
A Reliable and Realistic Approach of Advance Network
Reservations with Guaranteed Completion Time for Bulk

Data Transfers in Grids

Kashif Munir
University of Innsbruck, Austria

Technikerstrasse 21a
Institute of Computer Science

Kashif.Munir@uibk.ac.at

Somera Javed
National University of Computer and

Emerging Sciences, Islamabad
A. K. Brohi Road, H-11/4, Islamabad

Somera11@gmail.com

Michael Welzl
University of Innsbruck, Austria

Technikerstrasse 21a
Institute of Computer Science

Michael.Welzl@uibk.ac.at

ABSTRACT
Advance Reservation mechanisms in Grid systems should
include the network just like any other resource; this is usually
not only a technical, but also an administrative challenge. In this
paper, we present a QoS mechanism for bulk data transfers
which minimizes the necessary support from network service
providers. By shifting the complexity of controlling the traffic to
end nodes, where we combine admission control with
congestion control, we can provide per-flow guarantees while
efficiently using the available network capacity.

Keywords
QoS, Grid, Bulk Data Transfer, Advance Reservation, Resource
Broker, UDT

1. INTRODUCTION
It is desirable for a Grid scheduler to have Bulk Data Transfers
completed within a predefined time. To this end, the concept of
“Advance Reservation” of Grid resources should include the
network. This is often impossible due to administrative hurdles,
as such Quality of Service (QoS) guarantees normally require all
the routers along an end-to-end path to be involved, which
means that they must be configured to support the requested
service. From the point of view of an Internet Service Provider
(ISP), this is a significant financial investment because of the
manpower that is needed for installing and maintaining a
complicated router configuration. Moreover, there is a certain
risk associated with this setup – misconfiguration can lead to
degraded service of other (non-Grid) customers, which can
cause even greater financial loss.

 The work described in this paper is partially supported by the Higher
Education Commission (HEC) of Pakistan under the doctoral
fellowship program for Austria, the European Union through the FP6-
IST-045256 project EC-GIN and D. Swarovski & Co.

In this paper, we describe a mechanism which strikes a balance
between these two extremes for ISPs: we only require a single
protected traffic aggregate from them – this is easy to install,
and a variety of different network mechanisms such as DiffServ
or MPLS can be used as tools for providing it. No complicated
configuration is needed in the network, and per-flow guarantees
are still possible, as we precisely control what enters the
aggregate; this control is executed in the end systems of the
Grid.

Our mechanism makes use of the distributed nature of a Grid,
where we can assume that end nodes that have access to our
system are trustworthy, and cooperation is in their own interest.
We specify that, before using bandwidth in our protected traffic
aggregate, it must be requested from a Resource Broker (RB) – a
common service in Grids where one can, for instance, ask for a
machine with a certain CPU power; it is our intention to extend
this element with the ability to grant Advance (Network)
Reservation. Moreover, we attain a deterministic behavior by
prescribing the use of a single particular congestion control
mechanism for all end systems.

Note that these assumptions place some fundamental limits to
our mechanism: in traditional network “Bandwidth Broker”
based architectures, for example, the Bandwidth Broker informs
edge routers about any granted service, so as to enable them to
ensure that the behavior of end nodes conforms to their
promises. Our assumption of trusted end systems allows us to
relax this constraint, thereby reducing the administrative burden
on ISPs.

There is also the issue of resilience, which is of utmost
importance in a traditional QoS scenario because it usually
involves a customer who pays for the granted service. In Grids,
where guarantees are sought for file transfers rather than live
streams, a failure to provide an offered service will simply make
an application a little slower than expected, which is a much less
severe effect than, for instance, dropped frames of a video where
a user paid for perfect quality. For this reason, we can base our
design on the assumption that path changes are rare enough to
allow our mechanism to work within reasonable bounds, and
there is no need to foresee a mechanism for pinpointing a path,
which would again involve routers and hence cause
administrative effort on the ISP side.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GridNets’07, October 17–19, 2007, Lyon, France.
Copyright 2007 ICST ISBN 978-963-9799-07-3

peri
Typewriter
DOI 10.4108/gridnets.2007.2163

peri
Typewriter

peri
Typewriter

Some information about the network is however needed, and
would have to be communicated to our RB from a constantly
active distributed measurement system in the Grid:

 Bottleneck link capacities1 must be known for all
bottlenecks of all end-to-end paths.

 Shared bottlenecks2 must be detected.

We assume that knowledge about bottleneck capacities and
shared bottlenecks is available at the end systems, and point out
that there are enough indications in the literature that obtaining
such measurements would be feasible. This literature will be
surveyed in the next section. We explain how our mechanism
works in Section 3, and support our explanations with
simulation results in Section 4. Section 5 concludes.

2. RELATED WORK
2.1 Network Reservations
In general, there are two types of network resource reservations
in computer networks [1]. One is immediate reservation which
is made in a just-in-time manner and the other is advance
reservation, which allows reserving network resources a long
time before they are actually used.

Early work on advance reservation focused on reservation
protocols like RSVP [2] and ST-II [3], admission control
mechanism [4] and routing algorithms for networks with
advance reservations [5,6].

Grid applications need guarantees of Quality of Service (QoS)
[7,8]. Targeting deadline support for bulk data transfers, the
problem of network resource reservation [9] has been proposed
to be studied within the grid scope. An example for a Grid
toolkit that supports such mechanisms is Globus with its GARA
resource allocation component [10].

The issue of bandwidth fragmentation is discussed by Burchard
et al. [1]. Bandwidth fragmentation may reduce acceptance
percentage of requests arriving later. They propose the idea of
malleable reservation to address the problem for which a start
time and single rate value can be selected from a range of
values.

In [12], if the latest call request is a malleable request, the
method of [1] or [11] is used to adjust the bandwidth or duration
to satisfy the requester. However for a fixed request, the
bandwidth or duration of transmission cannot be modified and
the only way to avoid being rejected is to adjust the bandwidth
of admitted malleable requests. The trouble with this mechanism
is the extra overhead in finding and adjusting the admitted
reservations which may be modified. The Multi-Interval
mechanism, presented in [13], avoids this trouble. The
mechanism is based on the concept that a request should not be
rejected if there is at least one feasible solution to accept it and

1 In what follows, the term “capacity” does not refer to the

physical capacity of a link but the maximum transmission rate
that it provides to users of the protected high-class traffic
aggregate.

2 In the context of this paper, a bottleneck is the link with the
smallest capacity along a path.

if there are multiple solutions, the one which yields the
minimum flow time is chosen and is not changed after that. The
comparison of the mechanisms in [13] shows that the Multi-
Interval mechanism provides the best Acceptance Percentage of
requests than that of the other mechanisms.

In [14] a general view of the network resources sharing in Grids
and Grids traffic isolation is presented. Optimization of
bandwidth sharing among Grid flows is given [15] by
manipulating the transmission windows of the flexible requests
between minimum and maximum rates to maximize the
acceptance rate of requests and to maximize the network
utilization while still meeting their deadlines. The formulated
optimization problem is proven to be NP-complete.

Two types of strategies for scheduling bulk data transfers are
possible [16]. One strategy is to immediately grant or reject
admission to a reservation request on its arrival time. This
strategy can be called as on-demand admission control. In the
other strategy, if a reservation request can not be granted or
rejected at the time of its arrival, it is put in a queue to explore
its possible admission later. This strategy can be called as
queue-based admission control. Our mechanism, which will be
explained in section 3.2.2, is based on the former, on-demand
admission control, strategy.

A time-slot based approach for scheduling the elastic and
streaming requests is described in [17]. However, the effect of
the extra signaling overhead, which is due to the manipulation
of the data transfer rates of individual flows, is not taken into
account in this approach. Our mechanism considers this
overhead.

A mechanism of applying fully distributed congestion control
based admission control was introduced together with earlier
scheduling approaches in [18]; for ease of understanding, we
will briefly recapitulate this prior work in the section 3.2.1
(please see [18] for in-depth explanation of the mechanism).

Except [18], in all the above approaches, the flows send at a
fixed rate during a time slot or block assuming loss-free
networks and no scheduling overhead due to admission control
computation. However we propose a reliable and realistic
mechanism of Bulk Data Transfers in which the residual
network capacity is quickly and fairly shared by all existing
flows, which minimizes flows completion times and which
consequently results in higher acceptance of reservation requests
in the network. Our mechanism includes all extra overheads
caused due to communication between senders and the RB,
network control information between senders and receivers and
re-transmission of lost packets. Our mechanism is not dependent
on time slots. A flow can terminate at any time upon completion
of its data transfer and the other admitted requests automatically
share the residual capacity. We consider dedicated networks and
use precise bandwidth reservation to provide QoS guarantees.

2.2 Network Measurements
The information about the network that is needed for our
architecture can be obtained via an end-to-end measurement
system such as the one described in [19]. This system could
send probe traffic, or require the sender to cooperate by time
stamping the packets or sending them back-to-back. Active
methods for deducing bottleneck capacities via so-called “packet

pairs” have been studied for a long time, starting with [20], and
led to a large number of measurement tools. An example of such
tool is “NetTimer” [21]. Recently, strictly passive methods were
investigated, where the fact that TCP itself sends packet pairs if
receivers use “Delayed ACKs” (as the specification suggests) is
exploited [22].

Detecting shared bottlenecks in the network is also not a new
problem; various techniques were proposed in [23,24]. In [25], a
completely passive approach for learning about shared
bottlenecks was introduced.

2.3 Congestion Control
Common admission control mechanisms assume all flows to use
a certain fixed (or maximum) rate. It is a key feature of our
mechanism that it manages to efficiently utilize network
resources in a scalable manner because flows automatically
increase their rates as bandwidth becomes available. This is
attained by using a congestion control mechanism for all end-to-
end flows; moreover, we use a mechanism that is designed for
high-speed networks (networks with a large bandwidth-delay
product), where standard TCP congestion control is known not
to yield satisfactory performance.

Most end-to-end congestion control mechanisms in the literature
converge to a rate which depends on the round-trip time (RTT).
One particular fairness measure that would suit our needs is
called "max-min fairness". The authors of [26,27,28] showed
that the well-known TCP variants FAST TCP, Scalable TCP
(STCP), HighSpeed-TCP, BIC, CUBIC, H-TCP are not "RTT-
fair". There are however exceptions: UDT [29] is designed to be
max-min fair. Because it is designed for high-speeds and
particularly convenient in a Grid setting, we chose UDT for our
mechanism, but stress that any max-min fair congestion control
mechanism could be used in its place.

3. THE QOS MECHANISM
3.1 Introduction
Our QoS mechanism provides network guarantee to a flow by
admitting it with an average required rate (ARR) of x bits per
second to make it possible for it to meet its deadline. After
admission, a fair allocation is provided to flows using a max-
min fair congestion control mechanism in such a way that at any
time the rate of any flow does not go below its average rate
requirement. In a Grid we can also exploit the knowledge that
deadlines are sometimes known in advance, and it is important
to have a network RB which can reserve flows in advance.

The QoS mechanism achieves high and fair utilization of
bottleneck link’s bandwidth, and it increases the acceptance of
new flows in the network by minimizing the mean flow time
using a high speed congestion control mechanism, UDT, which
is reliable, operates purely in an end-to-end fashion and is fair.
The admission and termination of a flow is controlled through
the RB residing on a node in the network and by having a sender
– RB signaling mechanism. Note that we only assume a single
node for the sake of simplicity, and distributing the resource
broker with a mechanism as in [30] would not change anything
about our architecture.

3.2 Design/Operation
It is assumed that an efficient technique for measuring the
bottleneck capacity and the shared bottlenecks is used in the
Grid network; there are techniques which achieve that (see
section 2). Further, we assume that all the QoS traffic is isolated
from any other traffic that is, the RB has complete knowledge
of all flows that enter and leave the system in our QoS
mechanism. All the flows in our mechanism must use the same
max-min fair congestion control mechanism.

The basic idea is to divide the bandwidth into weights of some
predefined rate value (e.g. y bits per second for each weight). So
a flow requiring an average rate of x bits per second takes a
certain weight of x/y of the bottleneck capacity. Each flow
informs the RB about its desired admission in the network and it
also informs the RB as soon as it terminates so that its entry is
deleted by the RB and the resources owned by the flow are
relinquished. The RB checks if the ARR is available to admit a
new flow in the network. In the case of congestion or loss in the
network the rates of all flows are reduced to their ARRs.

The following example explains the scenario. Let us assume we
have a bottleneck bandwidth of 40 Gbps and we have four flows
at the start with different deadlines sharing the bottleneck.
Suppose each flow requires an ARR of 10 Gbps. Suppose at a
time t1 the flow-1 terminates and after sometime, at time t2, a
new flow (flow-5) requiring an ARR of 10 Gbps wants to be
admitted in the network before any of the existing flows (i.e.
flows 2, 3 and 4) terminates. At the time t1 the flows tend to
quickly utilize the available capacity using the congestion
control protocol.

3.2.1 ARR_CC
The mechanism is described in detail in [18]. The RB knows
that there is 10 Gbps capacity available for allocation. The
requirement for the new flow can be met; the new flow is then
admitted in the network. Now the rate of each flow (flow 2, 3, 4
or 5) is 10 Gbps.

The pictorial representation of the 3 previous flows (flows 2, 3
and 4) and the new flow (flow 5) at the time of admission of
flow-5 in the network is shown in figure 1. In the figure 1 E2,
E3, E4 and E5 are the deadlines of the flows 2, 3, 4 and 5
respectively and E2’, E3’ and E4’ show the expected
termination times due to increase of rates of flows 2, 3 and 4
respectively at time t1. Note that the figure 1 shows the ideal
adjustment of rates and is just used to explain the example; in an
actual simulation the adjustment of rates takes some time
according to the transport protocol.

At the time t2, flow-5 could not have been admitted in the
network if its ARR was more than 10 Gbps because at that
particular moment the RB after summing the ARRs of all the
existing flows could only guarantee the availability of 10 Gbps
for a new flow.

Note that, after t2, the existing flows could theoretically transfer
at a smaller rate than their ARR as they were transferring data at
a higher rate prior to the admission of flow-5. The new
mechanism, described in section 3.2.2, tries to take advantage of
this fact by reducing the ARRs of flows below their initially
calculated ARRs for dynamic admission control.

Figure 1. Flow-5 is admitted. Flows 2, 3 and 4 decrease their
rates to their ARR i.e. 10 Gbps. The dotted marks along the
x-axis show the expected completion times E2”, E3” and E4”
for the termination of flows 2, 3 and 4 respectively according

to the rate of the flows at t2.

 The Admission Control Algorithm of ARR_CC as mentioned in
[18] is given below.

DS, DF, TS, ARR, ID, RT: Data size, duration, start time,
ARR, ID and reservation type of a reservation request
RT {IR,AR}: IR = Immediate reservation, AR = Advance
reservation
Record of a flow: {TS,TE,DF,DS,ARR,ID}
: Set of records of the currently accepted flows
sharing the bottleneck link
CT: The total capacity of the bottleneck link
TC: The current time

Procedure Admission_Control_ARR_CC(Network_Info)

While (All flows are processed)

If (a new reservation is requested)

 ARR = DS/DF
 ID = generate ID for new request

 If (Admission(,ID,ARR,RT,DF,DS,TS,TC,CT)
= YES) Then

{Start the flow with its ARR at its start
time using a max-min fair congestion control
protocol}

 Else
 {Reject the flow}

If (a served request is completed) Then
Termination(,ID)

End While

End Procedure

Procedure Admission(,ID,ARR,RT,DF,DS,TS,TC,CT)

Set CR to 0
// CR is the reserved capacity

If (RT = IR) Then
// Immediate reservation request

TS = TC
TE = TC + DF
// TE is the end time of a flow

Else
// Advance reservation request

TE = TS + DF
For Each flow

If (((flow).TS < TE) AND ((flow).TE > TS)) Then
 CR = CR + (flow).ARR
End For

If (CT – CR) > ARR Then
 = + flow

//flow = Flow_Record(TS,TE,DF,DS,ARR,ID)
Return “Yes”

Else
Return “No”

End Procedure

Procedure Termination (,ID)

For Each flow
If ((flow).ID = ID) Then

 = - flow
Break

End For

End Procedure

3.2.2 ARR_Adjustable_CC
In this mechanism the RB contacts each flow for its updated
ARR only when a new flow which is seeking admission in the
network does not find its ARR available. Each flow then updates
its ARR and sends a message to the RB to update the RB about
its ARR depending on the data left to be transferred and the
remaining time left to meet the flow’s deadline. The Admission
Control Algorithm of this mechanism for the RB is given below.

The inputs are same as that in ARR_CC

Procedure Admission_Control_ARR_Adjustable_CC
(Network_Info)

While (All flows are processed)

 If (a new reservation is requested)

 ARR = DS/DF
 ID = {generate ID for new request}

If (Admission(,ID,ARR,RT,DF,DS,TS,TC,CT)
= YES) Then
{Start the flow with its ARR at its start time
using a max-min fair congestion control
protocol}

 Else

For Each flow
If (TC > (flow).TS) Then
// The ARR of the AR which is not started
// yet must not be updated

(flow).DS = {Remaining data size of
the flow to be transferred}
(flow).DF = (flow).TE – TC
(flow).ARR = (flow).DS/(flow).DF

 End For

If (Admission(,ID,ARR,RT,DF,DS,TS,TC, CT) =
YES) Then

{Start the flow with its ARR at its
start time using a max-min fair
congestion control protocol}

 Else
{Reject the flow}

Time (seconds)

E5

Flow 4

Bottleneck
Capacity
(Gbps)

40 Gbps

t2 E2 E3 E4
E2’ E3’ E4’

Flow 3

Flow 2

Flow 5

E4”E3”E2”

 t1

If (a served request is completed) Then

Termination(,ID)

End While

End Procedure

The Admission and Termination procedures are same as in
ARR_CC.

3.3 Implementation
One of the key components of our proposed QoS mechanism is
the RB which is designed for admission control and to maintain
the current state of network (i.e. all information about existing
flows, shared bottleneck links and their capacities, paths etc).
After the admission of a flow with its ARR, the transfer rate
starts to increase according to UDT’s congestion control
mechanism. Upon completing the transfer of a flow, the sender
sends a termination message to the RB. This message passing
takes only a few milliseconds on average, which is quite
negligible as compared to a typical Grid flow transfer time in
which a huge amount of data is transferred. In the simulations
the FTP application protocol is used over the UDT high-speed
data transfer protocol.

4. PERFORMANCE EVALUATION
A single bottleneck link dumbbell network configuration is used
for the simulations using ns-2. The bottleneck capacity is 1 Gbps
and the bottleneck delay is set to 50ms. Drop Tail routers are
used. The buffer size of the bottleneck link is set to 100% of
Bandwidth-Delay product. The packet size is set to 1500 bytes.
The capacity of side links is 10 Gbps and the delay of each side
link is set to 2ms.

In the experiments, 5 sets of 10 simulations are performed. In
each simulation 100 flows are run. Within each set the size of all
flows is the same, however the size of a flow varies from 500
MB to 1500 MB from one set to the other. The average inter
arrival time of flows is 4 seconds and the transfer duration of
each flow is 50 seconds. For each simulation within a set, there
are mixed types of randomly generated reservation requests,
immediate and advance reservations. In each simulation the
arrival time of a new reservation is also randomly chosen in each
4 seconds interval. The start time of an advance reservation
request is also selected randomly in the interval [25,75] relative
to the arrival time of the flow. The data size and the duration of
its transfer are same for all flows. The results of the experiments
are shown in figures 2, 3 and 4. Each block in figures 2 and 3
and each point in figure 4 represents an average of the results of
10 simulations of a set. The standard deviation of the results of
all sets is less than 2, which is quite small as compared to the
possible range of results.

We have compared the results of our mechanism with ARR_CC,
with a Fixed-Rate transfer mechanism and with Multi-Interval
mechanism. A Fixed-Rate transfer mechanism represents a
traditional QoS architecture such as IntServ/RSVP. In a Fixed-
Rate mechanism, a flow can only send its data at a constant
ARR and completes on its deadline. The Multi-Interval
mechanism is based on the Greedy-Accept and the Minimize-
FlowTime heuristics presented in [13]. As mentioned in [13],
“Greedy-Accept means: If there is at least one feasible solution

to accept a coming request, the request should not be rejected.
And Minimize-FlowTime means: If there are multiple feasible
solutions in the solution space, the one with minimal completion
time will be chosen”. The scheduling of rates for a flow in
different time slots in the Multi-Interval mechanism is
determined at the moment the request arrives, and is not
changed after that.

In Fixed-Rate, ARR_CC and ARR_Adjustable_CC the
immediate reservations start at the time of the arrival of the
request whereas in Multi-Interval the immediate reservations
can start at anytime after their arrival as long as they meet their
deadlines.

Figure 2 shows that the acceptance percentage of Fixed-Rate is
less than that of ARR_Adjustable_CC and Multi-Interval. The
acceptance percentage of Fixed-Rate is less than that of
ARR_CC when the network is lightly loaded however the
acceptance percentage of Fixed-Rate is more than ARR_CC
when the network is heavily loaded. The mean flow time of
Fixed-Rate is significantly higher than that of the other
mechanisms as shown in figure 3. This is due to the reason that
the flows in Fixed-Rate can only transfer their data at their
ARRs and do not take increase their rates to take advantage of
the available capacity during any time slot.

0

10

20

30

40

50

60

70

80

90

100

500 750 1000 1250 1500

Flow size (MB)

A
cc

ep
ta

nc
e

pe
rc

en
ta

ge
Fixed_Rate

ARR_CC

ARR_Adjustable_CC

Multi_Interval

Figure 2. Acceptance percentage of flows. The load on the
network is increased by increasing the data size of each flow.

As expected Multi-Interval has the best acceptance percentage
and has the least mean flow time than that of the all other
mechanisms. This is due to the assumption of ideal networking
conditions and no communication and computation delays and
also because it is not a reliable and realistic mechanism of data
transfer. In Multi-Interval if there is at least one flow in the
network at any moment, the residual network capacity is not
wasted.

In the other two mechanisms (ARR_CC and
ARR_Adjustable_CC which are reliable and practical
mechanisms), ARR_Adjustable_CC has better Acceptance
percentage than that of ARR_CC. This is due to the reason that
ARR_Adjustable_CC tends to accommodate a new flow by
decreasing ARRs of existing flows. However ARR_CC has
smaller mean flow time than that of ARR_Adjustable_CC. Due
to the accommodation of a new reservation request in

ARR_Adjustable_CC the existing flows decrease their ARRs
which consequently increase the flow time.

0

10

20

30

40

50

60

70

80

500 750 1000 1250 1500

Flow size (MB)

M
ea

n
flo

w
 t

im
e

(s
ec

on
ds

)

Fixed_Rate

ARR_CC

ARR_Adjustable_CC

Multi_Interval

Figure 3. Mean flow time of flows. The load on the network
is increased by increasing the data size of each flow.

0

1

2

3

4

5

500 750 1000 1250 1500

Flow size (MB)

M
ea

n
up

da
te

 s
ig

na
ls

ARR_Adjustable_CC

Figure 4. Mean number of update signals per flow in
ARR_Adjustable_CC. The load on the network is increased

by increasing the data size of each flow.

The ability of ARR_Adjustable_CC to accommodate some of the
new reservation requests even if the bandwidth demand can not
be fulfilled comes at a cost of the signaling overhead due to the
update signals which are sent by the existing flows to the RB.
The existing flows adjust their ARRs according to their
remaining data sizes and the durations which are left for their
transfer. Figure 4 shows the mean update signals of
ARR_Adjustable_CC. The curve shows that the mean number of
update signals per flow increases as the load on the network
increases. This is due to the reason that with increase in the load
on the network the acceptance percentage decreases and
consequently the signaling to the senders to adjust their ARRs
for the possible adjustment of a new reservation request also
increases.

5. CONCLUSION AND FUTURE WORK
Our results show that, by using a fair and a stable congestion
control mechanism like UDT and by using admission control to
provide network reservation guarantees for elastic flows, the
network can be fully utilized, resulting in early completion of a
long-lived flow which consequently enables us to admit more
flows earlier than it would have been possible without using our
mechanism. Our contribution is that we have shown the design
and the implementation of ARR_Adjustable_CC, which is
reliable and realistic and it considers the computation and
communication overheads and delays. ARR_Adjustable_CC is
an on-demand admission control strategy as it accepts or rejects
a reservation request on its arrival time.

Moreover, in our mechanism, some of the new requests can be
accepted even if the required bandwidth is not available. This is
done at the cost of decreasing the rates of some already existing
flows even below their ARRs, and results in an even higher
admission percentage of new flows. As we have seen, this
benefit has resulted in slightly increased mean flow times than
the other reliable and on-demand admission control strategy,
ARR_CC. However, since the main goal of our system is to
admit as many flows as possible while keeping all their
deadlines, we consider this disadvantage to be of minor
relevance.

In future, we will evaluate our mechanism on a bigger network
topology of multiple bottlenecks.

6. REFERENCES
[1] Burchard, L., Heiss, H., Rose, D. Performance issues of

bandwidth reservations for grid computing. Proceedings of
Computer Architecture and High Performance Computing,
(November 2003), pp 82–90.

[2] Schill, A., Breiter, F., Kuhn, S. Design and Evaluation of
an Advance Reservation Protocol on Top of RSVP. In IEIP
4th International Conference on Broadband
Communications (BC '98), Stuttgart, Germany, IFIP
Conference Proceedings 121, Chapman & Hall, (1998) 23–
40.

[3] Reinhardt, W. Advance Resource Reservation and its
impact on Reservation Protocols. In Proceedings of
Broadband Islands '95, Dublin, Ireland, 1995.

[4] Ferrari, D., Gupta, A., Ventre, G. Distributed Advance
Reservation of Real-Time Connections. Multimedia
Systems, Vol.5. Springer-Verlag, Berlin Heidelberg New
York (1997) 187-198.

[5] Guerin, R., Orda, A. Networks with Advance Reservations:
The Routing Perspective. In: Proc. of IEEE INFOCOM
2000. 1 (2000) 118–127.

[6] Burchard, L. Source Routing Algorithms for Networks with
Advance Reservation. Technical Report No. 2003-2, TU
Berlin. Available online at http://kbs.cs.tu-berlin.de
/publications/res_mgnt/tr-2003-03.pdf.

[7] Zhang, H., Keahey, K., Allcock, B. Providing Data
Transfer with QoS as Agreement-Based Service.
International Conference on Services Computing (SCC
2004), Shanghai, China, September 15 - 18, 2004.

[8] Foster, I., Roy, A., Sander, V. A Quality of Service
Architecture that Combines Resource Reservation and
Application Adaptation. 8th International Workshop on
Quality of Service, June 2000, (IWQoS 2000), pp. 181–
188.

[9] Foster, I., Fidler, M., Roy, A., Sander, V., Winkler, L. End-
to-end quality of service for high-end applications.
Computer Communications, vol. 27, no. 14, pp. 1375–
1388, 2004.

[10] Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt,
K., Roy, A. A Distributed Resource Management
Architecture that Supports Advance Reservations and Co-
Allocation. In 7th International Workshop on Quality of
Service (IWQoS), London, UK, pages 27–36, 1999.

[11] Xing, J., Wu, C., Tao, M., Wu, L., Zhang, H. Flexible
Advance Reservation for Grid Computing. GCC 2004:
241-248.

[12] Wu, L., Xing, J., Wu, C., Cui, J. An Adaptive Advance
Reservation Mechanism for Grid Computing. PDCAT
2005: 400-403, 2005.

[13] Chen, B. B., Primet, P. Supporting bulk data transfers of
high-end applications with guaranteed completion time.
IEEE ICC2007 International conference on computer
communication.

[14] Primet, P., Zeng, J. Traffic Isolation and Network Resource
Sharing for Performance Control in Grids. ACNS'05,
USA, October 2005.

[15] Marchal, L., Primet, P., Robert, Y., Zeng, J. Optimal
Bandwidth Sharing in Grid environment. IEEE HPDC,
Paris, France, June 2006.

[16] Kaushik, N., Figueira, S., Chiappari, S. Flexible Time-
Windows for Advance Reservation in LambdaGrids. ACM
SIGMETRICS/Performance, Saint-Malo, France, 2006.

[17] Naiksatam, S., Figueira, S. Elastic Reservations for
Efficient Bandwidth Utilization in LambdaGrids. Elsevier's
FGCS - The International Journal of Grid Computing:
Theory, Methods and Applications, vol. 23, issue 1, pp. 1-
22, 2007.

[18] Munir, K., Javed, S., Welzl, M., Ehsan, H., Javed, T. An
End-to-End QoS Mechanism for Grid Bulk Data Transfer
for Supporting Virtualization IEEE/IFIP International
Workshop on End-to-end Virtualization and Grid
Management (EVGM 2007), held as part of Manweek
2007, San Jose, California, USA, October 2007.

[19] Yousaf, M. M., Welzl, M. A Reliable Network
Measurement and Prediction Architecture for Grid
Scheduling. IEEE/IFIP International Workshop on
Autonomic Grid Networking and Management
(AGNM'05), Barcelona, Spain, 28 October 2005.

[20] Keshav, S. Congestion Control in Computer Networks.
(http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/9
1/thesis/keshav.th.tar.Z) PhD Thesis, published as UC
Berkeley TR-654, September 1991.

[21] Lai, K., Baker, M. “Nettimer: A Tool for Measuring
Bottleneck Link Bandwidth. In Proceedings of the 3rd
USENIX Symposium on Internet Technologies and
Systems, San Francisco, California, March 2001.

[22] Barz, C., Frank, M., Martini, P., Pilz, M. Receiver-Based
Path Capacity Estimation for TCP. In Proceedings of
KIVS'05, Kaiserslautern, Germany, February/March 2005.

[23] Shriram, A., Kaur, J. Identifying Bottleneck Links Using
Distributed End-to-end Available Bandwidth
Measurements. In the First ISMA Bandwidth Estimation
Workshop (BEst'03), San Diego, CA, December 2003.

[24] Kim, M. S., Kim, T., Shin, Y., Lam, S., Powers, E. J. A
Wavelet-Based Approach to Detect Shared Congestion. In
Proceedings of ACM SIGCOMM 2004, August 2004.

[25] Katabi, D., Bazzi, I., Yang, X. A passive approach for
detecting shared bottlenecks. In Proceedings of the 10th
IEEE International Conference on Computer
Communications and Networks, October 2001.

[26] Li, Y. T., Leith, D., Shorten, R. Experimental Evaluation of
TCP Protocols for High-Speed Networks. Technical report,
Hamilton Institute, 2005.

[27] Tan, K., Song, J., Zhang, Q., Sridharan, M. Compound
TCP: A Scalable and TCP-friendly Congestion Control for
High-speed Networks. In 4th International Workshop on
Protocols for Fast Long-Distance Networks (PFLDNet),
2006, Nara, Japan.

[28] Ha, S., Kim, Y., Le, L., Rhee, I., Xu, L. A Step toward
Realistic Performance Evaluation of High-Speed TCP
Variants. PFLDNet 2006, Nara, Japan.

[29] Gu, Y., Grossman, R.: UDT UDP-based data transfer for
high-speed wide area networks. Computer Networks,
special issue on Hot topics in transport protocols for very
fast and very long distance networks, January 2007.

[30] Müller, J. A., Hessler, S., Irmscher, K. Class of Service
Concepts in Autonomous Systems. Terena networking
conference 2004 (Terena2004), Rhodes, Greece.

