter-
ministic transition, L4) an event occurring in the SN cannot
disable a phase (the firing of a transition in the SN cannot
preempt a deterministic transition). Note that condition 2
implies that the whole stochastic process is non-ergodic.

Under the above limitations the work in [2] observes that
the time at which the deterministic transitions of the PhN
fire correspond to regeneration instants, and the markings
after the firing are markings in which the system regenerates.
Moreover since there is no preemption of the deterministic
and the state space of the PhN is acyclic, it is possible to
devise a decomposed solution approach, from regeneration
point to regeneration point, approach that we explain in the
following according to the schema described in [1].

The first step consists in generating the state space of the
PhN. By definition each phase i is characterized by a single
marking m; and by a deterministic transition of delay d;,
therefore it is possible to solve the whole system as follows
(at the beginning ¢ = 0):

e Compute the state space S; of the SN when the PhIN
is in state m; and build the associated rate matrix Q;

e Compute the transient solution at time d; of the CTMC
specified by Q; (which gives the distribution of the
markings of the SN at the time phase ¢ ends)

o Compute the A; ; matrices, the branching probability
matrix of size |S;| X |S;| of going to the states of phase
7 at the end of phase i. This requires to build the state
spaces of the SN for two successive phases

e The solution at time J; of S; is mapped, through A;;
to the initial probability of the successive components

The above sequence is repeated for successive phases un-
til the target time t of the analysis has been reached. If
t is greater than the sum of the duration of all the phases
(complete duration of the mission) this corresponds to the
distribution of the absorbing states of the system at the end
of the mission. If ¢ is smaller, let’s say between the end of
phase i — 1 and 4 then Q; is solved at time ¢ — ¢, where ¢’ is
the sum of all the duration of the previous phases.

The theory summarized above has been implemented in-
side the prototype tool DEEM [1]. Although not recent,
DEEM can still be considered the state of the art tool for
MPS definition and solution based on Petri nets. DEEM is
not only a solver but also has a GUI for the definition of the
PhN and of the SN, including facilities for the definition of
marking dependent rates, transitions’ guards and a reward
structure.

For what concerns the time complexity, if there are N
phases DEEM generates and computes the transient solution

128

of N CTMCs. The space complexity is determined by the
need of building N state spaces for the SN (one per phase)
and the corresponding N CTMCs, and N — 1 state spaces
for pairs of successive phases (of size |S;| 4 |S;|) to build the
A; ; matrices.

3. COMPONENT METHOD VS DEEM

From now on we use the MPS term to mean a MPS model
defined through a DSPN that follows the PPN limitations
L1-Lj. Since a MPS is a non-ergodic DSPN, it makes sense
to compare the solution approach of DEEM with the Com-
ponent Method,. The comparison is organized as a set of
questions for which to provide an answer. Given an MPS:
Q1) do the two techniques consider the same components?
@2) do they solve the components with techniques of com-
parable complexity? (Q3) do they use comparable amounts
of memory?

A first step is to better understand the characteristics of
the MRP produced by a MPS. If we consider the embedded
Markov chain transition matrix P in RNF form, what are
the block matrices involved? Since the state space of the
PhN forms a DAG, we can certainly find a RNF form for the
embedded Markov Chain transition matrix P, in which the
states of phase 7 corresponds to the subset 7 in the matrix
of Eq. 1, as it was shown in [2] that the end of a phase
corresponds to a regeneration point. For ease the notation
each F; matrix is split into multiple F; ; submatrices, with
i < 7 < m. We can then observe that:

T, =0
Fij =e¥. Ay
R, =1, — diag ' (Q:) - Q:

each T; will be zero, since T; is the submatrix of the
probability of remaining in S; at the end of the phase, but
this is not allowed since the PhN is a DAG. The F; ; matrices
describe the probability of moving from the start of phase ¢
to the start of phase j, and this involves the solution at time
d; and the probability among phases (terms e9% and A, ;).
The R,; terms corresponds to the recurrent terminal phases
(phases with no successors), and the steady state solution
can be applied. Note that, when DEEM solves an MPS at
time t also the terminal phases are solved in transient.

A second step for the comparison is to recall the compo-
nent classification of the Component Method and the as-
sociated computational costs when general transitions are
restricted to deterministic ones. Table 1, re-elaborated from
[13, Table 2], follows the classification of components in [22]
and defines three component types.

Class Cg identifies components in which there is no state
that enables a general transition. Their solution requires a
fixed point iteration over the portion of the Q matrix that
corresponds to S;. The a and b terms of (4) are zero, and a
product with (I; — Ti)*1 has the same cost of a steady state
solution of a CTMC.

Class Cy identifies components in which 1) there is a single
deterministic g enabled; and 2) no preemption of g, if any,
keeps the system inside the component. Their solution cost
is that of a transient solution at time J, of a CTMC, over
the augmented set S;. Since any preemptive Markovian or
deterministic event takes the system out of the component,
then T; is empty, and (I; — T;) ! reduces to I,.

(6)

Finally class Cps identifies components in which either dif-
ferent general transitions are enabled (of course in different
states) or there are preemptive events that keep the system
inside the component. The process structure of the compo-
nent is a MRP.

Coming back to the questions, to answer to QI (do the
two techniques consider the same components?) we should
consider that DEEM generates the CTMC of each phase in
isolation, doing a state space generation in which the mark-
ing of the PhN is kept fixed and equal to the marking that
enables the deterministic transition of phase i. Let g be such
a transition. In the Component Method the criteria behind
the definition of an optimal partition of the MRP [13, 22]
is that, starting from the initial definition of components
as SCCs, two components are aggregated together only if
they belong to the same complexity class and if the result-
ing complexity class is the same, given that the component
graph after the aggregation is still a DAG. The component
construction will indeed put together all states that enable
g, whether they correspond to one or more SCCs, since all
those SCC are of class Cg4, and their union is still of class
Cy, since no preemption of the deterministic transitions can
take place in a MPS and the firing of the deterministic takes
the system outside of all SCCs that enable g (since g is not
enabled any longer).

The answer to Q2 (time complexity) is straightforward
given that there is a component per phase, and the com-
ponent is of type Cq4. The p, vector of Eq. 2 is therefore
computed with a transient solution at time d4, that is to say
at the time the phase ends, as does the solver of DEEM.

The answer to @3 (memory) shows a difference in the
maximum amount of storage used. Both techniques com-
putes the same Q; and A;; matrices, but the Component
Method builds all of them beforehand, to be able to compute
the components, while DEEM can exploit the knowledge of
the PhN state space to build the SN of the phases one by
one and the A;; using pair of phases. So the maximum
amount of memory for the Component Method is the size
of the whole system, and for DEEM is the maximum size of
a pair of SN of two consecutive phases. The difference is
linear in the number of phases.

In summary we can say that the more general method
(the Component Method) when applied to the MPS with
the limitations required by DEEM performs the same com-
putations as DEEM which has instead an ad-hoc solver for
MPS. The Component Method uses at most N times more
memory than DEEM.

4. EXTENDED MPS MODELS

The Component Method is a general technique for non
ergodic DSPN, so we can envision to lift all the limitations
imposed by MPS and simply keep the requirement that the
DSPN has to be non-ergodic. But this is an approach that
may not be very useful for a designer that wants to use Petri
nets to study a phased system, for which a more structured
approach in the description of the system can be useful. We
propose therefore to define an extended class of MPS, called
X-MPS by simply lifting the limitation imposed on MPS.

Definition 1. An X-MPS is a non-ergodic DSPN composed
of two nets, a Phase net, which is a DSPN, and a System
Net, which is a GSPN [26] (only exponential and immediate
transitions with associated priorities and inhibitor arcs).

129

X-MPS models can be solved efficiently with the Compo-
nent Method, by devising the structure of the solution di-
rectly at the MRP level. Note that to ensure non-ergodicity
in an easy manner we can re-insert limitation L2 (the reach-
ability graph of the PhN should be a DAG), but it is not
required if the modeller is expert enough in Petri net mod-
elling and, for example, stops a phase as a consequence of a
SN event.

Lifting limitation LI and L3 allows a richer description
of phases in which phase duration may include some non-
deterministic duration and more complex behaviour than a
single marking, as in MPS. Removing limitation L4 allows
the SN to stop and restart a phase before its end, or to stop
a phase and go to the next one (for example in a scheduled
maintenance system a failure of a certain severity in the SN
can interrupt the scheduled maintenance phase to start a
more extensive maintenance activity).

The modelling power of X-MPS are shown in the next
section through a number of examples of a SMS of increased
complexity.

5. NUMERICAL RESULTS

In this section we consider an example of a Scheduled
Maintenance System (SMS) model, inspired by [3], and rep-
resented using the PPN formalism. We shall first consider it
in a standard MPS and then we show how it could be mod-
ified into an X-MPS to account for more complex features.

Fig. 1 shows the model of the SMS drawn with DEEM (up-
per part), which explicitly supports PPN, and with Great-
SPN (lower part), in which the SMS is modeled as a DSPN.
The SMS model represents an alternation between a factory
work phase and a maintenance phase. The PhN and the
SN are drawn into separate boxes, both in DEEM and in
GreatSPN. The PhN models the alternation between work
and maintenance, for NP consecutive cycles. During the
production, raw pieces are loaded from a warehouse, are
transformed following a sequence of steps with one of the M
available machines, and are then moved back in a storage as
finished products. Machines may break, and are therefore
subject to a continuous maintenance that is scheduled at
fixed intervals during the maintenance phase. In addition,
workers have S spare parts to fix the machines between each
maintenance cycle, parts that are replenished during main-
tenance.

In DEEM, each transition may have a guard condition that
determines in which phase it is available. This feature, part
of the PPN formalism, is not available in GreatSPN. Thus,
the GreatSPN model has additional test/inhibitor arcs to
model such guards.

Table 2 shows a comparison of the MPS method with the
Component Method. The comparison is done for an increas-
ing value of the parameter NP, which controls the number
of phases. The table reports the PPN parameters, and the
results of the MPS solver of DEEM and of the Component
Method. For DEEM, the table reports the total number of
phases, the maximum number of states per phase, and the
total time. For the Component Method, the table reports
the total number of states, the number and types of compo-
nents obtained, and the total time. The last two columns
report the expected number of completed products and fail-
ures of the machines after running for NP phases, computed
with both tools, that, as expected, compute the same values.

Table 1: Classification of MRP components.

0.75
1 server

0.35
Products InProd Tsérver Broken Failure

Figure 1: Scheduled Maintenance System drawn in DEEM
(above, as a PPN) and in GreatSPN (below, as a DSPN).

The first observation is that DEEM execution times are
much slower than expected. This is presumably due to a
combination of two factors: DEEM is a prototype imple-
mentation, moreover it has been executed inside a virtual
machine. For what concerns the memory requirements, from
the upper table it is clear that GreatSPN builds the whole
state space in a single shot (column States), while DEEM
builds the state space of one phase at a time. Actually the
maximum memory required by DEEM is not 389 but 2 % 389
since two phases are needed to build the A;; matrices, but
what is relevant is that this value does not increase with the
number of phases.

A second observation is that, as shown in Section 3, the
Component Method computes a number of components of
type C4 which is equal to the number of phases, plus a fi-
nal Cg component that includes all absorbing states. In
this terminal component no deterministic or exponential is
enabled (indeed matrix Q;, Q;, and A; are empty).

The lower part of Table 2 reports in more details the struc-
ture of the phases and of the components for the two meth-
ods. Since the components correspond to the MPS phases,
they are listed together. For the Component Method the
component size is split into the states used in the solution
(column tangible states) and the states of the frontier (state
reached by a Cy component after the firing of g.

130

Class | Component identification Component characteristics Cost of computing Eq. (2)
Cg | No general enabled. CTMC. Steady state CTMC solution.
Cy |Qii =0AA;; =0; g enabled and no internal Q/A events. | CTMC under general event g. | Transient CTMC solution at time 47.
O, . A, 1 i 1Q/A . .
Cur Q’.’l #0v sl # 0, g enabled, internal Q/A events MRP. Steady state MRP solution.
Mixed enabling of general events
) Table 2: MPS method compared to Component Method.
(7t I"“’.:' (7 ecimaze IM"' £ Brinterresthase
W T) a L M=3. S—1 MPS method Component method
[el (DEEM) (GreatSPN)
= Model [p| ¢ pu;'smes e e | Time States | C,| C, | C,y| Time | E[Failures] | E[Products
14| 2[10 5 389| 39.9] 2257| 1| 5] 0] 0.2 0.74 4.81
24| 410 9 389 73.0) 3813| 1| 9] 0] 0.2 1.11 7.38
34| 6[10] 13 389|118.6] 5369| 1[13] 0] 0.3 1.38 9.27
44| 8|10] 17 389|237.8] 6925| 1[17] 0] 0.4 1.55 10.55
54| 10(10) 21 389|372.8| 8481| 1(21] 0] 0.6 1.62 11.20
64| 12/10] 25 389465.1| 10037 1]25] 0] 0.8 1.65 11.41
Details for the phases/components of case NP=2, K=10:
MPS method Component method
Phase num tangible|non-zero| tangible | frontier | total comp. | type
N states | entries | states states states
e e — o 1 Work 312 539 312[312 624 @,
@ L%l VAl i 2 Maintenance 389 1166 389 389 778 C,
- f (2) = 5 — 3 Work 389 1230 389 389 778 C
- fo(x) = T[1.0) fylw) =1[4.0] AintenmneePhase =
NumPhases /‘% MaintenancePhase T Maintenance =89 1166 350 389 s c
Systom Net - 5 Work 389 1230] 389| 389 778 C,
Rd“z'm’\ 6 (system blocked) - - 389 0 389 Cy
endProd MacTines
100
T X-MPS model of the SMS.

The original SMS model of interest has some additional rules
that cannot be expressed as MPS, but corresponds to X-
MPS. Since phases have deterministic duration, it may hap-
pen that the maintenance phase starts when the machines
are processing some item. The maintenance phase needs to
wait for their completion before starting. This makes the
PhN dependent on a condition of the SN, which is not ex-
pressible in standard MPS. In addition maintenance could
take a varying quantity of time, and thus is not represented
anymore with a fixed-delay transition, but by the exponen-
tial transiton restart. Fig. 2 shows the Petri nets of the
modified SMS as an X-MPS form, drawn with GreatSPN.

Phase Net

NumPhases restart WorkPH doWork EndPH doMnt MainterfancePH

Spares

Products

Broken noSpares Failure

Production subnet Parameters

startProduce endProduce

stagey

stage;

stages

Figure 2: SMS extended with delayed maintenance rule.

Transition Produce is actually a subnet, shown in the
lower part of Fig. 2), that models two parallel stages of the
production. The delayed start of the maintenance phase is
modeled using the inhibitor arc from place Target (and any
place in the production subnet) to the transition doMnit.

The SMS in X-MPS form is tested in four different con-
figurations. In configuration (A) a fixed number of phases
is performed before the system stops. Configuration (B)
is similar, runs are performed for an increasing number of
both pieces and phases. Configuration (C') allows for an un-
bounded number of maintenance cycles: place NumPhases
has been removed and the net is modified so that the work
phase is interrupted when there are no more raw pieces.
Tests are done on a varying number of parallel working ma-
chines and spare parts available to compute the probability
distribution of machines into the Failure place at the time
the system has consumed 10 raw pieces. Finally, configura-
tion (D) has both unbounded phases and pieces, and com-
putes the distribution of the states when all machines have
failed. The net of configuration (D) can also be used to
tests the duration of the maintenance free operating period
(MFOP) of the system [24,27]. Table 3 shows the results of
the four configurations of the SMS for varying parameters.

Table 3: Component method on the extended SMS model.

(A) Finite number of phases set to NP=8:

Standard Component method
K | States SCC BSCC | Tter. | Time | C, | C, 'y | Time
20| 16146 | 16146 99 30 23.8 9| 9 0 2.9
40| 32906 | 32906 199 31 52.6 9] 9 0 6.1
60 | 49666 | 49666 | 299 il 79.8 9] 9 0 9.1
80| 66426 | 66426 | 399 31| 1084 9] 9 0 12.3
100 | 83186 | 83186 | 499 31| 134.1 9] 9 0 15.5
(B) Increasing number of phases NP and pieces K, four machines:
Standard Component method
K | NP | States SCC BSCC | Iter. | Time | C, | C, | C,,| Time
10 5| 29877 | 29877 79| 26 70.7) 6| 6| 0 7.0
20 [10| 128407 | 128407 | 169 54| 596.6| 11|11 | 0] 31.7
30| 15]294237 [294237 | 259 | 206 |4943.6] 16|16| 0| 74.6
40| 20| 527367 | 527367 | 349 - - 21[21] 0] 1364
50 | 25 [827797 | 827797 | 439 - -1 26[26] 0] 2155

(C) Unbound number of phases, waits for K=10 pieces completed:

Standard Component method
M | S | States SCC BSCC | Iter. | Time | C, | C, | C,, | Time
10] 2 830 467 13 25 1.0] 9] 9] 18 2.6
10] 3 3055 | 1796 17 30 6.4] 10| 9] 18 18.1
10| 4 8542 | 5219 23 42| 3140 10 9] 18 76.2
20] 2 1770 967 23 42 36 19 19] 38 10.9
20| 3 6865 | 3906 27 59| 27.0] 20| 19] 38 84.6
20 | 4| 20432 | 12059 33 841 149.9] 20| 19| 38| 395.9

(D) Closed system, unbounded number of phases, ends with Failure:

Standard Component method
K | States | scC | BSCC | Iter. | Time | C, | C, | C,, | Time
20 5123 293 1 57 25.7 0 3 4 15.4
40| 10683 613 1 85 81.7 0| 3 4 65.8
60 | 16243 933 1] 119] 1775 0] 3 4 146.1
80| 21803 | 1253 1 171 | 356.5 0| 3 4 246.0
100 | 27363 | 1573 1] 213| 565.9 0 3 4 391.1

Note that, if we release the condition of delayed main-
tenance and of exponential duration of transition restart,
configurations (A) and (B) simplify to an MPS, but config-
urations (C) and (D) are X-MPS system, since they have
an unbounded number of phases. As we shall see, this type
of net generates components of class Cyr, which cannot be
modeled using regular MPS.

Each table reports the test parameters, the number of
MRP states, and the number of SCCs and BSCCs in the non-

131

ergodic state space S. Since we cannot compare with DEEM,
we compare the matrix-free Component Method with a stan-
dard matrix-free solution of MRP [28] (“Standard” columns),
that solves the whole system as a single component. Finally,
the last four columns report the number of components ob-
tained using the method described in this paper, divided
per class type, and the time to compute the steady state
distribution of absorbing states.

Case (A) is a non-ergodic MRP where the entire process
can be decomposed into a constant number of Cg and Cy
components (half of the phases have an exponential dura-
tion). Case (B) is similar, but the number of components
grows with the parameters. In these two cases the Compo-
nent Method behaves significantly better than the standard
matrix-free one. Note that the aggregation of SCC into com-
ponents has a significant impact: these systems have hun-
dreds of thousands of SCCs: treating them one at a time
would result in prohibitive matrix management costs. Both
(A) and (B) are totally irreversible nets (no loop among
states), as can be seen by the fact that the number of SCCs
is the same as the number of MRP states.

Case (C) is a MRP where the aggregated components
form an intermix of components of all three classes, includ-
ing the Cps. The number of Cjr components is rather high
and this is a typical case in which the Component Method
costs more than the standard matrix-free method, due to
the cost of matrix management and to some inefficiency of
the implementation. Case (D) has a structure made with
few components, where Cys ones are still present in a small
number. The method performance are similar to that of
case (C), except that the smaller number of Cjy; compo-
nents makes the overall solution process more efficient than
the standard matrix-free .

6. CONCLUSIONS AND FUTURE WORK

This paper extends the class of MPS systems that can
be efficiently solved in an analytical manner thanks to the
Component Method for non-ergodic MRPs. It also shows
that, when applied to standard MPS behaves similarly to
the ad-hoc MPS solver implemented in DEEM, despite us-
ing more memory. The Component Method implemented in
GreatSPN also allows for transitions with (a limited num-
ber of different) general distributions, as far as there is at
most one enabled in each state: a possible future extension
is to include generally distributed transitions into the PhN
definition.

We have seen that DEEM saves memory by building the
state space of SN one phase at a time: recent work on on-
the fly generation of MRP in the context of the MC4CSLTA
model-checker, which is part of GreatSPN, can be a line to
follow for the on-the-fly generation of the MPS state space.

Although we believe that the extensions introduced in this
paper are of practical significance, as the possibility of an un-
bounded number of phases, the introduction of exponential
delays in the PhN or the possibility for the SN to disable
a phase, we should remark that certain features of DEEM
not available in GreatSPN also have a practical relevance,
in particular the separation in the definition of the PhN and
SN net, the guards (to avoid too many crossing arcs), the
reward structure and the computation of the probability at
time ¢ of the whole MPS. This last feature is strictly related
to the choice of including only deterministic timings in the

PhN. The ideal MPS tool should include features of both
tools, and in particular it would be very useful to have a tool
in which the user can choose his/her own trade-off among
modelling power and computable performance indices.

7. REFERENCES

[1] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico,
and I. Mura, “Dependability modeling and evaluation
of multiple-phased systems using DEEM,” I[EEE
Transactions on Reliability, vol. 53, no. 4, pp.
509-522, 2004.

[2] I. Mura and A. Bondavalli, “Markov Regenerative
Stochastic Petri Nets to Model and Evaluate the
Dependability of Phased Missions,” IEEE Transactions
on Computers, vol. 50, no. 12, pp. 1337-1351, 2001.

[3] A. Bondavalli, I. Mura, and K. S. Trivedi,
Dependability Modelling and Sensitivity Analysis of
Scheduled Maintenance Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 7-23.

[4] Z. Peng, Y. Lu, and A. Miller, “Uncertainty analysis of
phased mission systems with probabilistic timed
automata,” in 7th IEEE International Conference on
Prognostics and Health Management (PHM’16), 2016.

[5] H. Choi, V. Mainkar, and K. S. Trivedi, “Sensitivity
analysis of Deterministic and Stochastic Petri Nets,”
in International Workshop on Modeling, Analysis, and
Sitmulation On Computer and Telecommunication
Systems (MASCOTS), San Diego, USA, 1993, pp.
271-276.

[6] A. K. Somani, J. A. Ritcey, and S. H. Au,
“Computationally-efficient phased-mission reliability
analysis for systems with variable configurations,”
IEEE Transactions on Reliability, vol. 41, no. 4, pp.
504-511, 1992.

[7] L. Xing and S. Amari, “Reliability of Phased-mission
Systems,” in Handbook of Performability Engineering,
K. Misra, Ed. Springer London, 2008, pp. 349-368.

[8] I. Mura, A. Bondavalli, X. Zang, and K. S. Trivedi,
“Dependability modeling and evaluation of Phased
Mission Systems: a DSPN approach,” in Int.
Conference on Dependable Computing for Critical
Applications. 1EEE Press, 1999, pp. 299-318.

[9] M. Ajmone Marsan and G. Chiola, “On Petri nets
with deterministic and exponentially distributed firing
times,” in Advances in Petri Nets, ser. Lecture Notes
in Computer Science, vol. 266/1987. Springer Berlin
/ Heidelberg, 1987, pp. 132-145.

[10] R. German, Performance Analysis of Communication
Systems with Non-Markovian Stochastic Petri Nets.
New York, NY, USA: John Wiley & Sons, Inc., 2000.

[11] R. Pyke, Markov Renewal Processes with Finitely
Many States. New York: Columbia University, 1959.
[Online]. Available:
http://books.google.it /books?id=ZFn7ygAACAA]J

[12] W. J. Stewart, Probability, Markov chains, queues,
and simulation : the mathematical basis of
performance modeling. Princeton (N.J.), Oxford:
Princeton University Press, 2009.

[13] E. G. Amparore and S. Donatelli, “A
component-based solution for reducible markov
regenerative processes,” Performance FEvaluation,
vol. 70, no. 6, pp. 400 — 422, 2013.

132

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

23]

24]

[25]

[26]

[27]

[28]

E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli,
and G. Franceschinis, 30 Years of GreatSPN. Cham:
Springer International Publishing, 2016, pp. 227-254.
E. G. Amparore and S. Donatelli, “MC4CSL™: an
efficient model checking tool for CSL™ 7 in
International Conference on Quantitative Fvaluation
of Systems. Los Alamitos, CA, USA: IEEE
Computer Society, 2010, pp. 153-154.

S. Donatelli, S. Haddad, and J. Sproston, “Model
checking timed and stochastic properties with
CSL™ " IEEE Transactions on Software Engineering,
vol. 35, no. 2, pp. 224-240, 2009.

K. S. Trivedi, Probability and Statistics with
Reliability, Queuing, and Computer Science
Applications. 605 Third Avenue, New York, USA:
John Wiley and Sons, Ltd., 2002.

C. G. Cassandras and S. Lafortune, Introduction to
Discrete Event Systems. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

E. G. Amparore and S. Donatelli, “A component-based
solution method for non-ergodic Markov Regenerative
Processes,” in Computer Performance Engineering,
ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2010, vol. 6342, pp. 236-251.

R. Tarjan, “Depth-first search and linear graph
algorithms,” in Proceedings of the 12th Annual
Symposium on Switching and Automata Theory
(SWAT 1971). Washington, DC, USA: IEEE
Computer Society, 1971, pp. 114-121.

E. G. Amparore and S. Donatelli, “Improving and
assessing the efficiency of the MC4CSL™ model
checker,” in Computer Performance Engineering, ser.
LNCS. Springer Berlin Heidelberg, 2013, vol. 8168,
pp. 206-220.

——, “Optimal aggregation of components for the
solution of Markov Regenerative Processes,” to appear
in QEST2016, August 2016.

U. of Torino, “The greatspn tool homepage,”
http://www.di.unito.it/~greatspn/index.html.

S. Chew, S. Dunnett, and J. Andrews, “Phased mission
modelling of systems with maintenance-free operating
periods using simulated petri nets,” Reliability
Engineering € System Safety, vol. 93, no. 7, pp. 980 —
994, 2008, bayesian Networks in Dependability.

H. Choi, V. G. Kulkarni, and K. S. Trivedi, “Markov
regenerative stochastic Petri nets,” Performance
Evaluation, vol. 20, no. 1-3, pp. 337-357, 1994.

M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis, Modelling with Generalized
Stochastic Petri Nets. Wiley Series in Parallel
Computing, John Wiley and Sons, 1995.

C. Hockley, “Design for success,” Journal of Aerospace
Engineering, vol. 212, no. 6, pp. 371-378, 1998.

R. German, “Iterative analysis of Markov regenerative
models,” Performance Evaluation, vol. 44, pp. 51-72,
April 2001.

