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ABSTRACT
The present paper provides a novel characterization of fair-
ness criteria in network resource allocation problems based
on information theory. Specifically, the optimization prob-
lems that motivate fairness criteria for multi-dimensional re-
source are characterized using information divergence mea-
sures that were originally used in information theory. The
characteristics of the fairness criteria clarified herein are
summarized as follows: (i) The proportional fairness crite-
rion can be derived through the minimization of the Kullback-
Leibler divergence. (ii) The (p, α)-proportional fairness cri-
terion, which is a generalization of the proportional fairness
criterion, can be derived through the minimization of the
α-divergence and the power-divergence. In addition, the op-
timization of the fairness criterion is closely related to the
Tsallis entropy maximization principle. (iii) The above re-
lationships can be generalized using Csiszár’s f -divergence
and Bregman’s divergence. The information theoretic ap-
proach is then applied to a typical example in a practical
network resource allocation problem. This example provides
a glimpse into the inherent connection between resource al-
location problems and information theory.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Data
communications; C.2.3 [Computer-Communication Networks]:
Network Operations—Network management

General Terms
Algorithms, Theory

Keywords
Resource Allocation, Fairness, Information Theory

1. INTRODUCTION
The present paper considers an abstract network resource

allocation problem, where the network has a resource with
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finite capacity and supports a finite number of users. When
users have to compete for a resource, the share allocated to
each user has to be regulated by some control mechanism in
order to avoid network congestion and performance degra-
dation. As a result of the finite capacity of the resource,
a compromise of resource allocation leads to the concept of
fairness.

The present paper examines the mathematical concept
of fairness that is formulated as an optimization problem,
where the objective is to find a feasible resource alloca-
tion that minimizes or maximizes a utility function spe-
cific for the used fairness criterion. Examples of such fair-
ness criteria are throughput maximization [6], max-min fair-
ness [6], proportional fairness [19], and potential delay min-
imization criteria [24]. These examples and their weighted
versions are classified as (p, α)-proportional fairness crite-
ria [25]. Specifically, the mathematical formulation of the
(p, α)-proportional fairness realizes a number of fairness cri-
teria by varying the values of the parameters p and α. For
example, the weighted and non-weighted versions are de-
fined when p 6= 1 and p = 1, respectively. If p = 1, the
throughput maximization criterion is obtained when α → 0,
the proportional fairness criterion is obtained when α → 1,
the potential delay minimization criterion is obtained when
α → 2, and the max-min fairness criterion is obtained when
α → ∞. A more general concept is the utility fairness cri-
terion [1, 2, 9, 14, 15, 19, 20], which includes the (p, α)-
proportional fairness as a special case. The utility fairness
criterion is defined with a utility function, and fair rate al-
location is determined by the solution of the optimization
problem specific for the utility fairness criterion.

After their proposal, a number of studies examined the ap-
plication, extension, and evaluation of the abovementioned
fairness criteria. For example, static/dynamic or packet/flow
level performance of the fairness criteria in various network
models have been examined extensively [1, 2, 7, 8, 17, 20,
23, 26, 31, 32]. However, the origin of the fairness criteria
has not yet been clarified and remains unknown despite ac-
tive research in this field. Thus, the present paper provides
an insight into a new cognitive process for establishing a
valid background for the abovementioned fairness criteria.
To this end, the present paper employs information theory
and presents a new aspect of the abovementioned fairness
criteria. The result shows that there exist an interesting re-
lationship between the abovementioned fairness criteria and
information divergence measures that play an important role
in information theory.

Information theory was created by Shannon [27], who also



introduced the information entropy measure. A formula
similar to Shannon entropy in the sense of statistical physics
may be traced back to Boltzmann. In addition, a well-known
information divergence measure was introduced by Kullback
and Leibler [22]. The information divergence is now referred
to as Kullback-Leibler divergence (KL-divergence, in short).
The KL-divergence plays an important role in information
theory. In addition, the minimization of the KL-divergence
is closely related to a principle of statistical inference [21]
and has an important relationship with information geom-
etry theory [3, 4]. Information-geometric interpretation of
information divergence measures leads to an extension of
KL-divergence called α-divergence [3, 4], which is closely
related to Tsallis entropy [29], which is a generalization of
Shannon entropy. An important class of information di-
vergences introduced by Csiszár is called f -divergence [12].
The KL-divergence and α-divergence are important mem-
bers of Csiszár’s f -divergence. Another important class of
information divergence was introduced by Bregman [10]. An
important member of Bregman’s divergence is the power di-
vergence introduced by Basu et al. [5]. The power diver-
gence includes the KL-divergence as a special case and has
a number of statistical applications [5, 13]. The relationship
between the α-divergence and the power divergence has been
clearly presented as a genealogy from Csiszár’s f -divergence
[30]. This genealogy enables us to apply the information
theory to the phase problem of materials science [28].

The present paper presents the following relationships be-
tween resource allocation problems and information the-
ory. (i) The proportional fairness criterion can be derived
through minimization of the KL-divergence. (ii) The (p, α)-
proportional fairness criterion can be derived through min-
imization of the α-divergence and the power-divergence. In
addition, the optimization of the fairness criterion is closely
related to the Tsallis entropy maximization principle. (iii)
The above relationships can be generalized using Csiszár’s
f -divergence and Bregman’s divergence.

In addition, the present paper provides a typical exam-
ple to which the abovementioned formulation can be ap-
plied. This example is a generalization of [18], through
which a glimpse of the inherent connection between prac-
tical resource allocation problems and information theory is
obtained.

The present paper is organized as follows. Sections 2 and
3 briefly review the mathematical formulation of the fair-
ness criteria and the information divergence measures, re-
spectively. Section 4 presents a characterization of (p, α)-
proportional fairness using α-divergence and power diver-
gence. Referring to the characterization, Section 5 intro-
duces a possible method for inducing information divergence
measures from the utility function specific for the fairness
criterion in question. Section 6 generalizes the result pre-
sented in Section 4 using the induced information divergence
measures. Section 7 presents an example that shows the in-
herent connection between resource allocation problems and
information theory. Section 8 concludes the present paper.

2. BRIEF REVIEW OF FAIRNESS CRITE-
RIA

2.1 Network Model
Consider a network with a resource. Let N be a set of

users who must compete for the resource, where N denotes
the cardinality of N . Let xn be the share of resource that
is allocated to user n ∈ N . The resource allocation vec-
tor is denoted by x = {x1, . . . , xN}, where 0 < xn < ∞,
n ∈ N . Let C be the feasible region of resource allocation.
That is, the resource allocation vector x is feasible if x ∈ C.
Suppose that the set C is convex and compact. One of the
representative resource measures considered in the resource
allocation problem is bandwidth.

Note that the network model introduced in [19] is an ex-
ample that satisfies the abovementioned definition. The
network model is defined as follows: We consider a set of
sources (users) n = 1, . . . , N and links l = 1, . . . , L. Let
Al,n be the fraction of traffic of user n which flows on link l,
xn be the sending rate of user n, and cl be the capacity of
link l. Thus, a feasible allocation of rates xn is defined byPN

n=1 Al,nxn ≤ cl for all l. In this case, the feasible region of

resource allocation is defined as C = {x|PN
n=1 Al,nxn ≤ cl}.

Note that the set C is convex and compact.

2.2 (p, α)-Proportional Fairness
A general fairness criterion called (p, α)-proportional fair-

ness was proposed in [25]. A resource allocation vector
x∗ = {x∗1, . . . , x∗N} is (p, α)-proportionally fair if it is fea-
sible, that is, x∗ ∈ C, and if for any other feasible vector x,
the following condition is satisfied:

NX
n=1

pn
xn − x∗n

x∗nα
≤ 0,

where p = {p1, . . . , pN} is a weight vector with positive
elements.

The (p, α)-proportional fairness can be motivated in an-
other way. Consider the following optimization problem:

maximize

NX
n=1

pnφα(xn), (1)

subject to x ∈ C, (2)

where φα(·), α > 0 is an increasing, strictly concave, and
continuously differentiable function on the open interval (0,∞),
as follows:

φα(x) =

(
log x, if α = 1.
x1−α

1−α
, otherwise.

(3)

Since the objective function given in Eq. (1) is strictly con-
cave and the feasible region given in Eq. (2) is supposed to
be convex and compact, the optimal solution of the above
problem exists and is unique.

Note that the (p, α)-proportional fairness criterion reduces
to several well-known criteria, when the weight vector is set
to p = 1 = {1, . . . , 1}. That is, the (1, α)-proportional fair-
ness criterion corresponds to the maximum throughput cri-
terion [6] when α → 0, to the proportional fairness criterion
[19] when α → 1, to the potential delay minimization crite-
rion [24] when α → 2, and to the max-min fairness criterion
[6] when α →∞.

2.3 Utility Fairness
A more general resource allocation criterion called utility

fairness was proposed in [1, 2, 9, 14, 15, 19, 20]. A resource
allocation vector x∗ = {x∗1, . . . , x∗n} is utility fair if it is



feasible, that is, x∗ ∈ C, and if for any other feasible vector
x, the following condition is satisfied:

NX
n=1

∂φn

∂xn
(x∗n)(xn − x∗n) ≤ 0,

where φn(·) is an increasing, strictly concave, and contin-
uously differentiable utility function on the open interval
(0,∞) for all n ∈ N .

Similar to the (p, α)-proportional fairness approach, the
utility fairness approach is translated into the following op-
timization problem:

maximize

NX
n=1

φn(xn), (4)

subject to x ∈ C. (5)

Since the objective function given in Eq. (4) is strictly con-
cave and the feasible region given in Eq. (5) is supposed to
be convex and compact, the optimal solution of the above
problem exists and is unique.

Note that the utility fairness is equivalent to the (p, α)-
proportional fairness when

φn(x) = pnφα(x).

3. BRIEF REVIEW OF INFORMATION DI-
VERGENCE MEASURES

Two classes of information divergence measures, the Csiszár’s
f -divergence [12] and Bregman’s divergence [10], are intro-
duced in this section. These information divergence mea-
sures define a kind of distance between vectors u = {u1, . . . , uI}
and v = {v1, . . . , vI}, where the components of the vec-
tors are positive (i.e., ui, vi > 0, i = 1, . . . , I). Although
the original definition is only for the vector that satisfiesPI

i=1 ui = 1 and
PI

i=1 vi = 1 (i.e., probability measure),
the general definition introduced in this section is applicable
for the vector that satisfies

PI
i=1 ui < ∞ and

PI
i=1 vi < ∞

(i.e., positive finite measure),
The Csiszár’s f -divergence is defined by a strictly convex,

continuously differentiable function f(·) on the open interval
(0,∞), satisfying f(1) = f ′(1) = 0 as follows:

Df (u,v) =

IX
i=1

uif

„
vi

ui

«
.

In addition, Bregman’s divergence is defined by a strictly
convex, continuously differentiable function g(·) on the open
interval (0,∞) as follows:

Bg(u,v) =

IX
i=1

{g(ui)− g(vi)− g′(vi)(ui − vi)}.

Note that

Df (u,v) ≥ 0,

Bg(u,v) ≥ 0,

hold, where the equality holds if and only if u ≡ v. Thus,
Df (·, ·) and Bg(·, ·) can be regarded as a kind of distance be-
tween u and v. However, Df (u,v) = Df (v,u) and Bg(u,v)
= Bg(v,u) (i.e., symmetric property) do not necessary hold

in general. In addition,

Dεf (u,v) = εDf (u,v), (6)

Bεg(u,v) = εBg(u,v)

hold for any positive value ε > 0.
The α-divergence [4], which is a member of Csiszár’s f -

divergence, is defined using fα(x) = 1
α(1−α)

{1− xα + α(x−
1)} as follows:

Dfα(u,v) =
1

α(1− α)

IX
i=1

{(1− α)ui + αvi − u1−α
i vα

i },

where α ∈ R. The α-divergence has a duality as follows:

Dfα(u,v) = Df1−α(v,u), (7)

where Df1−α(·, ·) is called the dual α-divergence with respect
to Dfα(·, ·).

In addition, the power divergence [5], which is a member

of Bregman’s divergence, is defined using gγ(x) = x1+γ−1
γ(1+γ)

as follows:

Bgγ (u,v) =

IX
i=1


1

γ
ui(u

γ
i − vγ

i )− 1

1 + γ
(u1+γ

i − v1+γ
i )

ff
,

where γ ∈ R. The dualistic property of the power diver-
gence is discussed in [30]. The α-divergence and the power
divergence are related as follows:

Dfγ/(1+γ)(u
1+γ ,v1+γ) = Bgγ (u,v)

where u1+γ = {u1+γ
1 , . . . , u1+γ

I } and v1+γ = {v1+γ
1 , . . . , v1+γ

I }.
The above relationship has been clearly presented as a ge-
nealogy from the f -divergence [30].

The KL-divergence, which is a common member of the α-
divergence and the power divergence, is defined as follows:

Df0(u,v) = Bg0(u,v) =

IX
i=1


ui log

ui

vi
− ui + vi

ff
,

where f0(u) = limα→0 fα(u) = − log u + u − 1 and g0(u) =
limα→0 gα(u) = u log u− u + 1.

The dual KL-divergence, which is a member of the α-
divergence is defined using f1(x) = limα→1 fα(u) = x log x−
x + 1 as follows:

Df1(u,v) =

IX
i=1


vi log

vi

ui
− vi + ui

ff
.

The quadratic divergence, which is a member of the power

divergence is defined using g1(x) = limα→1 gα(x) = x2−1
2

as
follows:

Bg1(u,v) =

IX
i=1

(ui − vi)
2

2
.

Note that the quadratic divergence is a symmetric informa-
tion divergence.

Neyman’s chi-square divergence [11], which is a member
of the α-divergence is defined using f−1(x) = limα→−1 fα(u)

= (x−1)2

2x
as follows:

Df−1(u,v) =

IX
i=1

(ui − vi)
2

2vi
.



The Itakura-Saito divergence [16], which is a member of
the power divergence is defined using g−1(x) = limα→−1 gα(x) =
− log x as follows:

Bg−1(u,v) =

IX
i=1


ui

vi
− 1− log

ui

vi

ff
.

4. FAIRNESS CRITERIA CHARACTERIZED
BY α-DIVERGENCE AND POWER DIVER-
GENCE

A characterization of the (p, α)-proportional fairness based
on the α-divergence and the power divergence is given in
this section. The characterization provides a reasonable
means of understanding the inherent meaning of the (p, α)-
proportional fairness. Specifically, the result of this section
reveals that the objective of (p, α)-proportional fairness can
be regarded as the maximization of the utility φα(·) of a
pseudo resource allocation vector that is defined as an ag-
gregation of the resource share allocated to the users. Note
that the aggregated resource share is well-defined using the
weighted sum of the α-divergence. In addition, a similar
characterization is possible for the power divergence.

4.1 Network Model for Multi-Dimensional Re-
sources

Although the original network model introduced in Sec-
tion 2.1 is defined using a one-dimensional resource measure,
the remainder of the present paper uses a network model
that is defined using a multi-dimensional resource measure.
That is, the resource is defined as an I-dimensional vector
as follows: Let N be a set of users who have to compete for
the resources, where N denotes the cardinality of N . Let
xn,i be the share of resource i = 1, . . . , I that is allocated
to user n ∈ N . In this way, the resource allocation vec-
tor of user n ∈ N is denoted by the I-dimensional vector
xn = {xn,1, . . . , xn,I}, where 0 < xn,i < ∞, n = 1, . . . , N ,
i = 1, . . . , I. The resource allocation vector of all users is
denoted by x = {x1, . . . ,xN}. In addition, let CI be the
feasible region of resource allocation. That is, the resource
allocation vector x is feasible if x ∈ CI . Suppose that the
set CI is convex and compact. The above defined network
model corresponds to that defined in Section 2.1 when I = 1.

4.2 (p, α)-Proportional Fairness for a Multi-
Dimensional Resource

The present paper extends the optimization problem de-
fined by Eqs. (1) and (2) to the that for a multi-dimensional
resource. The extended optimization problem is given as
follows:

maximize

NX
n=1

pnφα(xn), (8)

subject to x ∈ CI , (9)

where φα(xn) is defined by

φα(xn) =

IX
i=1

φα(xn,i). (10)

Equation (10) means that utilities are assumed to be addi-

tive, so that the total utility of xn is
PI

i=1 φα(xn,i). The

above mentioned optimization problem equivalent to that
defined in Section 2.2 when I = 1.

4.3 Result
Now, a key result of the present paper can be obtained.

Let us consider a vector v̄(p,α) = {v̄(p,α)
1 , . . . , v̄

(p,α)
I } that

is defined as follows:

v̄
(p,α)
i =

 
NX

n=1

pnPN
m=1 pm

v1−α
n,i

! 1
1−α

, (11)

where vn = {vn,1, . . . , vn,I}, 0 < vn,i < ∞, n = 1, . . . , N ,

i = 1, . . . , I. Here, it can be shown that the vector v̄(p,α)

satisfies both

v̄(p,α) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnDf1−α(u,vn), (12)

and

v̄(p,α) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnBg1−α(u,vn). (13)

In addition,

NX
n=1

pnφα(v̄(p,α)) =

NX
n=1

pnφα(vn), (14)

and equivalently

φα(v̄(p,α)) =

NX
n=1

pnPN
m=1 pm

φα(vn), (15)

hold. The proof of the above result is given in the appendix.
This result provides an interesting viewpoint for under-

standing the inherent meaning of the optimization problem
defined by Eqs. (8) and (9).

First, Eq. (14) shows that the utility of vn, n ∈ N is

equivalent to that of v̄(p,α) that is defined as a aggregation
of the vectors vn, n ∈ N in Eq. (11). Thus, the original
optimization problem defined by Eqs. (8) and (9) can be
translated to

maximize

NX
n=1

pnφα(v̄(p,α)),

subject to v ∈ CI .

In the sense of this characterization, the vector v̄(p,α) can
be regarded as a kind of pseudo resource allocation vector.

Second, Eqs. (12) and (13) mean that the pseudo resource

allocation vector v̄(p,α) can be regarded as the vector that
minimizes the weighted sum of Df1−α(·, ·) or Bg1−α(·, ·),
where the weight is given by the parameter p. Therefore,
the pseudo resource allocation vector is a kind of centroid
of vn, n ∈ N with respect to Df1−α(·, ·) or Bg1−α(·, ·).

Finally, in addition to the above observation, note that
the definition of φα(·) is closely related to the definition of
Tsallis entropy. The Tsallis entropy is defined for α > 0 as
follows:

Hα(u) =
1

1− α

„ IX
i=1

uα
i − 1

«
.



Note that limα→0 Hα(u) reduces to Shannon entropy. Here,
the following relationship is obtained using the definition of
Tsallis entropy:

IX
i=1

φα(vn,i) =
α

1− α
H1−α(vn).

Thus, the objective of the (p, α)-proportional fairness that
is given by Eq. (14) can be regarded as the maximization of
the (weighted) Tsallis entropy.

4.4 Examples
Three examples are given in the following. The exam-

ples are for maximum throughput criterion (i.e., α → 0),
proportional fairness criterion (i.e., α → 1), and potential
delay minimization criterion (i.e., α → 2).

Example 1: (p, 0)-proportional fairness
When α → 0, the result given by Eqs. (11), (12), (13) and
(15) reduces to the following form that corresponds to the
maximum throughput criterion:

v̄
(p,0)
i =

NX
n=1

pnPN
m=1 pm

vn,i,

v̄(p,0) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnDf1(u,vn),

v̄(p,0) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnBg1(u,vn),

φ0(v̄
(p,0)) =

NX
n=1

pnPN
m=1 pm

 IX
i=1

vn,i

ff
.

As described above, the pseudo resource allocation vector
v̄(p,0) is defined as the centroid of vn, n ∈ N with respect
to the dual KL-divergence Df1(·, ·) and the quadratic diver-
gence Dg1(·, ·).

Example 2: (p, 1)-proportional fairness
When α → 1, the result given by Eqs. (11), (12), (13) and
(15) reduces to the following form, which corresponds to the
proportional fairness criterion:

v̄
(p,1)
i =

NY
n=1

v

pnPN
m=1 pm

n,i ,

v̄(p,1) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnDf0(u,vn),

v̄(p,1) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnBg0(u,vn),

φ1(v̄
(p,1)) =

NX
n=1

pnPN
m=1 pm

 IX
i=1

log(vn,i)

ff
.

As described above, the pseudo resource allocation vector
v̄(p,1) is defined as the centroid of vn, n ∈ N with respect
to the KL-divergence Df0(·, ·) and Dg0(·, ·).

Example 3: (p, 2)-proportional fairness
When α → 2, the result given by Eqs. (11), (12), (13) and
(15) reduces to the following form, which corresponds to the

potential delay minimization criterion:

v̄
(p,2)
i =

 
NX

n=1

pnPN
m=1 pm

v−1
n,i

!−1

,

v̄(p,2) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnDf−1(u,vn),

v̄(p,2) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnBg−1(u,vn),

φ2(v̄
(p,2)) =

NX
n=1

pnPN
m=1 pm

v−1
n,i.

As described above, the pseudo resource allocation vector
v̄(p,2) is defined as the centroid of vn, n ∈ N with respect to
Neyman’s chi-square divergence Df−1(·, ·) and the Itakura-
Saito divergence Dg−1(·, ·).

5. INFORMATION DIVERGENCE MEASU-
RES INDUCED FROM THE UTILITY FU-
NCTION

The results presented in Section 4 indicate that there ex-
ists a more general relationship between the concave func-
tion that defines fairness criterion and the convex function
that defines information divergence. Thus, one possible
method for inducing f1−α(·) and g1−α(·) from φα(·) is pre-
sented in this section. In addition, this section generalizes
the method by which to induce Csiszár’s f -divergence and
Bregman’s divergence from the utility function.

5.1 Induction to Csisz«ar’s f -Divergence
Let us define a new function φ̃α(x) using the utility func-

tion φα(·), α > 0 that is defined in Eq. (3) as follows:

φ̃α(x) = −(φα(x)− φα(1)) + φ′α(1)(x− 1)

=
1

1− α


(1− x1−α)− (1− α)(1− x)

ff
.

It is easy to confirm that the function φ̃α(·) is strictly convex,
continuously differentiable on the open interval (0,∞), and

satisfies φ̃α(1) = φ̃′α(1) = 0. Thus, the f -divergence can be

defined using φ̃α(·) as follows:

Dφ̃α
(u,v) =

1

1− α

IX
i=1

{αui + (1− α)vi − uα
i v1−α

i },

where α > 0. Note that since φ̃α(·) = αf1−α(·) holds, the
following is obtained:

Dφ̃α
(u,v) = αDf1−α(u,v), (16)

for α > 0 (see Eq. (6)). This means that the f -divergence
induced from the utility function φα(·) is equivalent to the
dual α-divergence without the positive constant scaling fac-
tor.

Next, let us generalize the above discussion. Let φ(·) be
a utility function that is an increasing, strictly concave, and
continuously differentiable utility function on (0,∞). Using

the utility function φ(·), a new function φ̃(·) is introduced
as follows:

φ̃(x) = −(φ(x)− φ(1)) + φ′(1)(x− 1). (17)



It is also easy to confirm that the function φ̃(·) is strictly con-
vex, continuously differentiable on the open interval (0,∞),

and satisfies φ̃(1) = φ̃′(1) = 0. Thus, the f -divergence can

be defined using the function φ̃(·) as follows:

Dφ̃(u,v) =

IX
i=1

uiφ̃

„
vi

ui

«
.

In the present paper, Dφ̃(·, ·) is called the f -divergence in-
duced from the utility function φ(·).

5.2 Induction to Bregman’s Divergence
Let us define a new function Φα(x) using the utility func-

tion φα(·), α > 0 that is defined in Eq. (3) as follows:

Φα(x) =

Z x

1

φα(y)dy

=
x2−α − 1

(1− α)(2− α)
.

Note that the function Φα(·) is strictly convex and continu-
ously differentiable on the open interval (0,∞). Thus, Breg-
man’s divergence can be defined using Φα(·) as follows:

BΦα(u,v)

=

IX
i=1


1

1− α
ui(u

1−α
i − v1−α

i )− 1

2− α
(u2−α

i − v2−α
i )

ff
,

where α > 0. Note that Φα(·) = g1−α(·) holds, and so the
following is obtained:

BΦα(u,v) = Bg1−α(u,v), (18)

for α > 0. This means that Bregman’s divergence induced
from the utility function φα(·) is equivalent to the power
divergence.

Next, let us generalize the above discussion. Let φ(·) be
a utility function that is an increasing, strictly concave, and
continuously differentiable utility function on (0,∞). Using
the utility function φ(·), a new function Φ(·) is introduced
as follows:

Φ(x) =

Z x

1

φ(y)dy (19)

It is easy to confirm that the function Φ(·) is strictly convex
and continuously differentiable on the open interval (0,∞).
Thus, Bregman’s divergence can be defined using Φ(·) as
follows:

BΦ(u,v) =

IX
i=1

{Φ(ui)− Φ(vi)− Φ′(vi)(ui − vi)}

=

IX
i=1

{Φ(ui)− Φ(vi)− φ(vi)(ui − vi)}.

In the present paper, BΦ(·, ·) is called Bregman’s divergence
induced from the utility function φ(·).

6. GENERALIZATION OF FAIRNESS CON-
CEPT USING INFORMATION DIVERGE-
NCE MEASURES

In this section, the characterization of the (p, α)-proportional
fairness given in Section 4 is generalized using the result

in Section 5. That is, the generalization is achieved using
Csiszár’s f -divergence and Bregman’s divergence that are
induced from the utility function specific for the used fair-
ness criterion.

6.1 Generalization of the Fairness Concept us-
ing Csisz«ar’s f -Divergence

Using the relationship given in Eq. (16), the definition

of v̄(p,α) given in Eq. (12) is equivalent to the following
definition:

v̄(p,α) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnDφ̃α
(u,vn),

Thus, the natural generalization of the above definition would
be given as follows:

v̄(p,φ̃N ) = arg min
0<ui<∞
i=1,...,I

NX
n=1

Dφ̃n
(u,vn),

where φ̃n(·) is defined by the utility function φn(·) using

Eq. (17). Note that the vector v̄(p,φ̃N ) exists and is unique

because the function φ̃n(·), n ∈ N is strictly concave and
the feasible region CI is supposed to be convex and compact.

Summarizing the above, the generalized fairness concept
can be defined based on Csiszár’s f -divergence as follows:

maximize

NX
n=1

φn(x̄(p,φ̃N )), (20)

subject to x ∈ CI . (21)

Although the above generalization does not lead to the opti-
mization problem motivated by the utility fairness approach
introduced in Section 2.3, it conversely indicates another
possibility for the generalization of fairness criteria in the
resource allocation problem.

6.2 Generalization of Fairness Concept using
Bregman’s Divergence

Using the relationship presented in Eq. (18), the definition

of v̄(p,α) given in Eq. (13) is equivalent to the following
definition:

v̄(p,α) = arg min
0<ui<∞
i=1,...,I

NX
n=1

pnBΦα(u,vn),

Thus, the natural generalization of the above definition would
be given as follows:

v̄(p,ΦN ) = arg min
0<ui<∞
i=1,...,I

NX
n=1

BΦn(u,vn),

where Φn(·) is defined by the utility function φn(·) using

Eq. (19). Note that the vector v̄(p,ΦN ) exists and is unique
because the function Φn(·) is strictly concave and the feasi-
ble region CI is supposed to be convex and compact.

Summarizing the above, the generalized fairness concept
can be defined based on Bregman’s divergence as follows:

maximize

NX
n=1

φn(v̄(p,ΦN )), (22)

subject to v ∈ CI . (23)



In the following, let us consider the relationship between
the optimization problem motivated from the utility fairness
approach introduced in Section 2.3 and the optimization
problem defined by Eqs. (22) and (23). Here, the present
paper extends the optimization problem defined by Eqs. (4)
and (5) to that for the multi dimensional resource. The
extension is given by the following optimization problem:

maximize

NX
n=1

φn(xn), (24)

subject to x ∈ CI , (25)

where φn(xn) is defined by

φn(xn) =

IX
i=1

φn(xn,i).

The optimization problem defined by Eqs. (24) and (25)
equivalent to that defined in Section 2.3 when I = 1.

Now, the following relationship can be obtained. The
proof is given in the appendix.

NX
n=1

φn(v̄(p,ΦN )) =

NX
n=1

φn(vn) (26)

This means that the objective function of the original op-
timization problem can be regarded as the utility of the
pseudo resource allocation vector v̄(p,ΦN ) that is defined as
the centroid in terms of Bregman’s divergence BΦn(·, ·) that
is induced from the utility function φn(·). Note that Eq. (26)
is equivalent to Eq. (14) when φn(·) = pnφα(·).

7. RELATED EXAMPLE
In this section, a typical example is provided that gives a

glimpse into the inherent connection between resource allo-
cation problems and information theory. In the following,
the practical resource allocation problem introduced in [18]
is used as an example and its result is generalized. The
goal of this section is to provide a deeper understanding of
practical resource allocation problems based on information
theory.

7.1 Problem Formulation
In wireless LANs (WLANs) and ad hoc networks, fairness

and efficiency can have two conflicting objectives. For mul-
tirate WLANs and ad hoc networks, in which nodes have
the choice of transmitting at varying bit rates (e.g., in IEEE
802.11b, data rate could be 1 Mbps, 2 Mbps, 5.5 Mbps, or
11 Mbps), this issue becomes even more pronounced.

In a wireless network, a wireless station (WS) may use
an “auto-rate” mechanism to choose a suitable data rate
for transmission according to the channel condition expe-
rienced. Co-existing WSs could also transmit at different
speeds simply because they use different generations of com-
patible technologies. For example, 802.11g stations have a
maximum data rate of 54 Mbps, while 802.11b stations have
a maximum data rate of 11 Mbps.

In [18], an interesting property of proportional fairness in
multi-rate WLANs has been given. The property is that
proportional fairness is achieved when the fractions of air-
time usage by the WSs are equal. In the following, the
abovementioned result presented in [18] is generalized for
the (p, α)-proportional fairness.

Let tn be the total amount of air-time used by WS n ∈ N
measured over a very long period. The fraction of air-time
used by WS n is then

sn =
tnPN

m=1 tm

In addition, let rn be the transmission rate of WS n ∈ N .
The throughput of WS n is then

vn = snrn

Note that rn, n ∈ N is pre-determined by the distances (or
channel condition) of the WSs from the access point, or by
the standards (802.11b or 802.11g) used by their wireless
cards. Thus, rn, n ∈ N is constant for the optimization
problem.

Referring to Eqs. (1) and (2), let us define the following
optimization problem:

maximize ψα(s) =

NX
n=1

pn
(snrn)1−α

1− α
, (27)

subject to s ∈

s

˛̨
˛̨

NX
n=1

sn = 1, sn ≥ 0, n ∈ N
ff

, (28)

where s = {s1, . . . , sN}. As shown in Eqs. (12) and (13), the
right-hand side of Eq. (27) can be characterized as the utility
of the pseudo throughput that is defined as an aggregation of
the throughput values allocated to all WSs. In addition, the
pseudo throughput is derived as a result of the minimization
of the weighted sum of the α-divergence.

Note that it is possible to introduce a further generaliza-
tion of the optimization problem defined by Eqs. (27) and
(28) considering the multi-dimensional resource case. For
reference, the problem formulation that is defined along with
Eqs. (8) and (9) is provided. The problem is formulated as
follows:

maximize ψα(s) =

NX
n=1

pn

 IX
i=1

(sn,irn,i)
1−α

1− α

ff
,

subject to s ∈

s

˛̨
˛̨

NX
n=1

sn,i = 1, sn,i ≥ 0, n ∈ N , i = 1, . . . , I

ff
,

where sn = {sn,1, . . . , sn,I} and s = {s1, . . . , sI}.

7.2 Analysis
Although the optimization problem is generalized for the

multi-dimensional resource case, for simplicity, the present
paper hereinafter focuses on the one-dimensional resource
case (i.e., I = 1). To solve the above optimization problem,
let us define the Lagrangian as follows:

L(s, µ) = ψα(s) + µ

„
1−

NX
n=1

sn

«
,

where µ is a Lagrange multiplier. Solution s∗ = {s∗1, . . . , s∗N}
satisfies

∂L

∂sn
(s∗, µ) = pns∗n

−α
r1−α

n − µ = 0,



for all n ∈ N . Thus, the following is obtained:

s∗n =
p

1
α
n r

1−α
α

n

PN
m=1 p

1
α
mr

1−α
α

m

,

v∗n =
p

1
α
n r

1
α
n

PN
m=1 p

1
α
mr

1−α
α

m

,

where v∗n = s∗nrn. Note that the solution is closely related to
the Tsallis entropy maximization principle, as pointed out
in Section 4.3, where the constraint is given in Eq. (28).

A few examples are presented in the following. These
examples are for p = 1. The first example is for α = 1
that corresponds to the proportional fairness criterion. In
this case, the following result, which was given in [18], is
obtained:

s∗n =
1

N
,

v∗n =
rn

N
.

Note that s∗n does not depend on rn if and only if α = 1.
Next example is for α → 0 that corresponds to the maximum
throughput criterion. In this case, the following is obtained:

s∗n =

(
1
M

, if rn = max{r1, . . . , rN}
0, otherwise

,

v∗n =

(
rn
M

, if rn = max{r1, . . . , rN}
0, otherwise

,

where M = |{rn|rn = max{r1, . . . , rN}}|. When α = 2, the
following result that corresponds to the minimum potential
delay criterion is obtained:

s∗n =
1/
√

rnPN
m=1 1/

√
rm

,

v∗n =

√
rnPN

m=1 1/
√

rm

.

When α → ∞, the following result that corresponds to the
max-min fairness criterion is obtained:

s∗n =
r−1

nPN
m=1 r−1

m

,

v∗n =
1PN

m=1 r−1
m

.

8. CONCLUSION
An information theoretic cognitive process for establish-

ing a valid background of various fairness criteria in network
resource allocation problems has been presented. This is be-
lieved to be the first paper to deal with resource allocation
problems in the context of information theory. The discus-
sion is based mainly on two classes of information diver-
gence measures, namely Csiszár’s f -divergence and Breg-
man’s divergence, which define a kind of distance using a
strictly convex function between two positive vectors. The
key result of the present paper is based on the observation
on the interesting characterization of the (p, α)-proportional
fairness criterion using the α-divergence and the power di-
vergence, which are members of Csiszár’s f -divergence and
Bregman’s divergence, respectively. In addition, the charac-
terization was generalized using Csiszár’s f -divergence and

Bregman’s divergence, where the relationship between the
convex function that defines the information divergence and
the concave function that defines fairness criterion was ap-
plied. A typical example was then presented to which the
above characterization was applied. This example provided
a glimpse of the inherent connection between resource allo-
cation problems and information theory.
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APPENDIX
Derivation of Eqs. (12) and (13)
Consider the vector u = {u1, . . . , uI} that satisfies

∂

∂ui

NX
n=1

pnDf1−α(u,vn)

=

NX
n=1

pn{(1− α)− (1− α)uα−1
i v1−α

n,i }

= 0,

for n = 1, 2, . . . , N and i = 1, 2, . . . , I. The vector u is easily
confirmed to be equivalent to v̄(p,α). The convexity of the
α-divergence concludes the proof of Eq. (12).

Similarly, consider the vector u = {u1, . . . , uI} that satis-
fies

∂

∂ui

NX
n=1

pnBg1−α(u,vn)

=

NX
n=1

pn

»
1

1− α


(2− α)u1−α

i − v1−α
n,i

ff
− u1−α

i

–

=

NX
n=1

pn

»
1

1− α
(u1−α

i − v1−α
n,i )

–

= 0,

for n = 1, 2, . . . , N and i = 1, 2, . . . , I. The vector u is easily
confirmed to be equivalent to v̄(p,α). The convexity of the
power divergence concludes the proof of Eq. (13).

Derivation of Eq. (26)
Consider the vector u = {u1, . . . , uI} that satisfies

∂

∂ui

NX
n=1

BΦn(u,vn)

=

NX
n=1

{Φ′n(ui)− φn(vn,i)}

=

NX
n=1

{φn(ui)− φn(vn,i)}

= 0. (29)

Here, the convexity of Bregman’s divergence and the defini-
tion of the vector v̄(p,ΦN ) conclude the proof of Eq. (26).


