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ABSTRACT 

Cello bowing techniques are classified by applying supervised 

machine learning methods to sensor data from two inertial sensors 

called the Orient specks – one worn on the playing wrist and the 

other attached to the frog of the bow.  Twelve different bowing 

techniques were considered, including variants on a single string 

and across multiple strings. Results are presented for the 

classification of these twelve techniques when played singly, and 

in combination during improvisational play. The results 

demonstrated that even when limited to two sensors, classification 

accuracy in excess of 95% was obtained for the individual bowing 

styles, with the added advantages of a minimalist approach. 

Keywords 

cello bowing; wearable sensors; wireless inertial-magnetic 

sensors; Orient specks; SVM classifier. 

1. INTRODUCTION 
Stringed instruments by definition produce sounds from vibrating 

strings, and can be characterised by the way the strings are made 

to vibrate: by plucking them (harp, mandolin, sitar), by bowing 

(violin, cello, sarangi), or by striking them (piano, santoor).  This 

paper is concerned with the cello – a stringed instrument played 

with a bow (which is a stick with many hairs stretched between its 

ends). Advanced string competency involves mastering different 

bowing techniques.  The automatic classification of the bowing 

techniques has attracted interest due to its technical complexity, 

for its  possible future applications in musical pedagogy and its 

use in the hypercello, in triggering and modifying synthesised 

sounds that accompany the acoustic cello.  

Previous research in this topic has been limited to a small number 

of bowing techniques, using special bows embedded with sensors, 

and restricted to classification of techniques singly, or in a pre-

determined order, without tackling combinations during 

improvisational play. The proposed approach uses the Orient 

specks [13], which combines a 3-axis accelerometer, gyroscope  

 

 

 

 

 

and magnetometer, and wireless communication in a single unit 

measuring 36x28x11 mm and weighing 23 grams (including the 

battery). Orients have the advantage of being unobtrusive when 

worn on the playing wrist, and can be attached to the frog in the 

bow without affecting its balance during playing. A novel set of d-

attributes was constructed from the sensor data for this task with 

the aim of making the data separable in  d-dimensional space. 

Results are presented using a classifier based on a Support Vector 

Machine (SVM) model for three data captures sessions following 

the minimalist approach, which included twelve bowing 

techniques and addressed the aspect of string-crossings and 

improvisational playing by experienced cellists each with more 

than fifteen years of experience.     

In the rest of this paper, Section 2 gives a short introduction to 

different bowing techniques and previous research in this area 

with an analysis of their strengths and weaknesses; Section 3 sets 

out the methodology adopted in this paper; Sections 4 and 5 

present results and conclusions, respectively. 

2. BACKGROUND AND RELATED WORK 

2.1 Background 
The drawing of the hair of the bow across the strings produces 

vibrations due to the spontaneous jerking motion called the stick-

slip phenomenon. Different  bowing techniques [7][8][9] produce 

characteristic sounds and the following were considered in this 

work:   

 Legato: smoothly connected, without interruption 

between the notes, whether in one or several bow 

strokes. 

 Staccato: a non –legato martelé type of short bow 

stroke played with a stop; a detached well articulated 

stroke. 

  Martelé: percussive bow-stroke characterised by its 

sharp initial accent and post-stroke articulation. 

 Spiccato: In the eighteenth century terminology, a style 

of bowing which produces a dry, detached sound, not 

necessarily executed off the string. In the nineteenth 

century, it came to mean a relatively slow, bouncing 

stroke. 

 Tremolo: a rapid repetition of notes played with quickly 

alternating up and down bow strokes.  
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 Col legno: to strike the strings with the stick of the bow 

as opposed to sliding the bow across the string. 

  Ricochet: involves at least two notes being played in 

the same 'bow-stroke' (either up or down). 

Each of the bowing techniques (except Col legno and Ricochet – 

only the single string variant was considered) was treated to two 

variants: 

1. Single: the techniques were applied on a single string of 

the cello. 

2. Crossing: the bow moved over multiple strings of the 

cello, i.e., the bow "crossed" strings. 

 

2.2 Related Work 
The CyberViolin project [1] presented real-time classification of 

violin bow strokes such as détaché, martelé, staccato, spiccato, 

and legato, using an electromagnetic motion tracking system to 

capture raw gesture data. The data was analysed to extract stroke 

features and fed to a decision tree for training and classification.  

An accuracy of 73% was achieved using a set of sparse features 

such as the length of the bow stroke and its average speed.  The 

accuracy was improved by adding new features such as frequency 

of bow change, acceleration or deceleration within a stroke, 

continuity of motion between strokes, bow position (middle, 

upper, lower), number of changes in a single coordinate (stroke 

similarity), and the lack of movement within a stroke (stoppage).  

Schedel and Fiebrink [2] constructed a real-time cello bow 

articulation classification system for using a bow instrumented 

with sensors.  The commercial K-Bow [5] measures bow 

acceleration and tilt, bow hair tension, grip pressure and surface 

area, horizontal distance between frog and tip, vertical distance 

between fingerboard & bridge, and the tilt of the bow relative to 

instrument.  A total of eighty features were extracted from the 

following sensor data for classification of legato, marcato 

(martelé), tremolo, battuto (col legno), ricochet, hook and 

spiccato  bowing styles. The Wekinator software tool was used for 

real-time, interactive machine learning [6] with the following 

inputs: each K-Bow sensor’s mean, minimum, and maximum 

value over a sliding window; the mean, minimum, and maximum 

of the first- and second-order differences within the same window; 

and the raw sensor value sampled once per window.  

Bevilacqua et al at IRCAM in Paris developed the augmented 

violin which was an acoustic violin with added sensing 

capabilities to measure the bow acceleration. A k-NN (k-Nearest 

Neighbour) clustering technique was used to recognise détaché, 

martelé and spiccato bowing styles. Young [4] used a carbon 

fibre violin bow augmented with force, inertial, and position 

sensors to record bowing gestures on an electric violin. Principal 

components were computed for the data set comprising of the 

downward and lateral forces; x, y, z acceleration; and angular 

velocity about the x, y, and z axes. A k-NN classifier was 

employed, using the principal components as inputs to classify six 

different common bowing techniques:  accented détaché, détaché, 

lancé, louré, martelé, staccato and spiccato.  

The research presented in this paper pushes the state-of-the-art in 

a number of ways. Firstly, a wider variety of bowing techniques 

are classified including the legato, staccato, spiccato, tremolo, 

martelé, col legno and ricochet. Furthermore, the “crossing” of 

strings is also considered, i.e., the single string and crossing string 

variants are considered separately for the different bowing 

techniques where applicable. The classification of such a 

comprehensive list of bowing articulations has not been attempted 

before.  

Secondly, the approach adopted in this paper is the least intrusive 

to date compared to other methods; two wearable Orient wireless 

sensors are used – one on the wrist of the playing hand and the 

second  attached under the frog of the bow, i.e., this could be any 

bow and does not require a specially adapted one. Such a 

minimalist approach is in sharp contrast to the K-Bow which is 

festooned with a number of sensors: a three-axis accelerometer 

located inside the frog senses tilt and acceleration of the bow; 

changes in the grip pressure and surface area of the cellist’s bow 

hand are sensed; an angle sensitive pressure sensor located in the 

junction between the bow hair and the frog measures changes in 

the tension of the bow hair as the cellist plays; a small circuit 

board beneath the fingerboard of the instrument creates an RF 

field and an infrared modulated wide field light cone, whose 

interactions with the loop antennas inside the bow stick and with 

the infrared detector inside the frog allow the measurement of the 

bow position and angle relative to the instrument. 

Thirdly, despite the minimalist approach, the classification 

method adopted in this paper yields an impressive accuracy of up 

to 98.33% for the individual bowing techniques, and furthermore 

the method has been applied for the first time towards classifying 

the bowing techniques in improvised pieces: for constrained 

improvisation and free improvisation. 

3. METHODOLOGY 
 

 

Figure 1: Cellist (Centre) with an Orient Speck attached to the 

wrist (Left) and another one attached to the frog of the bow 

(Right). 

3.1 Data Capture Sessions 
The cellist participating in the data capture session wore an Orient 

speck on the wrist of the playing hand and another speck was 

attached to the frog of the bow. The motion of the bow as the 

playing hand manoeuvres it, is central in characterising the 

bowing technique. This determined the placement of specks on 

the bow and on the playing hand (as close as possible to the point 

of contact with the bow). The exact position of the specks, as 

shown in Figure 1, was fine-tuned by the cellists to minimise any 

interference when playing the instrument. Each data capture 

session consisted of three parts: each of the twelve bowing 

techniques (‘Single’ and ‘Crossing’ techniques for each of Legato, 

Staccato, Martelé, Tremolo, and Spiccato, and ‘Single’ only for 

Col legno and Ricochet.) was played continuously for a period 

ranging between 20 to 25 seconds; next, a constrained 

improvisation piece was played which contained a random 

concatenation of the twelve bowing techniques, which is not a 

recognisable musical piece; finally, the cellist was asked to play 

freely an improvised piece of music which was chosen to contain 

the bowing techniques. The latter two sessions lasted between 120 



and 150 seconds. The constrained improvisation piece is a half-

way house between the individual bowing styles where the 

playing is well pronounced and the freely improvised musical 

piece in which the demarcations between the techniques are fluid, 

wherein one technique smears into another. The three data capture 

sessions considered in this paper were also videotaped for future 

reference. The cellists participating in the study were categorised 

as an expert (Subjects 1 and 2), and at intermediate level (Subject 

3),  to validate the robustness of the method for different playing 

abilities and styles.   

 

Table 1: The twelve bowing techniques and their mnemonics. 

Abbreviation Bowing Technique 

LS Legato Single 

LC Legato Crossing 

SS Staccato Single 

SC Staccato Crossing 

MS Martelé Single 

MC Martelé Crossing 

TS Tremolo Single 

TC Tremolo Crossing 

SPS Spiccato Single 

SPC Spiccato Crossing 

C Col legno 

R Ricochet 

 

3.2 Data Pre-processing 
The Orient data stream contains sensor values from three-axis 

gyroscope, accelerometer and magnetometer produced at a sample 

rate of 100 Hz. As a first step in the pre-processing stage, the 

magnetometer data was removed because the direction of the 

magnetic field or changes to it does not add any relevant 

information for describing the movement of the bow. Next,  

outlier values were removed manually by visual inspection.  The 

data from all the Orients were packed into a vector for each 

segment so as to represent it as an n x d data matrix1. This is a 

standard representation of datasets for data mining tasks and is 

suitable for use with the Weka tool [10]. When sensor values were 

missing, they were ignored but a segment was only considered as 

long as no more than 25% of the data was missing from either of 

the two Orients.  It was established empirically that segments with 

75% of the sensor values from each of the Orients encoded 

sufficient information for classifying the segment correctly using 

the methodology described in this paper.  

3.3 Segmentation 
For each capture, the Orient sensor data and its corresponding 

video were aligned with a precision of 0.05 seconds using their 

respective timestamps. The Orient data was next divided into 

segments based on a time window, which is termed as the 

‘segment duration’ (sd). For example, sd = 1.5 corresponds to 

dividing the actions into 1.5 second segments. The impact of sd 

                                                                 

1  n is the number of segments and d is the number of attributes. 

on the classification accuracy (%) was studied and the results 

summarised in Figure 2. The value of sd, ranging between 1 and 2 

seconds does not have a significant effect on the accuracy. The 

final choice of 1 second was a compromise between the ability to 

pick out events of short duration of interest during the improvised 

pieces and in being able to encode as much of the macroscopic 

information in the pieces as possible. For example, sd = 1 will 

result in 25 training examples for a 25 second capture for LS 

(Legato on a single string).   

 

Figure 2: Impact of segment duration (sd) on accuracy (%). 

3.4 Choice of Classifier 
The choice of SVM with a normalised polynomial kernel was 

based on a systematic comparison of different classifier models 

using the Weka tool [10]. Table 2 summarises the evaluation 

results using 10-fold cross validation for an artificially shuffled 

dataset produced by randomly concatenating 1-second segments 

of individual bowing techniques. It was observed across all the 

artificially shuffled datasets using tuned versions of the classifiers, 

that SVM with a normalised polykernel was consistently the best 

performer. 

 

Table 2: Comparison of performance for different 

classification methods 

Classifier Model Accuracy 

NaiveBayes 93.75% 

k-NN 93.75% 

Decision Tree (J48) 90.83% 

Logistic Regression 97.5% 

MultiLayer Perceptron 98.33% 

SVM with a Normalised PolyKernel 98.33% 

 

3.5 Choice of Features 
Six features were selected and their values calculated along the 

three axes using the sensor data from the two Orient specks, 

resulting in thirty-six (6 x 3 x 2) attributes. Given the variety of 

techniques including on-the-string and off-the-string bowing and 

those involving bow tilts, it was important to consider sensor data 

in all the three dimensions. The absolute values of the 

accelerometer and gyroscope readings were used as the bowing 



technique may be applied either in an Up-Bow (’Pushing’ the bow 

so that its point of contact with the string moves from the tip 

towards the frog), or in a Down-Bow fashion (drawing the bow so 

that its point of contact with the string moves from the frog end 

towards the tip). The features were selected based on published 

sources on bowing techniques ([8][9][12]) and actual 

observations, and are listed below: 

1. Average acceleration. 

2.  Variance in the acceleration. 

3. Average smoothness of acceleration (mean of the first 

derivative of the accelerometer readings in a segment) 

4.  Average angular velocity (mean of the gyroscope 

readings in a segment).  

5. Variance in angular velocity (variance in the gyroscope 

readings in a segment). 

6. Average angular acceleration (mean of the first 

derivative of the gyroscope readings in a segment).  

The utility of each feature was tested by plotting specific parts of 

the data, e.g., variance in the acceleration was hypothesised to 

distinguish between Legato and Martelé as these techniques have 

different acceleration profiles due to their articulation. The scatter 

plot in Figure 3 shows the normalised values of variance in 

acceleration2 plotted along the y-axis for segments of Legato 

Single (LS), Legato Crossing (LC), Martelé Single (MS) and 

Martelé Crossing (MC). The Legato segments have much lower 

values of variance, as it is a non-articulated and smoothly 

connected stroke, as opposed to Martelé which is characterised by 

its articulation.  

 

Figure 3: Plot showing normalised variance in acceleration 

(m.s-2) along y-axis for Legato and Martelé segments. 

 

Furthermore, a Voronoi tessellation3 of the attribute space was 

induced by applying a 1-NN classifier model. The minimum 

                                                                 

2 These were calculated using the accelerometer readings along Z-

axis obtained from the Orient speck attached to the frog. 

3 This is a partition of space which associates a region V(xi) with 

each point xi in such a way that all points in V (Xi) are closer to xi 

than any other point. 

 

classification accuracy on 10-fold cross validation was 90% which 

indicates that the data was indeed well separated in the attribute 

space. SVMAttributeEvaluation was used in Weka for 

understanding  better the relative importance of the six features. 

Based on the results, one could infer that different features were 

useful for distinguishing between different types of bowing 

techniques and it was inconclusive in determining which one or 

two of these features had greater importance overall. Also, it was 

possible to choose a subset of attributes by not calculating some 

features along a specific axis without compromising on 

classification performance. However, such attribute selection 

techniques did not generalise well as an optimal subset of 

attributes in the case of one cellist was not necessarily the optimal 

one for the others.     

4. RESULTS 

4.1 Artificially Shuffled Datasets 
We considered two “artificially shuffled” datasets for each of the 

three subjects: ‘only single string variants’ containing the 7 styles 

that were executed on a single string and ‘full dataset’ containing 

all of the 12 styles (Table 1). Each of these datasets had 36+1 

attributes including the class label. The mode of evaluation was 

set to 10-fold cross validation in all cases as this is one of the 

most robust techniques to evaluate a classification algorithm. The 

two parameters of the Support Vector Machine with a Normalised 

PolyKernel,  viz. the complexity parameter (c) and the order of the 

PolyKernel (e) were set for each dataset after performing a grid 

search and  the pair (c,e) which resulted in the best classification 

performance was selected. Ties were resolved by taking the lower 

value in order to guard against overfitting the training data. A 

weighted average is reported of the Receiver Operating 

Characteristic (ROC) curve area across the classes in the dataset 

weighted by the number of instances in each class and gives the 

performance of a classifier without regard to class distribution or 

error costs [11]. The weighted average of the F-measure (the 

harmonic mean of recall and precision) is also reported across the 

classes weighed by the number of instances in each class – a high 

value of F-measure indicates high values of both recall and 

precision which are important measures of evaluating 

classification performance. 

 

4.1.1 Only Single String Variants 
 

Table 3: Classification performance on Single String Variants 

Subject #Instances Parameters Accuracy ROC 

Area 

F-

measure 

1 140 c = 2, e = 5 99.29% 0.99 0.993 

2 166 c = 3, e = 7 98.19% 0.99 0.982 

3 175 c = 1, e = 2 100% 1 1 

 

 

 

 



The distribution of the instances across the 7 classes (single string 

bowing techniques) for each subject were as follows4:  

 Subject 1: 20 each from the 7 classes. 

 Subject 2: LS – 17, MS – 24 and 25 each from the 

remaining 5 classes. 

 Subject 3: 25 each from the 7 classes. 

There was only one misclassification for Subject 1– a staccato 

was classified as a martelé. This can be explained as these two 

styles are quite similar: staccato is essentially a version of martelé 

executed with separation but with a less aggressive articulation 

[12]. In case of Subject 2, there were three errors - all of which 

were in distinguishing staccato and legato (2 staccatos were 

classified as legato and 1 legato was classified as a staccato). 

Legato and staccato are both on-the-string bowing techniques. 

However, the key difference is that the former is non-articulated 

whereas the latter is a well-articulated technique.  Thus, in 

absence of the part of the articulation/non-articulation in the 

segment, it may be quite difficult to distinguish between these two 

styles. Finally, there were no errors observed for Subject 3. 

Overall, the classification performance as indicated by the three 

metrics (Accuracy, ROC Area and F-measure) was impressive and 

the small number of errors was explainable.  

 

4.1.2 Full Dataset (both single and crossing string 

variants) 
 

Table 4: Classification performance on Full Dataset 

 

The distribution of the instances across the 12 classes (single and 

crossing string bowing techniques) for each subject were as 

follows:  

 Subject 1: 20 each from the 12 classes. 

 Subject 2: LC – 18, LS – 17, MC – 22, MS – 24 and 25 

each from the remaining 8 classes. 

 Subject 3: 25 each from the 12 classes. 

The results presented in Table 4 illustrates the fact that detecting 

string-crossings is challenging; however, there have been notable 

results. The errors for each subject have been summarised below:   

 Subject 1: We observed 4 misclassifications in this case 

– a staccato crossing was classified as a martelé 

crossing; a spiccato crossing was classified as a spiccato 

single and the error is due to wrongly classifying a 

crossing; and  the other two errors are inexplicable and  

perhaps caused by noise in the sensor data. 

 Subject 2:  There were fourteen errors, most of which 

(ten) are related to detecting string-crossings. Staccato 

                                                                 

4 Refer to Table 1. 

and Spiccato share quite a few similarities especially in 

terms of articulation and this is likely to have been the 

cause for confusion.  Explanation for the 

misclassification of the Staccatos as Legato was 

provided earlier in this section. Finally, the error in 

classifying a Spiccato Crossing as a Legato Crossing is 

inexplicable and may be attributed to the noise in the 

data. 

 Subject 3: There were thirteen errors in this case mainly 

due to string-crossings. The other errors were in 

distinguishing between non-articulated (Legato) and 

articulated strokes (Staccato and Martelé). There was 

also 1 error in distinguishing between Spiccato and 

Martelé These two styles have similar forms of 

articulation giving rise to the confusion.  

In summary, the string-crossings results in greater 

misclassifications and could possibly be due to the segmentation 

procedure. In the absence of the part of the act where the bow 

“crossed” strings in the segment, it would be virtually impossible 

to detect the crossing variants. Also, dealing with both these 

variants introduces more noise in the data which may also lead to 

a dip in the performance. 

4.2 Improvised Playing 
The SVM with a normalised PolyKernel was trained on the 

corresponding ‘Artificially Shuffled’ dataset for Subject 2 and 

Subject 3. The parameter setting used was the one that worked 

best in case of the corresponding ‘Artificially Shuffled’ dataset 

using a 10-fold CV approach. The “Improvised” dataset was 

loaded as the test set in Weka and had no class labels. The 

classifier output was obtained, and the prediction for each 

segment and the probability distribution among classes for that 

segment, were stored. Using the classifier output, “soft” 

predictions were made, i.e., mark the segment with the class as 

predicted by the classifier; and, the second most likely class based 

on the probability distribution for that segment. A threshold t is 

set such that for each segment, a class label which has a 

probability p > t, is produced as an output. The threshold t is 

controlled in such a way that in most (or all) cases, only two 

predictions are allowed, i.e., the actual prediction produced by the 

classifier and the second most likely class label based on the 

probability distribution for the segment which is obtained from 

the classifier output in Weka. The reason for making “soft” 

predictions is due to the inherent subjective nature of the domain, 

i.e., the boundaries and definitions can often be fluid and the 

annotations rely on interpretation by musicians, which is 

subjective. The ground truth for assessing the accuracy on 

improvised pieces was obtained from the cellists themselves. A 

segmented version of the video of the improvised piece was 

provided to the cellist who was then asked to annotate each 

segment. The cellists were advised to mention both the techniques 

in case a combination was observed in a segment or if in any 

doubt about the exact bowing technique applied in the segment.  

 

 

 

 

 

 

Subj. #Instances Parameters Accuracy ROC 

Area 

F-

measure 

1 240 c = 3, e = 7 98.33% 0.99 0.983 

2 281 c = 3, e = 7 95.02% 0.98 0.951 

3 300 c = 4, e = 5 95.67% 0.95 0.992 



Table 5: Performance on the Improvised Pieces for Subject 2 

Piece #Segments Accuracy 

 

Accuracy 

(ignoring string- 

crossings) 

Constrained 

Improvised 

154 85.71% 88.46% 

Free 

Improvised 

119 68.90% 78.15% 

 

 

Table 6: Performance on the Improvised Pieces for Subject 3 

Piece #Segments Accuracy 

 

Accuracy 

(ignoring string- 

crossings) 

Constrained 

Improvised 

113 68.14% 80.53% 

Free 

Improvised 

125 68.00% 83.20% 

 

Tables 5 and 6 show that majority of the errors were made in 

detecting string-crossings and the classification performance 

increases significantly on ignoring this by verifying that the main 

technique was classified correctly, e.g., LS and LC are both 

Legatos and so LS and LC are treated as being the same. There 

were certain errors that were not observed in the artificially 

shuffled datasets such as detecting Ricochet and Col legno. These 

may be mitigated by using a larger training set to capture the 

fluidity and different varieties of the same technique. The other 

errors have either already been explained in the earlier subsection 

or were inexplicable, perhaps due to noise in the data.  The results 

for Subjects 2 and 3 are summarised in Figure 4.  

 

Figure 4: Classification accuracy (%) shown along the y-axis 

in the three distinct scenarios for Subjects 2 and 3. 

 

5. DISCUSSION 
The approach adopted in this paper is a minimalist one, 

identifying the lowest number of easy-to-use, wearable sensors 

which can be used to classify successfully twelve bowing styles. 

The classification based on SVM has for the first time been 

extended to classifying bowing styles in improvisational playing 

of the cello. The similarity between the results obtained in case of 

the expert (Subject 2) and those for the intermediate level cellist 

(Subject 3) validates to a limited extent the robustness of the 

method and indicates the generalisability of the approach. We also 

evaluated the performance on datasets obtained from the same 

cellist but in different scenarios such as playing with a different 

bow and in these cases as well, the results remained consistent.  

The task of identification of bowing techniques is a challenging 

one because of the fluid nature of music in general. The 

differences between the individual bowing techniques may not be 

concrete and a certain degree of overlap is expected to be present 

among the various techniques. Therefore, methodologies designed 

to identify bowing techniques are expected to be plagued by 

limitations to varying degrees. The evaluation of such methods 

also poses a challenge because purely data-driven approaches are 

not terribly well suited as they fail to capture the subjective nature 

of musical evaluation. In light of this observation, we adjusted our 

evaluation procedure on the improvised pieces. One must realise 

that in such a domain, absolute precision, even if achievable, may 

not be desirable. Alternative measures of performance such as 

inter-annotator agreement may serve to assess the quality of such 

methods more accurately. 

The main limitation of this work is the segmentation procedure. 

However,  an automatic segmentation procedure would require 

accurate velocity readings along the axes. Bow strokes start and 

end at velocity zero crossings and not at acceleration zero 

crossings. Hence, it is not possible to segment accurately the bow 

strokes based on accelerometer readings alone. The approach of 

using the zero- crossings in accelerometer readings to segment the 

individual strokes has not been entirely successful.  The large 

variety of bowing techniques considered in this work (both on-

the-string and off-the-string bowing techniques) also poses a 

challenge for automatic segmentation, e.g., spiccato (off-the-

string) will not have velocity zero crossings along the same axis as 

legato (on the string). Hence, this approach would also have to be 

modified to account for such variability. 

In conclusion,  twelve bowing styles have been classified with 

above 95% accuracy for each of the three subjects despite 

adopting a minimalist approach. The results and its analysis in 

case of the improvised pieces also demonstrate the potential of 

this methodology especially for use in real world applications 

such as data-driven pedagogical approaches to support learning of 

stringed instruments.    

Future work may involve developing an automated segmentation 

procedure, which would significantly improve the accuracy of this 

system based on our observations and conducting a deeper 

investigation on the generalisability of the approach to other 

stringed instruments using bowing. The advantages of this method 

may then fully be realised in applications such as interactive 

musical performances and on-the-fly musical compositions.  
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