
Task Offloading Engine for Heterogeneous Mobile Clouds
Dawand Sulaiman

School of Computer Science
University of St Andrews

KY16 9SX, St Andrews, UK
djs21@st-andrews.ac.uk

Adam Barker
School of Computer Science

University of St Andrews
KY16 9SX, St Andrews, UK

adam.barker@st-andrews.ac.uk

ABSTRACT
The limitations in computational resources and battery power of
mobile devices led to the concept of offloading compute-intensive
tasks to powerful devices. We have developed a framework to
offload tasks from a mobile device to other nearby heterogeneous
devices. It contains an offloading engine to selectively choose the
target devices for the execution of the offloaded tasks to address
optimal scheduling across devices with diverse capabilities. Our
initial conducted runtime measurements show the feasibility of
this concept. As preliminary results, we show that offloading
compute intensive tasks from a device with less computational
capability to a set of nearby more powerful devices can reduce the
overall computational time by approximately 50%.

CCS Concepts
• Computer systems organization → Peer-to-peer
architectures; Human-centered computing → Ubiquitous and
mobile computing design and evaluation methods.

Keywords
Mobile Clouds; Task Offloading; Heterogeneity.

1. INTRODUCTION
The concept of using cloud hosted components as a means to
overcome the resource-constraints of mobile devices is known as
Mobile Cloud Computing (MCC). The mobile devices can be
leveraged with the computation and storage resources provided by
the distant cloud servers such as Amazon Web Services, Google
Cloud Platform, and Microsoft Azure. However, as smartphones
and tablets gain more CPU power and longer battery life, the
meaning of MCC gradually changes. Instead of being fully
dependent on the cloud, a number of nearby devices can be used
to coordinate and distribute content and resources in a
decentralized manner. The local mobile cloud or ad hoc mobile
cloud is a research domain which investigates leveraging
heterogeneous resources of mobile devices in the vicinity for the
execution of compute-intensive tasks. It has been evident that a
collection of mobile devices can be used to perform compute
intensive tasks in a coordinated manner.

The advantages which local mobile clouds provide including
network congestion, cellular data network saturation, and energy
saving have made it an attractive research domain. The approach
of offloading computation to nearby devices meets the need of the
mobile devices with limited processing capabilities such as
wearable devices. Our initial results show that offloading does not
always reduce the makespan and it might lead to longer execution
time and wastage of energy consumption. Only when the task is
offloaded from a less computationally capable device, we gain the
reduction in the task runtime and save energy.

2. RELATED WORK
The continuous advancement in the processing, memory, network,
and battery power of mobile devices has attracted researchers to
position local mobile clouds as a core component to the future of
mobile computing. Authors at [1] envision mClouds which
enables local data exchanges between the devices over a free
high-bandwidth local networks. The computational resources of
nearby devices are used to leverage mobile devices in the context
of mobile crowd computing [2]. The device to device
communication mechanism used is Wi-Fi Direct technology as
described in [3]. Unintelligent workload distribution is one of the
research problems in task scheduling and allocation among the
heterogeneous devices in a mobile cloud [4].

3. OVERVIEW OF THE FRAMEWORK
We propose an experimental framework in the context of mobile
ad hoc clouds. It is implemented on top of multi peer connectivity
library [5] and is designed to work with both OSX and iOS
applications. Figure (1) shows an overview diagram of our
framework and its offloading engine. We describe the different
components of the framework in the following subsections.

Figure 1 Framework overview and its task offloading engine

3.1 Device Discovery
The process of discovering nearby devices is achieved by the
multi peer connectivity library. The library uses the concept of
zero configuration network technology [6] which enables devices
to advertise services and to discover what services other nearby
devices on the local network are offering. A browser object in a
host device searches for peers which have an advertiser object.

The OSX (MacBook, iMac) and iOS devices (iPhone, iPad,
Watch) which are connected to the same local network can be
discovered. Another discovery mechanism is based on Bluetooth.
All our preliminary tests are based on infrastructural Wi-Fi but we
are planning to extend our communication mechanisms to
Bluetooth for the future tests and compare the performance of
different discovery mechanisms.

3.2 Connection Establishment
The framework allows the devices to act both as a service
discoverer or as a service advertiser. Once a device discovers
another nearby device, an invitation is sent for establishing a
connection between them. The invitation can be accepted or
rejected by the receiver. After the connection is established, a
session will be created and any further devices need to join that
session. The process of sending an invitation and accepting it
needs manual intervention from the user. We can automate this
process and opportunistically transfer content and tasks from the
devices by establishing a trust mechanism between the devices.
For that we need to consider the security and privacy concerns
and establish of a trust certificate between the devices before they
can establish the connection. Lessons can be learned from [7].

3.3 Offloading Engine
After a device successfully joins a session, it will be checked
whether it is a new device or a returning device. The devices are
identified by a unique device ID stored in the framework. The
framework needs to perform a CPU benchmark test on the new
devices. The benchmarking test includes a Mandelbrot set which
is executed four times and the average score is then stored in a
file. The offloading engine uses that score to decide whether to
offload tasks to nearby devices or to execute them locally as it is
shown in Figure 1. The framework logs computational time of the
running tasks for every device as well as the data transfer time.

Table 1. The devices used in our testbed

ID Device Name Processor
Clock
Speed
(GHz)

Benchmark
Score

D1 iPhone 5 Apple A6 1.3 729
D2 iPhone 6 Apple A8 1.4 1536
D3 MacBook Air Intel Core i7 1.8 2331
D4 MacBook Pro Intel Core i7 2.5 3907

4. PRELIMINARY RESULTS
Using our framework, we have run a number of test results for an
application scenario which is a string search on a large text file.
The text file consists of 717,574 characters. This is a compute
intesive task for a resource limited device. Boyer Moore string
search algorithm is used for searching a keyword in the text file.
The tests are performed both locally on the host device and on the
nearby devices after the session is formed among them. The
devices in Table 1 were used for our experiment. As it is
mentioned in Section 3.3. the score of each device’s CPU
benchmark is recorded in the file. We store a unique ID for each
device consisting of 16 digits but for simplicity of presentation of
results we use D1, D2, D3, and D4 respectively.

We executed the string searching task in three different scenrios:
locally on each device, offloading the task to all other devices,
and offloading the task using our offloading engine to a set of
devices. We can notice that only the overall runtime of D1
reduces in the second scenario which does not use any decision
engine. For other devices, the offloading has increased the overall

runtime of the task thus wasting computational resources and
energy of the nearby devices. However, when the offloading
engine is used, the task is only offloaded to the nearby devices
which have a higher benchmark score. Figure 2 shows the results
of the task execution in each scenario. It is worth noting that D3
did not benefit from the offloding engine. This is due to the the
round trip time between D3 and D4 which increased the total
makespan compared to local execution.

Figure 2 Comparison between local execution, offloading to all

the nearby devices and our offloading engine

5. CONCLUSION AND FUTURE WORK
In this paper, we have shown that it is feasible to use an
offloading engine to decide on the offloading compute intensive
tasks from one device to other nearby devices and reduce the
overall computational time of the offloaded tasks. Our future work
includes offloading tasks to nearby devices and compare the
results with offloading the same tasks to a nearby cloudlet and a
distant cloud. We also want to setup an energy testbed to measure
the battery usage for each offloading and test if the framework can
help in saving the battery of the device as well. Generalizing the
framework and enabling parameterization of the methods can help
application developers write work sharing mobile applications.

6. REFERENCES
[1] Miluzzo, E., Cáceres, R. and Chen, Y.F., 2012, June. Vision:

mClouds - computing on clouds of mobile devices. In
Proceedings of the third ACM workshop on Mobile cloud
computing and services (pp. 9-14). ACM.

[2] Fernando, N., Loke, S. W., and Rahayu W. 2016. Computing
with Nearby Mobile Devices: A Work Sharing Algorithm for
Mobile Edge-Clouds. In IEEE Transactions on Cloud
Computing, vol.PP, no.99, pp.1-1.

[3] Camps-Mur, D., Garcia-Saavedra, A. and Serrano, P., 2013.
Device-to-device communications with Wi-Fi Direct:
overview and experimentation. IEEE wireless
communications, 20(3), pp.96-104.

[4] Yaqoob, I., Ahmed, E., Gani, A., Mokhtar, S., Imran, M.,
and Guizani, S. 2016. Mobile ad hoc cloud: A survey.
Wireless Communications Mobile Computing.

[5] Multipeer Connectivity Framework Reference. 2013.
Retrieved September 10, 2016 from
https://developer.apple.com/reference/multipeerconnectivity

[6] Steinberg, D.H. and Cheshire, S., 2005. Zero Configuration
Networking: The Definitive Guide. O'Reilly Media, Inc.

[7] Lacuesta, R., Lloret, J., Sendra, S. and Peñalver, L., 2014.
Spontaneous ad hoc mobile cloud computing network. The
Scientific World Journal, 2014.

