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ABSTRACT

We study power control in optimization and game frame-
works. In the optimization framework there is a single deci-
sion maker who assigns network resources and in the game
framework players share the network resources according to
Nash equilibrium. The solution of these problems is based
on so-called water-filling technique, which in turn uses bi-
section method for solution of non-linear equations for La-
grange multiplies. Here we provide a closed form solution
to the water-filling problem, which allows us to solve it in a
finite number of operations. Also, we produce a closed form
solution for the Nash equilibrium in symmetric Gaussian in-
terference game. In addition, to its mathematical beauty,
the explicit solution allows one to study limiting cases when
the crosstalk coefficient is either small or large. We provide
an alternative simple proof of the convergence of the Iter-
ative Water Filling Algorithm. Furthermore, it turns out
that the convergence of Iterative Water Filling Algorithm
slows down when the crosstalk coefficient is large. Using the
closed form solution, we can avoid this problem. Finally,
we compare the non-cooperative approach with the cooper-
ative approach and show that the non-cooperative approach
results in a more fair resource distribution.1

1. INTRODUCTION

In wireless networks and DSL access networks the total
available power for signal transmission has to be distributed
among several resources. In the context of wireless networks,
the resources may correspond to frequency bands (e.g. as
in OFDM), or they may correspond to capacity available at
different time slots. In the context of DSL access networks,
the resources correspond to available frequency tones. This
spectrum of problems can be considered in either optimiza-
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tion scenario or as a result of a non-cooperativie game sce-
nario. The optimization scenario leads to“Water Filling Op-
timization Problem” [4, 6, 13] and the game scenario leads
to “Water Filling Game” or “Gaussian Interference Game”
[8, 11, 12, 14]. In the optimization scenario, one needs to
maximize a concave function (Shannon capacity) subject to
power constraints. The Lagrange multiplier corresponding
to the power constraint is determined by a non-linear equa-
tion. In the previous works [4, 6, 13], it was suggested to find
the Lagrange multiplier by means of a bisection algorithm,
where comes the name “Water Filling Problem”. Here we
show that the Lagrange multiplier and hence the optimal
solution of the water filling problem can be found in explicit
form with a finite number of operations. In the multiuser
context, one can view the problem in either cooperative or
non-cooperative setting. If a centralized controller wants to
maximize the sum of all users’ rates, the controller will face
a non-convex optimization problem [3]. On the other hand,
in the non-cooperative setting, the power allocation prob-
lem becomes a game problem where each user perceives the
signals of the other users as interference and maximizes a
concave function of the noise to interference ratio. In [8, 14]
the spectrum of available resources was continuous, here as
in [10, 11, 12] we consider the discrete spectrum of avail-
able resources. A natural approach in the non-cooperative
setting is the application of the Iterative Water Filling Algo-
rithm (IWFA) [15]. Recently, the authors of [10] proved the
convergence of IWFA under fairly general conditions. In the
present work we consider the case of symmetric water fill-
ing game with two users. The restriction to the symmetric
scenario allows us to find Nash equilibrium in explicit form.
In addition, to its mathematical beauty, the explicit solu-
tion allows one to find the Nash equilibrium in water filling
game in a finite number of operations and to study limiting
cases when the crosstalk coefficient is either small or large.
As a by-product, we obtain an alternative simple proof of
the convergence of the Iterative Water Filling Algorithm.
Furthermore, it turns out that the convergence of IWFA
slows down when the crosstalk coefficient is large. Using the
closed form solution, we can avoid this problem. Finally, we
compare the non-cooperative approach with the cooperative
approach and conclude that the cost of anarchy is small in
the case of small crosstalk coefficients. We also show that the
non-cooperative approach results in a more fair resource dis-
tribution. Applications that can mostly benefit from decen-
tralized non-cooperative power control are ad-hoc and sensor



networks with no predefined base stations [5, 9, 7]. An in-
terested reader can find more references on non-cooperative
power control in [2, 8]. We would like to mention that the
water filling problem and jamming games with transmission
costs have been analyzed in [1].

The structure of the paper is as follows: In the next Sec-
tion 2, we recall the single decision maker setup of the water
filling optimization problem. Then, in Section 3 we pro-
vide its explicit solution. In Section 4 we formulate two user
symmetric water filling game and characterize its Nash equi-
librium. In Section 5 we give an alternative simple proof of
the convergence of the iterative water filling algorithm. In
Section 6 we give the explicit form of the players’ strategy
in the Nash equilibrium. In Section 7 we confirm our finding
with the help of numerical example. In that section we also
show that the cost of anarchy is small when the crosstalk
coefficient is small. We make conclusions in Section 8.

2. SINGLE DECISION MAKER

We consider the following power allocation problem in the
case of a single decision maker. There is a single decision
maker (also called “Transmitter”) who wants to send infor-
mation using n independent resources so as to maximize the
Shannon capacity. We further assume that resource i has a
“weight” of πi.
Possible interpretations:

(i) The resources may correspond to capacity available at
different time slots; we assume that there is a varying
environment whose state changes among a finite set of
states i ∈ [1, n], according to some ergodic stochastic
process with stationary distribution {πi}

n
i=1. We as-

sume that both players have perfect knowledge of the
environment state at the beginning of each time slot.

(ii) The resources may correspond to frequency bands (e.g.
as in OFDM) where one should assign different power
levels for different sub-carriers [13]. In that case we
may take πi = 1/n for all i.

The strategy of Transmitter is T = (T1, . . . , Tn) with
Pn

i=1
πiTi = T̄ , Ti ≥ 0, πi > 0 for i ∈ [1, n] and T̄ > 0.

As the payoff to Transmitter we take the Shannon capacity

v(T ) =
n
X

i=1

πi ln

„

1 +
Ti

N0
i

«

,

where N0
i > 0 is the noise level in the sub-carrier i. Define

also the function

HT (ω) =
n
X

i=1

πiTi(ω).

We would like to emphasize that the above generalized de-
scription of the water-filling problem can be used for power
allocation in time as well as power allocation in space-fre-
quency. Following the standard water-filling approach [4, 6,
13], which assumes application Kuhn-Tacker Theorem, we
have the following result.

Theorem 1. Let Ti(ω) =
ˆ

1/ω − N0
i

˜

+
for i ∈ [1, n].

Then T (ω∗) = (T1(ω
∗), . . . , Tn(ω∗)) is the unique optimal

strategy and its payoff is v(T (ω∗)) where ω∗ is the unique
root of the equation

HT (ω) = T̄ . (1)

We observe that the above result can be easily proved
without application of the Kuhn-Tacker conditions. In the
appendix we supply this proof.

3. CLOSEDFORMSOLUTIONFORWATER

FILLING PROBLEM

In the previous studies of the water-filling problems it was
suggested to use numerical (e.g., bisection) method to solve
equation (1). Here we propose an explicit form approach for
the solution of equation (1).
Without loss of generality we can assume that the sub-
carriers are arranged by the noise level as follows:

1

N0
1

≥
1

N0
2

≥ . . . ≥
1

N0
n

.

Theorem 2. The solution of the water-filling optimiza-
tion problem is given by

T ∗
i =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

T̄ +
k
X

t=1

πt(N
0
t − N0

i )

k
X

t=1

πt

, if i ≤ k,

0, if i > k,

(2)

where k can be found from the following conditions:

ϕk < T̄ ≤ ϕk+1, (3)

where

ϕt =
t
X

i=1

πi(N
0
t − N0

i ) for t ∈ [1, n].

Let us demonstrate the closed form approach by a numerical
example. Take n = 5, T̄ = 1, N0

i = κi−1, κ = 1.7, πi = 1/5
for i ∈ [1, 5]. Then, as the first step we calculate ϕt for
t ∈ [1, 5]. In our case we get (0. 0.14, 0.616, 1.8298, 4.58108).
Then, by (3), k = 3. Thus, by (2), the optimal water-filling
strategy is T ∗ = (2.53, 1.83, 0.64, 0, 0) with payoff 0.438.

4. SYMMETRIC WATER FILLING GAME

Two Transmitters try to send information through n re-
sources so as to maximize the quality of the transmitted in-
formation. The strategy of Transmitter j is T j = (T j

1 , . . . , T j
n)

with T j
i ≥ 0 and with

n
X

i=1

πiT
j
i = T̄ j , (4)

where T̄ j > 0 for j = 1, 2. The payoffs to Transmitters are
given as follows

v1(T 1, T 2) =
n
X

i=1

πi ln

„

1 +
T 1

i

gT 2
i + N0

i

«

,

v2(T 1, T 2) =

n
X

i=1

πi ln

„

1 +
T 2

i

gT 1
i + N0

i

«

,

where g ∈ (0, 1). These payoffs correspond to Shannon ca-
pacities. This is an instance of the Water-Filling or Gaussian
Interference Game [8, 14, 15]. In the important particular
cases of OFDM wireless network and DSL access network,



πi = 1/n, i = 1, ..., n. In this work we restrict ourselves
to the case of symmetric game with equal crosstalk coef-
ficients. This situation can correspond for example to the
scenario when the transmitters are situated at about the
same distance from the base station.

We shall characterize a Nash Equilibrium of this problem.
The strategies (T 1∗, T 2∗) constitute a Nash Equilibrium, if
for any strategies (T 1, T 2) the following inequalities hold:

v1(T 1, T 2∗) ≤ v1(T 1∗, T 2∗),

v2(T 1∗, T 2) ≤ v2(T 1∗, T 2∗).

Since v1 and v2 are concave in T 1 and T 2 respectively, the
Kuhn-Tucker conditions imply the following theorem.

Theorem 3. (T 1∗, T 2∗) is a Nash equilibrium if and only
if there are non-negative ω1 and ω2 (Lagrange multipliers)
such that

1

gT m∗
i + T j∗

i + N0
i

(

= ωj for T j∗
i > 0,

≤ ωj for T j∗
i = 0,

(5)

where j, m ∈ {1, 2} and m 6= j.

We would like to emphasize that the positivity of the La-
grange multipliers ω1 and ω2 is specific for our problem. In
general, the Lagrange multipliers corresponding to equality
constrants do not have any restrictions on the sign.

Let us introduce the following sets:

I ′
00(ω

1, ω2) = {i ∈ [1, n] :
1

ω1
≤ N0

i ,
1

ω2
≤ N0

i },

I ′
10(ω

1, ω2) = {i ∈ [1, n] : N0
i <

1

ω1
and either N0

i ≥
1

ω2

or N0
i <

1

ω2
and

1

ω2
− N0

i ≤ g(
1

ω1
− N0

i )},

I ′
01(ω

1, ω2) = {i ∈ [1, n] : N0
i <

1

ω2
and either N0

i ≥
1

ω1

or N0
i <

1

ω1
and

1

ω1
− N0

i ≤ g(
1

ω2
− N0

i )},

I ′
11(ω

1, ω2) = {i ∈ [1, n] :

0 < g(
1

ω2
− N0

i ) <
1

ω1
− N0

i <
1

g
(

1

ω2
− N0

i )}.

The next result characterizes the forms that the Nash equi-
librium can take.

Lemma 1. Let (T 1∗, T 2∗) be a Nash equilibrium, then

(i) if T 1∗
i = 0 and T 2∗

i = 0 then i ∈ I ′
00(ω

1, ω2),

(ii) if T 1∗
i > 0 and T 2∗

i = 0 then i ∈ I ′
10(ω

1, ω2) and

T 1∗
i = 1/ω1 − N0

i ,

(iii) if T 1∗
i = 0 and T 2∗

i > 0 then i ∈ I ′
01(ω

1, ω2) and

T 2∗
i = 1/ω2 − N0

i ,

(iv) if T 1∗
i > 0 and T 2∗

i > 0 then i ∈ I ′
11(ω

1, ω2) and

T 1∗
i =

(1/ω1 − N0
i ) − g(1/ω2 − N0

i )

1 − g2
,

T 2∗
i =

(1/ω2 − N0
i ) − g(1/ω1 − N0

i )

1 − g2
.

(6)

Although the game has symmetric nature there are some
non-symmetric features impacted by the fact that the La-
grange multiplies are different as a rule. This difference
will allow us to simplify the structure of the sets I ′ and
the strategies. For this purpose first introduce the following
auxiliary notations for positive ω1 and ω2:

(i) if ω1 < ω2, so 1/ω2 < 1/ω1 then let

I00(ω
1, ω2) = {i ∈ [1, n] :

1

ω1
≤ N0

i },

I10(ω
1, ω2) = {i ∈ [1, n] :

1/ω2 − g/ω1

1 − g
≤ N0

i <
1

ω1
},

I01(ω
1, ω2) = ∅,

I11(ω
1, ω2) = {i ∈ [1, n] : N0

i <
1/ω2 − g/ω1

1 − g
},

(ii) if ω2 < ω1, so 1/ω1 < 1/ω2 then let

I00(ω
1, ω2) = {i ∈ [1, n] :

1

ω2
≤ N0

i },

I10(ω
1, ω2) = ∅,

I01(ω
1, ω2) = {i ∈ [1, n] :

1/ω1 − g/ω2

1 − g
≤ N0

i <
1

ω2
},

I11(ω
1, ω2) = {i ∈ [1, n] : N0

i <
1/ω1 − g/ω2

1 − g
},

(iii) if ω2 = ω1 then let

I00(ω
1, ω2) = {i ∈ [1, n] :

1

ω2
≤ N0

i },

I10(ω
1, ω2) = ∅, I01(ω

1, ω2) = ∅,

I11(ω
1, ω2) = {i ∈ [1, n] : N0

i <
1

ω2
}.

The next lemma asserts that the sets I ′ are coincides with
the sets I.

Lemma 2. There are the following relations between sets
I ′ and I: I ′

00(ω
1, ω2) = I00(ω

1, ω2), I ′
10(ω

1, ω2) = I10(ω
1, ω2),

I ′
01(ω

1, ω2) = I01(ω
1, ω2) and I ′

11(ω
1, ω2) = I11(ω

1, ω2) for
positive ω1 and ω2.

Now we introduce some strategies, which the Nash Equi-
librium will have the form of. Namely, for positive ω1 and
ω2 such that ω1 ≤ ω2 and for i ∈ [1, n] we introduce the
following notations:

T 1
i (ω1, ω2) =
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1
1 + g

0

B

@

1

ω1
−

g

ω2

1 − g − N0
i

1

C

A
if N0

i <

1

ω2
−

g

ω1

1 − g ,

1
ω1 − N0

i if

1

ω2
−

g

ω1

1 − g ≤ N0
i < 1

ω1 ,

0 if 1
ω1 ≤ N0

i ,

T 2
i (ω1, ω2) =
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1
1 + g

0

B

@

1

ω2
−

g

ω1

1 − g − N0
i

1

C

A
if N0

i <
1/ω2 − g/ω1

1 − g ,

0 if

1

ω2
−

g

ω1

1 − g ≤ N0
i ,



either in the following equivalent form as follows

T 2
i (ω1, ω2)

=

(

1
1 + g

`

t2 − N0
i

´

if N0
i < t2,

0 if t2 ≤ N0
i ,

T 1
i (ω1, ω2)

=

8

>

<

>

:

1
1 + g

`

(1 + g)t1 − gt2 − N0
i

´

if N0
i < t2,

t1 − N0
i if t2 ≤ N0

i < t1,

0 if t1 ≤ N0
i ,

where

t2 =
1/ω2 − g/ω1

1 − g
, t1 =

1

ω1
. (7)

It is clear that

1/ω1 = t2, 1/ω2 = gt1 + (1 − g)t2. (8)

For the case ω1 > ω2, T 1
i (ω1, ω2) and T 2

i (ω1, ω2) can be
defined by symmetry.

The next result simplifies the form of the Nash equilib-
rium, given by Lemma 1 and it shows that the strategies are
not so symmetric as it could be expected and their non-
symmetric structure motivated by difference in Lagrange
multipliers and so in the power of the signals the players
have to transfer.

Theorem 4. Each Nash equilibrium is of the form
(T 1(ω1, ω2), T 2(ω1, ω2)) for some positive ω1 and ω2.

The next result shows that there is a monotonous depen-
dence between the power of the signals the players have to
transfer and Lagrange multipliers.

Corollary 1. Let (T 1(ω1, ω2), T 2(ω1, ω2)) be a Nash equi-
librium. If T̄ 1 > T̄ 2, then ω1 < ω2.

To find the equilibrium strategies we have to find ω1 and
ω2 such that the following conditions hold

Hj(ω1, ω2) = T̄ j for j = 1, 2 (9)

where

Hj(ω1, ω2) =
n
X

i=1

πiT
j
i (ω1, ω2) for j = 1, 2.

The next Lemma shows that this system has the unique
solution and moreover its proof supplies a simple method of
its determination.

Lemma 3. The system of non-linear equations (9) has
unique positive solution (ω1

∗, ω
2
∗).

Proof. Without lost of generality we can assume that
T̄ 1 ≥ T̄ 2. Let (ω1, ω2) be the positive solution of (9). Then,
by Corollary 1, ω1 < ω2. Thus, instead of the system of
equation (9) with variables ω1 and ω2 we can consider the
following equivalent system of equation (10) with variables
t1 and t2 where 0 < t2 ≤ t1:

H̃2(t2) = T̄ 2, H̃1(t1, t2) = T̄ 1, (10)

where

H̃2(t2) =
1

1 + g

X

{i:t2>N0

i
}

πi(t
2 − N0

i ),

H̃1(t1, t2) =
X

{i:t2≤N0

i
<t1}

πi(t
1 − N0

i )

+
X

{i:N0

i
<t2}

πi

1

1 + g

`

(1 + g)t1 − gt2 − N0
i

´

.

It is clear that H̃2(·) is continuous in (0,∞), H̃2(τ) = 0

for τ ≤ N0
1 , H̃2(+∞) = +∞ and H̃2(·) is strictly increasing

in (N0
1 ,∞). Then, there is the unique positive t2∗ such that

H̃2(t2∗) = T̄ 2. (11)

It is clear that H̃1(·, t2∗) is continuous and increasing in

(t2∗,∞), H̃1(∞, t2∗) = +∞ and H̃1(t2∗, t
2
∗) = H̃2(t2∗) = T̄ 2 ≤

T̄ 1. So, there is the unique positive t1∗ such that

H̃1(t1∗, t
2
∗) = T̄ 1. (12)

So, the system (10) has the unique solution (t1∗, t
2
∗). Thus,

(9) also has the unique solution and it can be found by (8).
This completes the proof of Lemma 3.

Lemmas 1– 3 imply the following main result.

Theorem 5. The symmetric water filling game has the
unique Nash equilibrium (T 1(ω1

∗, ω2
∗), T

2(ω1
∗, ω

2
∗)) for g ∈

(0, 1), where ω1
∗, ω

2
∗ can be fount through t1∗ and t2∗ from (7)

which are the unique solution of the triangular system of
equations (10).

The assumption that g < 1 is essential for the uniqueness
of Nash Equilibrium as it is shown in the following Proposi-
tion.

Proposition 1. For g = 1 the symmetric water filling
game has a continuum of Nash equilibria.

5. CONVERGENCE OF AN IWFA

In this section we describe a version of the water-filling
algorithm for finding the Nash Equilibrium and supply a
simple proof of its convergence based on some monotonisity
properties. It is clear that Hi(ω1, ω2) i = 1, 2 have the fol-
lowing properties, collected in the next Lemma, which follow
directly from the explicit formulas of the Nash Equilibrium.

Lemma 4. (i) Hi(ω1, ω2), i = 1, 2 are nonnegative and
continuous, (ii) Hi(ω1, ω2) is non-increasing on ωi, (iii)
Hi(ω1, ω2) → ∞ for ωi → 0, (iv) Hi(ω1, ω2) = 0 for enough
big ωi, say for ωi ≥ 1/N0

1 , (v) Hi(ω1, ω2) is non-decreasing
by ωj (j 6= i).

These properties give a simple proof of the convergence
of the following water-filling algorithm for finding the Nash
Equilibrium.

Let ω1
0 and ω2

0 be such that H1(ω1
0 , ω2

0) = H2(ω1
0 , ω2

0) = 0,
for example ω1

0 = ω0
2 = 1/N0

1 . Let ω2
1 = ω2

0 and define ω1
1

such that H1(ω1
1 , ω2

1) = T̄ 1. Such ω1
1 exists by Lemma 4(i)-

(iii). Then, by Lemma 4(i),(v) H2(ω1
1 , ω2

1) = 0. Let ω1
2 =

ω1
1 and define ω2

2 such that H2(ω1
2 , ω2

2) = T̄ 2. Then, by
Lemma 4(v) H1(ω1

2 , ω2
2) ≤ T̄ 1 and so on. So we have non-

increasing positive sequence (ω1
k, ω2

k). Thus, it converges to
an (ω1

∗, ω
2
∗) which produces a Nash Equilibrium.



6. CLOSED FORM SOLUTION FOR SYM-

METRIC WATER FILLING GAME

In this section, based on the proof of Lemma 3, we propose
the solution of the two players symmetric water filling game
in the closed form.

Without lost of generality we can assume that

T̄1 > T̄2.

Let k2 be such that N0
k2+1 ≥ t2∗ > N0

k2
. Then, since H̃2(t2∗) =

T̄ 2, we have that

t2∗ =
(1 + g)T̄ 2 +

Pk2

i=1
πiN

0
i

Pk2

i=1
πi

. (13)

Since H̃2(·) is strictly increasing, k2 can be found from the
condition

H̃2(N0

k2) < T̄ 2 ≤ H̃2(N0

k2+1).

Hence, k2 can be found from the following equivalent con-
ditions:

ϕ2

k2 < T̄ 2 ≤ ϕ2

k2+1, (14)

where

ϕ2
k =

1

1 + g

k
X

i=1

πi(N
0
k − N0

i ),

for k ≤ n, and ϕ2
n+1 = ∞.

Since t1∗ is the root of the equation H̃1(·, t2∗) = T̄ 1 there is
k1 ≥ k2 such that N0

k1+1
≥ t1∗ > N0

k1 . So,

(i) if k1 > k2 then

t1∗ =

T̄ 1 +
k1

X

i=k2+1

πiN
0
i +

1

1 + g

k2

X

i=1

πi(gt∗2 + N0
i )

k1

X

i=1

πi

, (15)

(ii) if k1 = k2 then

t1∗ =

T̄ 1 +
1

1 + g

k2

X

i=1

πi(gt∗2 + N0
i )

k1

X

i=1

πi

. (16)

Thus, k1 ≥ k2 can be found as follows:
(i) k1 = k2 if T̄ 1 ≤ ϕ1

k2+1
,

(ii) otherwise k1 is given by the condition:

ϕ1

k1 < T̄ 1 ≤ ϕ1

k1+1, (17)

where

ϕ1
k =

k
X

i=k2+1

πi(N
0
k − N0

i )

+
1

1 + g

k2

X

i=1

πi

`

(1 + g)N0
k − N0

i − gt2∗
´

for k ∈ [k2 + 1, n], and ϕ1
n+1 = ∞.

We can summarize the obtained results in the following
theorem.

Theorem 6. Let T̄1 > T̄2. Then, the Nash equilibrium
strategies are given by

T 1∗
i =

8

>

>

<

>

>

:

t1∗ − gt2∗ + N0
i

1 + g if i ∈ [1, k2],

t1∗ − N0
i if i ∈ [k2 + 1, k1],

0 if i ∈ [k1 + 1, n],

T 2∗
i =

(

1
1 + g (t2∗ − N0

i ) if i ∈ [1, k2],

0 if i ∈ [k2 + 1, n],

(18)

where k2, t2∗, k1 and t1∗ are given by (14), (13), (17) and
(15).

7. NUMERICAL EXAMPLE

Let us demonstrate the closed form approach by a numer-
ical example. Take n = 5, g = 0.9, T̄ 1 = 5, T̄ 2 = 0.5, N0

i =
κi−1, κ = 1.7, πi = 1/5 for i ∈ [1, 5]. Then, as the first step
we calculate ϕ2

t for t ∈ [1, 5]. In our case we get (0, 0.074,
0.324, 0.963, 2.411) . Then, by (14), k2 = 3. Thus, by (13)
t2∗ = 3.447. Then we calculate ϕ1

t for t ∈ [4, 5]. In our case
we get (1.380,4.131). So, by (17), k1 = 5. Using (15), we
find t1∗ = 9.221. Thus, by (18) we have the following equilib-
rium strategies T 1∗ = (7.062, 6.694, 6.067, 4.308, 0.869) and
T 2∗ = (1.288, 0.919, 0.293, 0, 0) with payoffs 0.909 and 0.062.
We have run IWFA, which produced the same values for
the optimal strategies and payoffs. However, we have ob-
served that the convergence of IWFA is slow when g ≈ 1.
In Figure 1 we have plotted the total error in strategies
||T 1

k −T 1∗||2 + ||T 2
k −T 2∗||2, where T i

k are the strategies pro-
duced by IWFA on the k-th iteration and T i∗ are the Nash
equilibrium strategies. Our approach instantaneously finds
the Nash equilibrium for all values of g. Also, it is interest-
ing to note that by (18) the quantity of channels as well as
the channels themselves used by weaker player (with smaller
resources) is independent on behavior of the stronger player
(with bigger resources) but of course each player allocating
his/her resources among these channels take into account
the opponent behaviour.

In Figure 2, we compare the non-cooperative approach
with the cooperative approach. Specifically, we compare the
transmission rates and their sum under Nash equilibrium
strategies and under strategies obtained from the central-
ized optimization of the sum of transmitters’ rates. The
main conclusions are: the cost of anarchy is nearly zero for
g ∈ [0, 1/4] and then it grows up to 22% when g grows from
1/4 to 1; the transmitter with more resources gains signifi-
cantly more from the centralized optimization. Hence, the
non-cooperative approach results in a more fair resource dis-
tribution.

In Table 1 we give strategies of both users obtained in
the case of the centralized optimization for different values
of the crosstalk coefficient g. First, we observe that when
the crosstalk coefficient is large, the users occupy different
resources. The user with the larger average power takes
better resources. When the crosstalk coefficient is below
0.7, the users start to share the resources. As the value
of the crosstalk coefficient decreases, the 2nd user with the
smaller average power begins to occupy better resources.
As expected, when the crosstalk coefficient is very small,
the optimal strategies start to look like strategies which are
optimal in the case of no interference.
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8. CONCLUSION

We have considered power control for wireless networks in
optimization and game frameworks. Closed form solutions
for the water filling optimization problem and two players
symmetric water filling games have been provided. Namely,
now one can calculate optimal/equilibrium strategies with a
finite number of arithmetic operations. We have also pro-
vided a simple alternative proof of convergence for a version
of iterative water filling algorithm. It had been known be-
fore that the iterative water filling algorithm converges very
slow when the crosstalk coefficient is close to one. For our
closed form approach possible proximity of the crosstalk co-
efficient to one is not a problem. We have shown that when
the crosstalk coefficient is equal to one, there is a contin-
uum of Nash equilibria. Finally, we have demonstarted that
the price of anarchy is small when the crosstalk coefficient
is small and that the decentralized solution is better than

Table 1: Centralized optimization

g Users’ strategies

1st user 7.43 7.17 6.19 4.19 0.00
0.95

2nd user 0.00 0.00 0.00 0.00 2.50

1st user 7.83 7.22 5.98 3.96 0.00
0.70

2nd user 0.00 0.00 0.00 0.00 2.50

1st user 8.25 7.42 6.57 2.76 0.00
0.65

2nd user 0.00 0.00 0.00 0.83 1.67

1st user 8.27 7.73 4.77 3.33 0.90
0.35

2nd user 0.00 0.00 1.24 1.22 0.04

1st user 6.65 6.44 6.16 4.36 1.38
0.20

2nd user 0.91 0.99 0.60 0.00 0.00

1st user 6.27 6.65 6.47 4.53 1.08
0.10

2nd user 1.43 1.00 0.07 0.00 0.00

1st user 7.45 7.03 6.00 3.98 0.54
0.01

2nd user 1.58 0.92 0.00 0.00 0.00

centralized with respect to fairness.
We expect that the present approach can be generalized to

the case of more than two users. A detail analytical study of
the centralized optimization is another future research topic.

9. APPENDIX

Proof of Theorem 1. Let T ∗ = (T ∗
1 , . . . , T ∗

n) be the optimal
strategy. Since

Pn

i=1
πiT

∗
i = T̄ and T ∗

i ≥ 0 for i ∈ [1, n]
there is a m ∈ [1, n] such that T ∗

m > 0.
Let ǫ be any small enough positive number and k 6= m.

Let T ǫ,k = (T ǫ,k
1 , . . . , T ǫ,k

n ) be such that

T ǫ,k
i =

8

>

<

>

:

T ∗
m − ǫ/πm for i = m,

T ∗
k + ǫ/πk for i = k,

T ∗
i for i 6∈ {m, k}.

It is cleat that T ǫ,k also is a strategy for any enough small
positive ǫ. Then, since T ∗ is the optimal strategy we have
that

v(T ∗) ≥ v(T ǫ,k).

Thus,

πk ln

„

1 +
T ∗

k

N0
k

«

+ πm ln

„

1 +
T ∗

m

N0
m

«

≥ πk ln

„

1 +
T ∗

k − ǫ/πk

N0
k

«

+ πm ln

„

1 +
T ∗

m + ǫ/πm

N0
m

«

.

So, putting ǫ → 0 we have that

1

T ∗
m + N0

m

≤
1

T ∗
k + N0

k

for any m 6= k.

Thus, there is a positive ω such that

1

T ∗
i + N0

i

(

= ω, for T ∗
i > 0,

≤ ω, for T ∗
i = 0.

So, the optimal strategy T ∗ is of the form

T (ω) = (T1(ω), . . . , Tn(ω))

where

Ti(ω) = [1/ω − N0
i ]+ for i ∈ [1, n].



Reminding that the optimal strategy is non-negative vector
satisfying the condition

Pn

i=1
πiT

∗
i = T̄ we obtain that ω

has to be found as a solution of the equation HT (ω) = T̄ . It
is clear that HT (0+) = +∞, HT (·) is continuous in (0,∞),
HT (ω) = 0 for ω ∈ [maxi(1/N0

i ),∞) and HT (·) is strictly
decreasing in (0, maxi(1/N0

i )). Thus, there is unique posi-
tive ω such that HT (ω) = T̄ . This completes the proof of
Theorem 1.

Proof of Theorem 2. First note H(ω) = 0 for ω ≥ 1/N0
1 ,

H(ω) is strictly positive and decreasing in (0, 1/N0
1 ).

Let k ∈ [1, n] be such that

1

N0
k

> ω∗ ≥
1

N0
k+1

,

where N0
n+1 = ∞.

Then,
ˆ

1/ω∗ − N0
i

˜

+
= 1/ω∗ − N0

i for i ∈ [1, k] and
ˆ

1/ω∗ − N0
i

˜

+
= 0 i ∈ [k + 1, n]. So,

H(ω∗) =
k
X

i=1

πi(1/ω∗ − N0
i ).

Since H(ω∗) = T̄ we have that

ω∗ =

k
X

i=1

πi

T̄ +

k
X

i=1

πiN
0
i

. (19)

Because H is strictly decreasing on (0, 1/N0
1 ) we can find k

from the following condition

H(1/N0
k ) < T̄ ≤ H(1/N0

k+1).

Since

k
X

i=1

πi(N
0
k+1 − N0

i ) =

k+1
X

i=1

πi(N
0
k+1 − N0

i ),

the integer k can be found from the following equivalent
condition

ϕk < T̄ ≤ ϕk+1, (20)

where

ϕt =
t
X

i=1

πi(N
0
t − N0

i ) for t ∈ [1, n].

Therefore, Theorem 1, (19) and (20) imply Theorem 2.

Proof of Theorem 3. The Lagrangian corresponding to
minimization of −vj subject to the constraint (4) and non-
negativity constraints on T j

i is given by

Lj = −
n
X

k=1

πk ln

 

1 +
T j

k

gT m
k + N0

k

!

+ ωj

 

n
X

k=1

πkT j

k − T̄ j

!

+νj
i (−T j

i ),

with m 6= j. Differentiating the Lagrangian with respect to
T j

i and equating the derivative to zero, we obtain

1

gT m
i + T j

i + N0
i

+
νj

i

πi

= ωj . (21)

Now, using the complimentary slackness condition νj
i T j

i = 0,
we obtain condition (5). Since the left hand side of equation
(21) is positive, the Lagrange multiplier ωj is positive as
well.

Proof of Lemma 1. (i) follows directly from (5) where
T 1∗

i = T 2∗
i = 0.

(ii) Let T 1∗
i > 0 and T 2∗

i = 0. Then by (5) we have that

1

T 1∗
i + N0

i

= ω1.

Thus, 1
ω1 > N0

i and T 1∗
i = 1

ω1 − N0
i . Then, by (5) we have

that

ω2 ≥
1

gT 1∗
i + N0

i

=
1

g(
1

ω1
− N0

i ) + N0
i

.

Thus,

g(
1

ω1
− N0

i ) ≥
1

ω2
− N0

i

and the result follows.

(iii) can be proved similarly to (ii).

(iv) Let T 1∗
i > 0 and T 2∗

i > 0. Then, by (5)we have that
1
ω1 > N0

i and 1
ω2 > N0

i . Also, by (5) we have that T 1∗
i and

T 2∗
i are given by (6). Then, since T 1∗

i > 0 and T 2∗
i > 0 we

have that i ∈ I ′
11(ω

1, ω2). This completes the proof of the
lemma.

Proof of Lemma 2. Let, for example, ω1 < ω2. It is clear
that I ′

00(ω
1, ω2) = I00(ω

1, ω2).
Let i ∈ I ′

10(ω
1, ω2). Then either 1/ω2 ≤ N0

i < 1/ω1

or
1/ω2 − g/µ

1 − g ≤ N0
i < min{1/ω1, 1/ω2}. Since ω1 < ω2,

min{1/ω1, 1/ω2} = 1/ω2 and
1/ω2 − g/ω1

1 − g < 1/ω2. Thus,

I ′
10(ω

1, ω2) = I10(ω
1, ω2).

Let i ∈ I ′
01(ω

1, ω2). Then either 1/ω1 ≤ N0
i < 1/ω2

or
1/ω1 − g/ω2

1 − g ≤ N0
i < min{1/ω1, 1/ω2}. Since ω1 <

ω2, then
1/ω1 − g/ω2

1 − g > 1/ω2. So, I ′
01(ω

1, ω2) = ∅ =

I01(ω
1, ω2).

Let i ∈ I ′
11(ω

1, ω2). Then

N0
i < min{

1/ω1 − g/ω2

1 − g ,
1/ω2 − g/ω1

1 − g } =
1/ω2 − g/ω1

1 − g .

Thus, I ′
11(ω

1, ω2) = I11(ω
1, ω2). This completes the proof

of Lemma 2.

Proof of Corollary 1. Assume that ω1 ≥ ω2. Then 1/ω1−
g/ω2 ≤ 1/ω2 − g/ω1. Thus, T 1

i (ω1, ω2) ≤ T 2
i (ω1, ω2) for

i ∈ [1, n]. So,

T̄ 1 =
n
X

i=1

πiT
1
i (ω1, ω2) ≤

n
X

i=1

πiT
2
i (ω1, ω2) = T̄ 2.

This contradiction completes the proof of Corollary 1.

Proof of Proposition 1. Suppose that (T 1∗, T 2∗) be a Nash
equilibrium. Then, similarly to Lemma 1, we have to con-
sider three cases (i)-(iii) where at least one of components
of the vector (T 1∗, T 2∗) is positive.



(i) Let T 1∗
i > 0 and T 2∗

i = 0. Then, by (5), we have that

1

T 1∗
i + N0

i

= ω1.

Thus,

1

ω1
> N0

i and T 1∗
i =

1

ω1
− N0

i .

Then, by (5)

ω2 ≥
1

T 1∗
i + N0

i

=
1

1

ω1
− N0

i + N0
i

= ω1.

(ii) Let T 2∗
i > 0 and T 1∗

i = 0. Then, similarly to (ii), we
have that

T 2∗
i =

1

ω2
− N0

i

and

1

ω2
> N0

i , ω1 ≥ ω2.

(iii) Let T 1∗
i > 0 and T 2∗

i > 0. Then, by (5), have that

1

T 1∗
i + T 2∗

i + N0
i

= ω1 = ω2.

Assume that ω1 > ω2 then (i) does not hold, so T 1∗
i = 0

for each i which contradicts to (4). Similarly, the case ω1 <
ω2 cannot hold.

Thus, ω1 = ω2 = ω. So, T 1∗
i and T 2∗

i , i ∈ [1, n] have to
be any non-negative such that

T 1∗
i + T 2∗

i = [1/ω − N0
i ]+

and
n
X

i=1

πiT
1∗
i = T̄ 1,

n
X

i=1

πiT
2∗
i = T̄ 2,

where ω is the unique positive root of the equation

n
X

i=1

πi[1/ω − N0
i ]+ = T̄ 1 + T̄ 2.

It is clear that there is a continuum of such strategies. For
example if (T 1∗, T 2∗) is the one of them, and let T 1∗

k , T 2∗
k > 0

and T 1∗
m , T 2∗

m > 0 for some k and m. Then, it is clear that
the following strategies for any enough small positive ǫ are
also optimal:

T̃ 1∗
i =

8

>

<

>

:

T 1∗
i for i 6= k, m,

T 1∗
i + ǫ for i = k,

T 1∗
i − ǫπk/πm for i = m,

T̃ 2∗
i =

8

>

<

>

:

T 2∗
i for i 6= k, m,

T 2∗
i − ǫ for i = k,

T 2∗
i + ǫπk/πm for i = m.

This completes the proof of Proposition 1.
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