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ABSTRACT
We investigate equilibrium properties of a bidding strategy
in a situation in which bidders attempt to purchase a given
amount of a divisible resource by bidding on multiple auc-
tions. Each seller uses the Progressive Second-Price auction.
A domain of application is the next-generation of wireless
networks, in which multiple, competing network providers
sell bandwidth to multiple users able to aggregate their pur-
chased bandwidth shares. Every bidder needs to coordinate
his bids to maximise the utility derived from all auction. In
order to deal with aggregation and coordination of bids, we
introduce the notion of an aggregate market, which is an
artificial construct that each bidder uses to distribute his
demand among the auctions. Furthermore, the aggregate
market helps to understand convergence of the bidding pro-
cess occurring at each individual auction. We show that by
using an incentive-compatible, efficient mechanism at each
single auction bidders have incentives to truthfully reveal
their demand to the aggregate market.

1. INTRODUCTION
When bidders’ values are private, the Vickrey-Clarke-Groves

(VCG) mechanism is a direct, incentive-compatible and effi-
cient mechanism, implying that VCG calls for truthful rev-
elation of bidder’s values [2]. When the object being auc-
tioned is divisible, the VCG mechanism requires a bidders
to reveal their entire valuation function. Closely related
to VCG for divisible goods is the Progressive Second-Price
(PSP) auction, in which the the messages are reduced to a
price-quantity combination [7]. The resulting game becomes
iterative with all bidders reacting to the price-quantity com-
binations submitted by the opponents. In addition, the
strong properties of VCG are relaxed in terms of the equi-
librium concept.

In its original introduction PSP is a mechanism to allo-
cate bandwidth among competing users of a communication
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network. On a broader view, PSP is a decentralized and dis-
tributed market mechanism for resource sharing in networks.
The use of a market mechanism stems from the need to ac-
knowledge that different users may have different valuations
for the resource. It is also used as a key part to the provi-
sion of Quality of Service (QoS). Selfish users attempting to
gain resources, such as bandwidth, from a network provider,
will contribute to the state of congestion above which QoS
may be compromised. PSP is a mechanism by which prices
constitute a dynamic response to (unpredictable) demand,
while keeping a trade-off between engineering efficiency and
economic efficiency.

We are interested in extending the use of PSP to a con-
text in which users with elastic demand compete to obtain-
ing a sought amount of a resource, which they may procure
in shares bought from multiple vendors. We introduce a
model of bidding on multiple auctions, each of which runs a
PSP auction. Such a situation is likely to arise in the next
generation of wireless network (NGWN), whose vision is de-
scribed as a truly seamless, multi-technology, multi-provider
network, serving mobile and fixed users with a variety of
adaptive multi-media services [1]. The adaptation of appli-
cations and services is the central element and is equated to
the need that each element best uses its resources. The lat-
ter is posing many challenges to network operators such as
the dynamic allocation of scarce network resources in such
a heterogeneous system. The next generation of wireless
access networks will introduce the possibility of having si-
multaneous access to possibly competing networks, allowing
users to seamlessly switch between network providers, even
during ongoing service sessions. The subject of this paper
can be translated into NGWN as the need to model the
access to competing wireless providers all of which use an
auction for resource allocation. A user may then aggregate
shares of the resource obtained from several providers.

In this paper we investigate equilibrium properties of a
bidding strategy, first defined in [5], in a situation in which
bidders attempt to purchase a given amount of a divisible
resource by bidding on multiple auctions. A bidder may
aggregate shares of the resource obtained from some of the
auctions, and needs to coordinate his bids to optimise the
overall utility derived from each auction. In order to deal
with aggregation and coordination of bids, we introduce the
notion of an aggregated market, which can be seen as an
artificial construct by each bidder to coordinate his bidding
behaviour. Furthermore, this construct allows us to under-
stand convergence of the bidding process occurring at each



individual auction. Auction rules at each single auction pro-
vide incentives to bidders for truthful revelation to the ag-
gregated market

The rest of the paper is organised as follows: Section 2
briefly considers the main questions that arise from the pro-
posed model of resource allocation. Section 3 revisits the
Progressive Second-Price auction. Section 4 presents the
BalancedBid strategy, discussing the aggregated market, an
artificial construct by each bidder that allows to solve the
bid-splitting problem that bidders face; in there we also
address the equilibrium properties of the strategy and effi-
ciency of the solution. Section 4 draws the main conclusions
of our work and exposes some avenues for future research.

2. ON BIDDING ACROSS MULTIPLE MAR-
KETS

The literature on bidding strategies for multiple auctions
of divisible goods is limited. The authors in [9] develop
a detailed analysis of the problem of finding the optimal
bidding strategy when a bidder is faced with multiple auc-
tions occurring simultaneously. The paper aims at modelling
the coordination of bidding activities across multiple auction
markets where all sellers either use first-price or second-price
sealed-bid auctions.

For simplicity, the authors consider the case of two auc-
tions and an unspecified number of bidders. They assume
that each of the items is sold through an independently run
first-price sealed-bid auction. An optimal bidding function
is derived using an analysis based on a game against nature.
In such a game, the bids of rival bidders are part of the un-
certain environment and, therefore, for a given player they
hypothesise the existence of two probability distributions,
G1 and G2 which describe the probability of player winning
auction 1 and 2, respectively. An additional assumption is
the introduction of the extra utility factor generated for a
bidder by acquiring both items. When such extra utility
factor is zero, the auctions seem independent to the bidder,
that is, the bidder would just go to each auction to try to
win the item without regard to any complementarity that
may arise from winning both items. In this particular case,
their results for the optimal bidding strategy coincide with
the optimal bidding strategy derived for a bidder in a first-
price auction when a Bayesian-Nash equilibrium approach
is used. In both approaches, both bidders’ values and the
functions G1 and G2 are assumed to be uniform.

When the authors in [9] refer to the second-price sealed-
bid auction, they also find that the optimal bidding coincides
with the optimal bidding for the second-price auction in the
Bayesian-Nash approach, under the same assumptions for
the complementarities between items, and the value and G1
and G2 functions. They also present a simple case of two
bidders and two objects in which the optimisation has a
simple, closed-form solution.

The objective of each bidder participating in the market is
to maximise the individual utility derived from all auctions.
In order to achieve this goal each bidder seeks to find his best
bidding strategy for submitting bids in some or all auctions.
When faced with the possibility of bidding at more than
one auction the bidder is first confronted with selecting the
auctions he wants to actively participate in, and then to
select the optimal bid for each auction, or, altogether the
optimal combination of bids for the auctions chosen.

Assuming that two competitive sellers use the same auc-
tion type, our research focuses on the following questions:

• If a user needs to acquire a given amount of resource
and is able to satisfy his need by aggregating from more
than one source, how should he bid at each of the two
auctions?

• What are the effects of bid-splitting on a bidder’s ex-
pected utility?

While for a single market with one provider the PSP auc-
tion is well defined some questions remain unanswered when
more than one provider offers resources in a multi-auction
market:

• How can a user express his true valuation when giving
the choice of more than one seller?

• How can overall efficiency be assured when running
PSP at each seller?

In PSP users adjust their bids once they receive infor-
mation on the bid profile of the opponent bidders. Bidders
are therefore allowed to update their bids, deciding whether
they bid again whenever they find the new bid improves
on their current utility. Although auctions are considered
simultaneous (because they are active for all users at the
same time and no bidder has final information of an auc-
tion before entering another), the fact that PSP is the focus
of our analysis introduces an element of sequencing as PSP
allows for bid recalculation by every bidder once they are
informed about the bid profile of their opponents.

3. THE PROGRESSIVE SECOND-PRICE AUC-
TION

Let us suppose that the seller has Q units to be sold. The
PSP auction proceeds with a bidder i ∈ {1, .., I} submit-
ting a bid si consisting of a pair si = (pi, qi) of values: the
amount qi of resource requested and the price pi for one
unit of the resource. The PSP allocation mechanism sorts
the incoming bids according to the unit price indicated by
the bidder and allocates resources to all bidders up to the
total quantity Q. The auctioneer allocates a share ai of the
resource to player i at the cost ci. The allocation rule assigns
player i an amount ai equal to the minimum value between
his bid, qi, and the remaining amount after all those bids,
qk, whose prices beat i′s bid (pk ≥ pi) are subtracted from
the total amount Q to be allocated. In other words, the
allocation rule is [8]1:

ai(s) = qi ∧
qi∑

k;pk=pi
qk
Q(pi; s−i)

with Q(y, s−i) =
[
Q−

∑
pk≥pi,k 6=i qk

]+
and s representing

the set of bids by i, denoted as si and by the rest of the
players, denoted as s−i.

The payment of any agent i follows the ”exclusion com-
pensation” principle to cover the social opportunity costs of
participating in the auction. Therefore, the total payment of

1Note that the allocation rule presented here is a slightly
modified version of Semret’s work, which appeared in [8] to
correct some formal problems in the case of bid ties.



each agent is the sum of the willingness-to-pay of all players
excluded by i’s presence.

ci(s) =
∑
j 6=i

pj [aj(s−i)− aj(si; s−i)]

The allocation rule applied with all players has been proved
to lead to an equilibrium, which meets the first design objec-
tive. The algorithm has a bidder selecting a bid as a point
(quantity, price), on his demand function; by relaxing the
stringent equilibrium concept - with the introduction of the
ε-Nash equilibrium - a bidder is forced to submit a new bid
that improves his utility by at least an amount ε. The lat-
ter means that in order to guarantee the convergence of the
algorithm a bidding fee ε has been introduced to let bidders
change their bids only when the gain in net benefit is large
enough.

With incentive compatibility in PSP auctions, it is the
best strategy for all bidders to truthfully report their valua-
tion. Therefore, the bidding behaviour can be modelled by
using the individual demand function of each bidder. After
receiving signals about the last auction results, a player i
may decide to change his current bid to increase his chances
of winning a share of network capacity. By evaluating the
opponents’ bid profile he can decide on an optimal quantity
he should bid in the next round. His demand function then
defines the marginal unit price he can bid. Having found the
new quantity and unit price (pi, qi) the bidder calculates the
utility of this new bid and compares it to the utility of the
outcome obtained in the last auction round (ai, ci), with ai
being the assigned quantity and ci the total cost. If the
utility of the truthful reply exceeds the auction outcome by
more than /epsilon, the bidder decides to submit this new
bid. It needs to be stressed that the concept only applies for
shortsighted bidders, which do not anticipate the strategy
of their opponents.

3.1 The BalancedBid bidding strategy for a multi-
auction market

In this section we study the formal equilibrium charac-
teristics of multiple independently managed auctions when
bidders are allowed to split their bids in order to aggregate
shares of the resource from several auctions. Assuming PSP
is used by each auctioneer, we are concerned with the con-
vergence to equilibrium at each auction when every bidder
uses a bidding strategy known as BalancedBid [5].

Before presenting the bidding strategy in detail and dis-
cussing its main properties some notation is introduced in
the following.

Let us assume the set of bidders is 1, .., I, the set of auc-
tions is 1, .., J and Q(j) units are being sold at auction j.

Bidder i’s bid on auction j is s
(j)
i = (q

(j)
i , p

(j)
i ) ∈ S

(j)
i =

[0, Q(j)] × [0, P̄ ] with P̄ an upper bound on the unit price.

Let us also define Si =
∏
j S

(j)
i as the set of all possible

bids of bidder i at the auctions. A composite or split bid

si = (s
(1)
i , .., s

(J)
i ) from bidder i is a point in Si. We assume

that bidder i submits a bid to all or some of the auctions at
the same time.

To model a reserve price in each auction an additional
player i = 0 is introduced, which bids with a fixed valuation
θ0 = p0Q

(j). This bidder is present in each auction and
p0 determines the minimum bid needed by other bidders to
receive resources.

In the same fashion as s
(j)
i , bidder i’s opponent bid profile

at auction j can be written as

s
(j)
−i = [s

(j)
0 , .., s

(j)
i−1, s

(j)
i+1, .., s

(j)
I ] ∈ S(j)

−i =
∏
n6=i

S(j)
n ,

where S
(j)
−i is a set of all possible opponent bid profiles, con-

sisting of the bids submitted by all bidders n 6= i at the last
(most recent) auction round. We summarise all opponent
bid profiles from all auctions into a matrix s−i, with

s−i =

 s
(1)
−i
..

s
(J)
−i

 =

 s
(1)
0 , .., s

(1)
i−1, s

(1)
i+1, .., s

(1)
I

..

s
(J)
0 , .., s

(J)
i−1, s

(J)
i+1, .., s

(J)
I



=

 (q
(1)
0 , p

(1)
0 ), .., (q

(1)
i−1, p

(1)
i−1), (q

(1)
i+1, p

(1)
i+1), .., (q

(1)
I , p

(1)
I )

..

(q
(J)
0 , p

(J)
0 ), .., (q

(J)
i−1, p

(J)
i−1), (q

(J)
i+1, p

(J)
i+1), .., (q

(J)
I , p

(J)
I )

 ,

and define S−i =
∏
j={1,..,J} S

(j)
−i .

As in the one-auctioneer case a player i has a valuation
function θi for the resource. If, at any given time, i has

been allocated shares a
(1)
i , .., a

(J)
i from the J auctions and is

supposed to pay c
(1)
i , .., c

(J)
i to every individual auctioneer j,

his utility is given by ui(ai, ci) = θi(
∑J
j=1 a

(j)
i )−

∑J
j=1 c

(j)
i ,

that is, the valuation for the sum of all resources obtained
from each auction minus the costs from each auction.

We also need to make some assumptions about a bidder’s
utility function.

Assumption 3.1. As in [7], the following assumptions on
θi, ∀i ∈ I, hold:

• θi(0) = 0,

• θi is differentiable,

• θ′i ≥ 0, non-increasing and continuous,

• ∃γi > 0, ∀z ≥ 0, θ′i(z) > 0 ⇒ ∀η < z, θ′i(z) ≤ θ′i(η) −
γi(z − η).

Assumption 3.2. ∃κ > 0,∀i ∈ I,

• ∀z, z′, z > z′ ≥ 0, θ′i(z)− θ′(z′) > −κ(z − z′),

• θ′i <∞,

With this notation we can define the game played by a bid-
der with access to multiple PSP auctions.2

Definition 3.1. (A game of multiple PSP auctions)
The normal-form representation G of the auction game,

which is played by the bidders with access to multiple PSP
auctions is given by:

G = (S1, .., SI , u1, .., uI),

with Si being the strategy space of player i defined as Si =∏
j S

(j)
i , and ui being the utility of player i.

We are interested in finding a Nash equilibrium of the
game given in Definition 3.1 under complete information.

2All allocation rules A(j) for each individual auction j are
identical to the original PSP auction as defined in [7].



Definition 3.2. (Nash equilibrium)
The strategies (s∗1, .., s

∗
I) are a Nash equilibrium if, for each

player i, s∗i is player i’s best response to the strategies spec-
ified for the I − 1 other players s∗−i:

ui(s
∗
i ; s
∗
−i) ≥ ui(s′i; s∗−i),

for every feasible strategy si ∈ Si; that is, s∗i solves:

max
si∈Si

ui(s
∗
i ; s
∗
−i).

In an iterative3 game, where players recompute their best
response based on a modified opponent bid profile, the bid
profile can either converge to a Nash equilibrium or not con-
verge at all [7]. In contrast to the single-auction case the
problem is now to identify the strategy of player i, consist-
ing of J bids to be submitted to each auction j.

To let the auctions converge in finite time we use Semret’s
notion of an ε-Nash equilibrium [7], which allows a bidder
to stop updating a bid profile once the difference in utility
provided by the current composite bid and the next one is
less than ε. The set of ε-best replies is defined as:

Sε(s) = {si ∈ Si(s−i) : ui(si; s−i) ≥ ui(s′i; s−i)−ε, ∀s′i ∈ Si(s−i)}.

An ε-Nash equilibrium is a fixed point of Sε.

3.2 The aggregated market and he ε-best re-
ply

To find the utility-maximising bid combination for all auc-
tions we need to introduce an alternative view of the market
possibilities any bidder faces. Loosely speaking, an aggre-
gated market ”mimics” the behaviour of the individual auc-
tions by defining a resource quantity and an allocation rule.
The resource quantity is the sum of all resource quantities
offered at all auctions. Our goal is to study the dynamics at
each single auctions through our observation of an artificial
market that would aggregate quantities as well as bids. In
order to understand what the aggregated market is and how
it functions, we introduce the utility-optimising ε-best reply
to such a market and prove its main properties. In a second
step we propose a way in which a bidder can split his bid
into the individual auctions.

To determine the utility-optimising ε-best reply to the
market a bidder i has to consider his opponent bid profiles

s
(j)
−i from all auctions J . To merge all bid profiles into a com-

mon opponent market bid profile we propose the following
procedure.

• For each auction j, create a vector called the opponent
winning bid profile from auction j, with

r
(j)
−i = [(a

(j)
0 , p

(j)
0 ), .., (a

(j)
i−1, p

(j)
i−1), (a

(j)
i+1, p

(j)
i+1), ..(a

(j)
I , pjI)].

The value for all a
(j)
i ’s can be derived with a

(j)
n =[

Q(j) −
∑I

k 6=n;p
(j)
k
>p

(j)
n
q

(j)
k

]+

, which is the PSP allo-

cation rule. Since the bid representing the reserve price

is defined as (Q(j), p
(j)
0 ), we can safely assume that∑

q
(j)
i ≥ Q

(j) ∀j. Therefore,
∑I
i=0 a

(j)
n = Q(j).

3We use the term iterative rather than dynamic since players
do not devise a contingency plan or strategy over multiple
rounds of the game but only react to the given opponent bid
profile from the last round.

• Merge all vectors r
(j)
−i into a common matrix r−i, de-

fined as as

r−i =

 r
(1)
−i
..

r
(J)
−i

 =

 (a
(1)
0 , p

(1)
0 ), .., (a

(1)
i−1, p

(1)
i−1),

..

(a
(J)
0 , p

(J)
0 ), .., (a

(J)
i−1, p

(J)
i−1),

(a
(1)
i+1, p

(1)
i+1), .., (a

(1)
I , p

(1)
I )

..

(a
(J)
i+1, p

(J)
i+1), .., (a

(J)
I , p

(J)
I )

 .

In contrast to the matrix s−i the new matrix r−i contains
all ”winning” shares of the opponents’ bids together with
the unit-price if player i were not present in the auction.
Therefore, r−i can be seen as the opponent bid profile, which
includes the capacity constraints in each market. By only
including the winning shares a player is able to evaluate how
much capacity in total can be obtained from all markets with
his individual valuation for the sum of resources.

To gain a better understanding why we need to redefine
s−i to create the ”opponent market bid profile” a simple
example is presented.

Example 3.1. Consider a scenario with two auctions and
total resources of Q(1) = Q(2) = 10 and three bidders, all
of whom have access to both auctions. Now, consider the
situation of player 1, which demand function is given by
θ′(q) = 10 − q. From each auction the player receives an

opponents’ bid profile s
(1)
−1 = [(9, 11), (14, 10)] and s

(2)
−1 =

[(8, 2), (14, 1)], respectively. To calculate his truthful reply to
the market he needs to translate both opponent bid profiles
into a common ”opponent market bid profile”. By just merg-

ing both opponent bid profiles he derives (s
(1)
−1, s

(2)
−1) = s−1 =

[(9, 11), (14, 10), (8, 2), (14, 1)]. With this opponent bid pro-
file and the overall resources available in the market given
by Q =

∑2
j=1 Q

(j) = 20, he can derive his truthful reply to

be t1 = (0, 10) (Figure 1). However, the merged market bid
profile does not consider the constraints given by the distri-
bution of resources between the two auctions.4 Since

20=Q

p

i'θ

)11,9(
)10,14(

)2,8(
)1,14(

20=Q

p

i'θ

)11,9(
)10,14(

)2,8(
)1,14(

Figure 1: Graphical representation of s−i.

in auction 1 unit-prices are very high but the total capacity
of auction 1 is 10, and in contrast, unit-prices are very low
in auction 2, player 1 will be able to acquire resources from
the second market. Therefore, the opponent bid profiles need
to be redefined in order to reflect the individual constraints
in each auction. By using the above procedure we derive
r−1 = [(9, 11), (1, 10), (8, 2), (2, 1)]. By using r−1 for calcu-
lating a utility-maximising bid we derive t1 = (8, 2) (Figure

4The opponent bid profile s−1 implies that the first two
bids win a positive amount while the other two bids are
loosing bids. This is not what we need since the allocation
is constrained by the capacity in both auctions and not by
the overall capacity constraint given by the Q.
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i'θ
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p

)11,9(
)10,1(
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Figure 2: Graphical representation of r.

2). This bid reflects the player’s truthful reply to the mar-
ket because it considers the resource constraints from both
auctions.

With the definition of r−i we can define the aggregated mar-
ket.

Definition 3.3. (The aggregated market)
An aggregated market can be defined by a resource Q and

an allocation rule A with

Q =

J∑
j=1

Q(j),

and

A : S −→ S
s = (q, p) 7−→ A(s) = (a(s), c(s)),

with S =
∏
i∈I Si. The allocation rule follows the PSP allo-

cation rule of a single auction but uses the matrix r−i as the
opponent bid profile. The i-th row of A(s) is the allocation
to player i, with ai(s) being the quantity and ci(s) being the
overall cost.

ai(si, r−i) = qi ∧Q−i(pi, r−i),

with Q
−i

(y, r−i) =

Q− I,J∑
k=0,j=1,pk>y

a
(j)
k

+

.

ci(s) cannot be derived directly from r−i but only once the
composite or split bids to the individual auctions have been
defined.

In the following analysis we limit the strategy space to

Ti =
{
si ∈ Si : qi =

∑(J) q
(j)
i ; pi = θ′i(qi)

}
and search for a

bid ti ∈ Ti as the truthful market reply.

1,Q A 2 ,Q A

1θ

Aggregated Market

)2(
1t

)1(
1t

1t

1,Q A 2 ,Q A

1θ

Aggregated Market

)2(
1t

)1(
1t

1t

Figure 3: Graphical representation of the aggre-

gated market bid ti and the bids t
(j)
i to the single

auctions.

We define truthful bidding in a way so that the sum of
resource quantities a bidder expresses on all auctions at a

given unit price corresponds to his demand function. While
with this definition the truthful demand is not ”visible” to a
single auctioneer, the bidder ensures that he does not over-
bid in the aggregate market. Figure 3 expresses the differ-

ence between the aggregated market bid ti and the bids t
(j)
i

to the single auctions. The aggregated bid is a virtual con-
struct and is only used internally by each bidder to derive
the split bids to the auctions to ensure that the overall de-
mand expressed in the market corresponds to the bidder’s
demand.

Definition 3.4. (Aggregated market bid)
Under assumption 3.1, a truthful reply to the market ti =

(vi, wi) ∈ Ti ∩ Sεi (s−i) is given by

vi =

[
supGi(r−i)−

ε

θ′i(0)

]+

and wi = θ′i(vi)

with ε/θ′i(0) being a factor by which each bid is reduced to
avoid ties in bidding price between players and therefore, the
utility from the aggregated market increases by at least ε,5

where

Gi(r−i) =

{
z ∈ [0,

J∑
j=1

Q(j)] : z ≤ Qi(θ′i(z), r−i)

}
,

with

Qi(y, r−i) =

 J∑
j=1

Q(j) −
I,J∑

p
(j)
k
>y

a
(j)
k


+

Additionally, we define v̄i = [supGi(r−i)] and w̄i = θ′i(vi)
to form t̄i = (v̄i, w̄i).

Definition 3.4 is visualised in Figure 4.
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j
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j
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Figure 4: The graphical representation of Gi(r−i)
and supGi(r−i).

3.3 Bid splitting and the BalancedBid strategy
One key property of the single PSP auction is incentive-

compatibility. We aim at understanding if bidders have in-
centives to reveal their true valuation in a market consisting
of multiple PSP auctions. We therefore first present the bid-
ding strategy, BalancedBid [5], which mimics truthful bid-
ding when bidders are allowed to split their bids to bundle

5Note that this value has been interpreted as bid fee by [7].
However, in subsequent work [3], [4] it has been noted that
this interpretation is potentially misleading.



resources from several auctions. We then show that this
bidding strategy is the myopic /epsilon-best response for all
bidders in such a situation.

Once the truthful reply to the market has been deter-
mined, it is split into bids to be submitted to the individual
auctions. We refer to such bids as BalancedBids. A balanced
bid is defined as t

(j)
i = (v

(j)
i , wi), with v

(j)
i being the quantity

and wi being the unit price, bid at auction j, which has been

derived from the (aggregated) market bid ti = (
∑J v

(j)
i , wi).

The intuition behind the allocation rule at an auction j is
to sum all bids, received at j, which can be ”beaten” by the
unit price w̄i determined by the market bid. 6 Two cases
have to be distinguished; in Case 1 the demand function θ′i
does not intersect any of the bid steps. Case 2 describes the
situation where the demand function crosses through one
of the bid steps. Formally, we can state the two cases by
defining

αi ≡
I,J∑

m=0,n=1;pn≤w̄i

a(m)
n − v̄i.

Now

Case 1: αi = 0
Case 2: αi > 0.
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Figure 5: Visualisation of αi and βi.

We define βi ≡
I,J∑

m=0,n=1;pn=w̄i

a
(m)
n − αi as the share of

the sum of all bids with unit price w̄i, which lies within the
valuation of i (see Figure 5). This segment can consist of
multiple bids from different players and auctions. The fol-
lowing definition for deriving the single bids to the auctions
is called BalancedBid

Definition 3.5. (BalancedBid)
[5] Under Assumption 3.1 and Definition 3.4 the balanced

bid t
(j)
i = (v

(j)
i , wi) for player i on auction j is given by

v
(j)
i =


I∑

n=0,p
(j)
n <w̄i

a(j)
n + βi

I∑
n=0,p

(j)
n =w̄i

a
(j)
n

I,J∑
m=0,n=1;p

(m)
n =w̄i

a
(m)
n

− ε

Jθ′i(0)


+

and

wi = θi(

J∑
j=1

v
(j)
i ) = vi.

6Note that we use t̄i for this process as it gives us the truthful
reply without the reduction by

∑J ε/θ′i(0). Otherwise, we
would need to define a second constraint, which limits the
balanced bids to the total quantity vi.

Each balanced bid is reduced by ε/Jθ′i(0) to ensure that no
ties between bidders can occur and that the utility derived
from the sum of the bids from the J auctions is increased by
at least ε.

One important question to ask is why a bidder should bid
with identical unit prices on all auctions and not reduce the

unit price to a level where he still wins the amount q
(j)
i .

The reason for this can be found in the pricing rule of the
PSP auction. Since a player is only charged with the cost
of excluding other players from the market, the unit price
does not influence the final charges. Since this unit price
reflects the valuation of the total resources gained from the
multi-auction market a player needs to use this price on all
auctions.

We can now derive the cost of bid ti, which consists of the

sub-bids t
(j)
i on each auction. Since we need to consider the

resource constraints on each auction we have to calculate
partial costs separately. For each auction, costs can be de-
rived by calculating which demand has been excluded from
receiving a positive allocation by the presence of bidder i.
Formally, the costs are given by

ci(ti, s−i) =

J∑
j=0

∫ ai(t
(j)
i ,s

(j)
−i )

0

Pi(z, s
(j)
−i )dz,

where

Pi(z, s
(j)
−i ) = inf{y ≥ 0 : Q

(j)
i (y, s−i) ≥ z}

is the stair-case function Q
(j)
i flipped by 90 degrees.

3.4 Incentive-compatibility in a market con-
sisting of multiple PSP auctions

While it has been shown by [7] that the PSP auction
is incentive-compatible the question remains if bidders still
have an incentive for truthful bidding at the aggregated mar-
ket. The splitting of a bid defined by BalancedBid seems to
resemble truthful bidding in such a market. We need to show
that for a myopic player, this strategy is the best strategy
for a player compared to all other possible strategies to bid
on multiple auctions.

Especially, we need to prove that there does not exist any
other si ∈ Si(s−i), which results in higher utility for player
i. Since si has been redefined to contain a vector of bids
(to the different auction) instead of only one bid we need to

define ai(s) =
∑J a

(j)
i (s

(j)
i ; s

(j)
−i ).

Proposition 3.1. (Incentive compatibility)

Under assumption 3.1, ∀i ∈ I, ∀j ∈ J , ∀s(j)
−i ∈ S

(j)
−i , so that

Qi(0, r−i) = 0, for any ε > 0, the truthful reply ti defined in
Definition 3.4 is an ε-best reply to the market.

In the following we will show that for any si ∈ Si the yielded
utility is equal or less to the utility gained from bidding ti.

Proof. : (Incentive-compatibility)
∀si ∈ Si(s−i),

ui(ti; s−i)− ui(s) = θi(ai(ti; s−i))− ci(ti; s−i)− (1)

[θi(ai(s))− ci(s)]

=

∫ ai(s)

ai(ti;s−i)

[
Pi(z, r−i)− θ′i(z)

]
dz.(2)



Equation (2) is a consequence of the continuity of θ. Note
that the integral in (2) is always nonnegative because θ′i(q)
is non-increasing in q and Pi(q) is non-decreasing in q. We
can rewrite this property as ai(ti, s−i) = vi and divide the
integral in two parts by using v̄i.

=

∫ ai(s)

v̄i

[
Pi(z, r−i)− θ′i(z)

]
dz + (3)∫ v̄i

vi

[
Pi(z, r−i)− θ′i(z)

]
dz

≥
∫ ai(s)

v̄i

[
Pi(z, r−i)− θ′i(z)

]
dz − ε. (4)

The inequality from (3) to (4) follows from the upper bound
of (v̄i − vi) ≤ ε/θ′i(0) and from the fact that θ′i is non-
increasing in q. Since ε is always positive we now need
to show that bidding any value v /∈ [vi, v̄i] and within the
boundaries of ai(s) yields a utility < ε compared to the util-
ity obtained by bidding v = v̄i. We graphically illustrate
that this is the case.

Figure 6(a) depicts case 1 with v̄i < ai(s) and in Figure
6(b) the second case is shown when v̄i ≥ ai(s). While in the
first case the integrand is positive it is negative in the sec-
ond case. But since the integral is calculated with switched
boundaries (v̄i > v), the integral turns to be positive.
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(a) Case 1: v̄i < ai(s)
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(b) Case 2: v̄i ≥ ai(s)

Figure 6: The graphical representation of the two
cases for any value z /∈ [vi, v̄i].

Case 1: (v̄i < ai(s)): Take any v ∈ (v̄i, ai(s)]. By definition
of vi, v is not part of Gi(r−i). This leads to the conclusion

that ci(s) =
∫ ai(s)

0
Pi(η, r−i)dη ≥

∫ v
0
Pi(η, r−i)dη. There-

fore, v must be larger than Qi(θ
′
i(v)). Pi(v, r−i) has been

defined as Pi(v, r−i) = inf{y ≥ 0 : Qi(y, r−i) ≥ v}. There-
fore, with a fixed opponent market bid profile r−i, ∀y and
v ≥ 0,

v ≤ Qi(y, r−i)⇒ y ≥ Pi(v, r−i) (5)

and

y > Pi(v, r−i)⇒ v ≤ Qi(y, r−i) (6)

Because v > Qi(θ
′
i(v)), Equation 6 implies that θ′i(v) ≤

Pi(v), which proves that integrand is ≥ 0.
Case 2: (v̄i > ai(s)): Take any v ≥ ai(s). Because θ′i is
non-increasing, Qi(., r−i) is non-decreasing and Pi(., r−i) ≥
0, any point to the left of v̄i is in the set of Gi(r−i), ∀v <
vi, v ∈ Gi(s−i). Therefore, we have v ≤ Qi(θ

′
i(v), r−i). By

Equation (6) θ′i(v) ≥ Pi(v, r−i), which shows that the in-
tegrand in Equation (3) is ≤ 0. But since the integral is
calculated from right to the left, the integral becomes ≥ 0.

3.5 Continuity of the best reply to the market
Another property of the best market reply, which is re-

quired to show that the proposed bidding strategy is part
of a Nash equilibrium is the continuity of the best reply ti
in opponent bid profiles r−i. [7] has shown the continuity
of the ε-best reply in s−i for the one-auctioneer case. It is
argued that for all i ∈ I, the ε-best reply ti is continuous
in s−i on any subset Vi(P , P ) = {s−i ∈ S−i : ∀z > 0, P ≥
Pi(z, s−i) ≥ P}, with ∞ ≥ P ≥ P > 0. It remains to proof
this property for the proposed truthful bidding strategy on
the set of opponent market profiles R−i.

Before we can proceed we need to prove that R−i is a
compact subset of S−i. To analyse the properties of r−i we
define the mapping h, which maps s−i to r−i.

h : (S−i)
J −→ (S−i)

J

s−i 7−→ h(s−i) = r−i

and define a set R−i as

R−i = {r−i|r−i = h(s−i) for some s
(j)
−i ∈ S−i}.

Lemma 3.1. R−i is a compact subset of S−i, and is there-
fore bounded and closed.

Proof. In a first step we only consider the first compo-

nent a
(j)
n of the mapping h, i.e.

(q
(j)
0 , ..., q

(j)
I ) 7→ a(j)

n (q
(j)
0 , ..., q

(j)
I ) :=

Q(j) −
I∑

k 6=n;p
(j)
k
>p

(j)
n

q
(j)
k


+

.

This map is continuous as the concatenation of continuous
maps. We define

A−i :=

{
a(j)
n (q

(j)
0 , ..., q

(j)
I ) | (q

(j)
0 , ..., q

(j)
I ) ∈

(
[0,max

j
Q(j)]

)I}
.

SinceA−i is the continuous image of the compact set
(

[0,maxj Q
(j)]
)I

,

it is compact itself. Now the set R−i is given by

R−i =
(
A−i × [0, P̄ ]

)I×J
.

Thus it is compact as the cartesian product of compact
sets.

Proposition 3.2. (Continuity of the best reply to the ag-
gregated market)
The truthful bid to the aggregated market ti is continuous

in r−i on a subset Vi(P , P ) = {r−i ∈ R−i : ∀v > 0, P ≥
Pi(v, r−i) ≥ P}, with ∞ > P ≥ P > 0.



Proof. Since we have shown in Lemma 3.1 that R−i is
a compact subset of S−i, ti must be continuous in r−i. We
refer to the detailed proof in [7] for the continuity of ti in
s−i.

The continuity of the best market reply does not necessar-
ily mean that the bids to the single auctions are continuous

in the opponent bid profiles s
(j)
−i . While we have first experi-

enced the discontinuity during simulation experiments (see
e.g., [6]) with the BalancedBid strategy, we have also been
able to understand this analytically. Two main practical
reasons can be identified. First, we consider the ”symmet-
rical” case in which all players have access to all auctions.
In this setting the reason for discontinuity in bids to single
auctions lies in the asynchronism of information when form-
ing the best reply to the market. If an opponent bid profile

s
(j)
−i arrives with a delay, a player may use bid profiles from

different time periods to form the new reply. Therefore, he
may switch his demand to one of the auctions with the more
attractive opponents bids.

The second reason for a large change in single bids can
occur in a situation when not all players have access to all
markets. In this case opponent bid profiles differ in the
number of elements and players and can force a player to
switch his demand rapidly from one auction to the other
with only a small change in one opponent bid profile. The
following example illustrates this case.

Example 3.2. (Discontinuity in the reply to the single
auctions)
Consider two auctions with Q = 10 and 3 players, all hav-
ing access to both auctions. We now analyse the best reply of
player 1 and the bid profiles s(1) = s(2) = ([8, 2], [6, 4], [5, 6])

and s′(1) = ([8, 2], [5.9, 4.1], [5, 6]). The resulting opponent
market bid profile is r−1 = ([5, 6], [5, 6], [5, 4], [5, 4]) and r′−1 =
([5, 6], [5, 6], [5, 4.1], [5, 4]). If we assume a demand function
θ′1 = 10 − q for player 1, we can derive the best reply to
the market, resulting in t1 = (5.9, 4.1) and t′1 = (5.8, 4.2).7

We can see that a small change in one of the bid profiles
does let the best reply to the market change only marginally.
However, if we calculate the bids to the auctions we derive

t
(1)
1 = (2.95, 4.1), t

(2)
1 = (2.95, 4.1) and t

′(1)
1 = (5, 4.2), t

′(2)
1 =

(0.8, 4.2), resulting in a large change in how the demand is
distributed between auctions. Since now the first auction be-
comes more attractive to player 1, he shifts his demand to
this market.

3.6 Nash equilibrium of the game
With Definition 3.2 we have already established the notion

of Nash equilibrium in a general sense. We could also show
that a market consisting of multiple PSP auctions is still
incentive-compatible, namely incentivises players to reveal
their true valuation to the aggregated market. The remain-
ing question is if the equilibrium of the iterative game is of
Nash type.

To restrict our attention to truthful bidding to the mar-
ket as defined in (3.4) we set a reserve price p0 > 0. This
implies that for all i ∈ I, Qi(y, r−i) = 0, for all y < p0.
Then, Proposition 3.1 is fulfilled and allows us to restrict
our attention to truthful bidding, which are still best replies
to the aggregate market. As described by [7], this forms

7Assuming some ε

an embedded game within the larger game, with the strat-
egy space being T ⊂ S, the feasible set for player i being
Ti ∩ Si(s−i), and the best replies Xε

i (s) = Ti ∩ Sεi (s). If we
can find a fixed point of Xε in T , this must also be a fixed
point of Sε in S.

Proposition 3.3. (Nash equilibrium of the iterative game)
In the auction game consisting of multiple, independent PSP
auctions, a reserve price p0 > 0, and players finding their
best reply to the aggregated market according to Definition
3.4 and Definition 3.5, if Assumption 3.1 holds, then for any
ε > 0, there exists a truthful ε-Nash equilibrium s∗ ∈ T .

Proof. We now provide a sketch of the proof, which
closely follows the work by [7].

We have shown the continuity of the truthful reply ti =
(vi, wi) to the aggregate market in r−i on R−i in Propo-
sition 3.2. Because θ′i is continuous (by Assumption 3.1),
vi(qi, pi) = vi(qi, θ

′
i(qi)) can be viewed as a continuous map-

ping of [0,
∑
Q(j)]I onto itself (for reference, see [7]). It can

now be shown by Brouwer’s fixed point theorem that any
continuous mapping of a convex compact set into itself has
at least one fixed point (∀i, ∃q∗i = vi(q

∗
i ) ∈ [0,

∑
Q(j)]I).

Therefore, an equilibrium s∗ = t(s∗) ∈ T must exist.

In [3] it is proved that the difference between the market
clearing price and the maximum price bid by any bidder at
a given round can be arbitrarily bounded. The bound is a
linear function of the square root of ε. If ε is sufficiently
small, PSP provides an approximation to the market clear-
ing price. In other words, prices set by bids at a ε-Nash equi-
librium are arbitrarily close to prices at Nash-equilibrium.
The latter implies that the aggregated measure of welfare
at a ε-Nash equilibrium is also arbitrarily close to the ag-
gregated measure of welfare at Nash equilibrium. Because
the Nash equilibrium achieved by PSP is efficient, the itera-
tive bidding process is arbitrarly close to the welfare of the
efficient equilibrium.

3.7 Properties of the individual PSP auctions
in aggregate equilibrium

After having shown the properties of the market consist-
ing of multiple PSP auctions we can now proceed in better
understanding the implications of the BalancedBid strategy
(Definition 3.5) to form the bids to the auctions. One prop-

erty we have already explored is the discontinuity of t
(j)
i in

S
(j)
−i . This means that small changes in the opponent bid

profile can lead to large changes in the balanced to the auc-
tions. Additionally, in equilibrium, it may be possible to
shift demand between auctions without disturbing the ag-
gregate equilibrium. We show this by a simple example.

Example 3.3. In this example we define two auctions
with Q(1) = 15, Q(2) = 5 and two bidders, both having ac-
cess to both auctions. The utility functions of both bidders
are θ′1 = −0.05q + 1 and θ′1 = −0.1q + 1, respectively. With
ε being small we can derive a possible ε-Nash equilibrium
of the aggregated market with the bids (13.4, 0.33) for bid-
der 1 and (6.8, 0.32) for bidder 2, resulting in the allocation
(13.4, 0.064) and (6.6, 0), assuming that bidder 1 has last up-
dated his bid and that bidder 2 cannot further improving his
surplus by updating his bid.



With the equilibrium solution for the aggregate market be-
ing identified, a consequent problem is the definition of the
balanced bids for both bidders. The BalancedBid strategy (as
defined in Definition 3.5) distributes the demand between
auctions proportionally to the bids equal in unit price, which
cross the marginal demand of a bidder.8 However, other pos-
sible combinations of demand allocations lead to the same
result if the aggregate market is in equilibrium.
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(a) Case 1: Demand is equally distributed between auctions,
as defined in Definition 3.5.
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(b) Case 2: Demand is shifted so that bidder 1 receives re-
sources from auction 1 and bidder 2 receives resources from
auction 2.

Figure 7: Two different allocations of demand be-
tween auctions belonging to the same equilibrium
solution for the aggregated market.

Figure 7 depicts two possible combinations of demand allo-
cations between the two auctions, leading to the same equilib-
rium result for the aggregated market as defined before. The
first case shows how Definition 3.5 allocates the demand be-
tween the auctions (assuming zero delay in the distribution
of opponent bid profiles), resulting in balanced bids defines as
(10.05, 0.33), (3.35, 0.33), and (5.1, 0.32), (1.7, 0.32), respec-
tively. Case 2 shows an alternative allocation in which bid-
der 1 shifts his demand to auction 1, while bidder 2 receives
the remaining resources from auction 1 and the full resources
from auction 2 ((13.4, 0.33), (0, 0.33), and (1.8, 0.32), (5, 0.32)).
Both combinations result in the same social welfare (total so-
cial welfare and individual surplus) and summed revenue for
the auctioneers. However, in the first case, auctioneer 1 re-
ceives all revenues while in case 2, the revenue is distributed
over both auctioneers.

It needs to be mentioned that shift in revenue from both
providers to only one provider, as shown in the example,
is irrelevant in the sense that PSP serves as congestion-
avoidance mechanism and is not intended to generate sig-
nificant revenues in equilibrium. By choosing a sufficiently
small ε the revenue in equilibrium will be small as users re-
duce their demand in order to avoid any congestion. Instead,

8With only two bidders in the market there exist only two
opponent bids coming from the same bidder, which therefore
always cross the marginal demand function of the bidder.

by setting an appropriate reserve price, a provider is able to
define a fixed charge for each unit of allocated resources in
equilibrium.

The above example shows that it is possible to shift the
demand of bidders between auctions without changing the
fundamental results of the aggregated equilibrium. This also
illustrates the difficulty in defining the notion of equilibrium
in each single auction if users’ preferences are expressed by a
one-dimensional demand function. While we can speak of a
stable situation on all single auctions, due to the possibility
of allocation shifting, it is not possible to derive a notion of
equilibrium.

While with the proposed bidding strategy we could obtain
an efficient allocation of resources in aggregate, the possi-
bility of exchanging allocation shares between auctions can
be further examined in understanding possible post-market
situations. For example, if providers can express a prefer-
ence for certain allocation patterns, such as a preference for
holding the minimum number of active users in a system, a
wholesale situation may arise, in which providers swap user
allocations to improve their utility in another dimension.

4. CONCLUSION
We have presented a bidding strategy in a market consist-

ing of multiple second-price auctions for network resources
in form of a divisible good, when bidders have elastic de-
mand and are indifferent of combination they receive from
each auction. The bidding strategy resembles truthful bid-
ding in a setting with multiple, simultaneous auctions and
allows bidders to balance their demand between such auc-
tions. While the bids to the individual auctions do not reveal
the truthful overall demand of a bidder, the aggregated bid
has the properties of a truthful reply; the aggregated bid
expresses a bidder’s marginal valuation of a bidder for the
aggregate of resources. We could show that, under some
assumptions about the properties of a bidders utility func-
tion, the BalancedBid bidding strategy maximises a bidder’s
utility. A bidder cannot do any better without risking to
overbid in at least one auction. We could show that if all
bidders employ this bidding strategy, the aggregated market
converges to an efficient Nash equilibrium.

The proposed bidding strategy applies to all situations in
which multiple, non-cooperative sellers offer divisible goods,
such as bandwidth, on an open market, which is accessible
for all bidders. While the bidding strategy has been de-
veloped with the focus on providing a solution for dynamic
resource allocation in wireless networks, the model can also
be transfered to other fields such as distributed computing.

A possible future extension of this research is to intro-
duce a preference relations for the combination of resources
a bidder receives. For example, a bidder may express a pref-
erence for a larger quantity of resources from a single auction
compared to smaller shares from several auctions. With this
extension resources become less fragmented between bidders
and the convergence period may be shortened.
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