
A Peer-to-Peer Meta-Scheduler for Service-Oriented Grid
Environments

Kay Dörnemann Jörg Prenzer Bernd Freisleben

Department of Mathematics and Computer Science, University of Marburg
Hans-Meerwein-Str. 3, D-35032 Marburg, Germany

{doernemk, prenzerj, freisleb}@informatik.uni-marburg.de

ABSTRACT
Meta-scheduling in a Grid is aimed at enabling the efficient
sharing of computing resources managed by different local
schedulers within a single organization or scattered across
several administrative domains. Since current Grid meta-
schedulers operate in a centralized fashion and thus are sin-
gle points of failure, we present a distributed meta-scheduler
for a service-oriented Grid environment based on peer-to-
peer (P2P) networking techniques and ant colony optimiza-
tion algorithms adapted to a P2P network. In the proposed
approach, the meta-scheduling process provides automatic
load balancing, is completely decentralized, fault tolerant,
scalable, and does not require complex administration. Ex-
perimental results demonstrate that scheduling decisions are
made quickly and lead to a good balance of the computa-
tional load.

Keywords
meta-scheduling, Grid computing, peer-to-peer computing,
ant colonies

1. INTRODUCTION
Grid computing environments are heterogeneous collec-

tions of networked hard- and software components located
at different sites and hosted by different organizations. To
enable users to access these resources in a convenient manner
using standardized interfaces, service-oriented Grid middle-
ware systems based on the Web Services Resource Frame-
work (WSRF) such as Globus Toolkit 4.x [2], gLite [1], or
Unicore/GS [3] have been developed. Typically, they pro-
vide functionality for runtime components, execution man-
agement, information management, data handling and se-
curity.

The focus of this paper is on job scheduling which is part
of execution management. Jobs are computational tasks
described by a file (XML in general). They may perform
input/output operations while running, which affects the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GridNets 2007 October 17-19, 2007, Lyon, France
Copyright 2007 ACM 0-12345-67-8/90/01 ...$5.00.

state of the computational resources and their associated
file systems. Jobs are submitted via a Grid service inter-
face offered by the mentioned Grid middleware systems to
translate the job description into a specific format accessible
by the installed local schedulers, such as Sun Grid Engine,
Torque/PBS, Condor, LSF or even fork as the basic operat-
ing system scheduler for single computers. The local sched-
ulers are responsible for selecting the local Grid resources to
execute a job.

Consequently, in a large Grid there may be several Grid
sites running those middlewares, each of them with an inter-
face to one or more local schedulers responsible for a com-
pute cluster or just a single computer. In this scenario, it is
necessary to decide to which Grid site a job should be sub-
mitted. For this purpose, global knowledge about the Grid
environment is needed. Apart from static information, such
as available hard- and software at the site, dynamic up-to-
date information, such as CPU utilization, free memory, free
hard disc space etc. needs to be considered.

Meta-schedulers have been proposed to manage the var-
ious types of information to make such a decision. They
provide a standardized interface to all service-oriented Grid
middleware site-schedulers combined with a decision pro-
cess that enables all Grid users to submit a job with special
requirements at a single point and without any global know-
ledge. Normally, information about the local schedulers
must be manually configured at the meta-scheduler. Since
in gneral there is only a single meta-scheduler for each Grid,
the meta-scheduler is a single point of failure and could also
become a performance bottleneck. Our idea to avoid these
drawbacks is to build a distributed meta-scheduler based on
peer-to-peer (P2P) overlay networking technologies. P2P
networks are usually self-configuring, self-repairing and sup-
port highly dynamic changes in the network configuration.
Our particular focus is on P2P networks based on distri-
buted hashtable (DHT) solutions, because they guarantee
that all nodes can be found in the P2P space and all nodes
can be identified by a unique ID. Clearly, an application
layer overlay network, as built by P2P solutions, comes along
with a higher inefficiency because it implements functiona-
lity that is already provided by lower layers (like routing
and failure handling). Additional layer(s) add overhead to
each transmitted message and reduce the effective payload.
However, P2P networks have advantages that outweigh the
mentioned disadvantages, such as self-configuring and self-
repairing functionalities, predefined message formats and
special routing algorithms for search and other purposes.
Furthermore, applications are easier to implement using a

peri
Callout

peri
Callout

peri
Callout

peri
Callout

peri
Callout

peri
Callout

peri
Callout

peri
Typewriter

peri
Typewriter
GridNets 2007 October 17-19, 2007, Lyon, France.
Copyright 2007 ICST ISBN 978-963-9799-07-3.
DOI 10.4108/gridnets.2007.2164

peri
Typewriter

peri
Typewriter

P2P framework and can interact in a closed network.
Thus, in this paper we present a P2P meta-scheduler that

combines service-oriented Grid technology (in our imple-
mentation: Globus Toolkit 4) with distributed algorithms
that operate in a P2P environment. The overall goal is
to construct a system in which users can submit jobs to
any node in order to trigger the meta-scheduling process
which will eventually find the most appropriate node for job
execution in the system and also performs automatic load
balancing. This meta-scheduling process is completely de-
centralized, fault tolerant (jobs must not be lost because of
node failure or network errors), scalable, dynamic and does
not require complex administration. It is based on state-
of-the-art P2P techniques for the meta-scheduler and ant
colony optimization (ACO) algorithms adapted to a P2P
network. We have chosen the ACO algorithms because they
are quite simple, easy to implement and fully decentralized.
Although security is an important topic especially in Grid
computing, we explicitly do not discuss security issues here,
since a forthcoming paper will be devoted to these issues.
Finally, experimental results will be presented to demon-
strate that scheduling decisions are made quickly and lead
to a good balance of the computational load.

The paper is structured as follows. Section 2 presents the
architecture of the proposed approach. Section 3 describes
the ant colony algorithms used in our solution. Experimen-
tal results are presented in Section 4. Section 5 discusses
related work. Section 6 concludes the paper and outlines
areas for future research.

2. A P2P META-SCHEDULER
The architecture of the proposed P2P meta-scheduler is

presented in Fig. 1.

Figure 1: Architectural Overview

All components shown in Fig. 1 are available at each com-
puting node, which hosts one P2P and one Grid node (as en-
tities of the corresponding middleware). The Core Module is
the heart of the P2P meta-scheduler and therefore provides
the basic functionality, such as job management, scheduling
algorithms and communication between the other compo-

nents. The other modules gather around the Core Mod-
ule to provide supportive functionality and the interfaces to
the Grid and P2P middlewares. The Submission Module’s
function is to completely handle the interaction with users
or other meta-schedulers. These can submit, cancel or re-
quest the status of jobs that are supposed to be scheduled.
The Execution Module submits, monitors and handles job
execution in close interaction with the service-oriented mid-
dleware scheduler. It is also responsible for the interaction
with a Grid information space that is used to provide vital
information for the meta-scheduling process. For this kind
of interaction, it uses the service-oriented interface provided
by the Grid middleware. The Communication Module rep-
resents the main interface to the underlying P2P network
and manages all the related information, such as IDs, group
memberships and so on. The Reliability Module is con-
cerned with fault tolerance with respect to job scheduling,
transportation and execution. Failure safety is desired be-
cause lost, failed or duplicated jobs have to be avoided.

Jobs can generally be regarded as job descriptions in com-
bination with optional values for a deadline (a date when the
job has to be finished), duration (a runtime estimation for
the job), maximum cost and a set of requirements that have
to be fulfilled by all nodes that can be taken into account
for job execution. Possible requirements are, for example,
CPU speed, free hard disk space, available memory, etc.

The protocols for exchanging information between instan-
ces of our architecture residing on each node are based on
the Anthill framework [6] which provides a system where in-
terconnected AntNests offer services to a user based on the
work of autonomous agents, called Ants. Typically, a peer
node has exactly one running AntNest which receives, pro-
cesses, schedules and sends Ants to neighbor AntNests over
a communication layer and manages local resources using
middleware interfaces.

Ant colony optimization (ACO) algorithms have emerged
in the 1990s and represent a class of algorithms that were ini-
tially used to solve (NP-hard) optimization problems based
on a metapher inspired by the collective problem solving
behaviour of natural ants. Contemporary ACO algorithms
provide solutions for the traveling salesman problem, rout-
ing problems, assignment problems, machine learning prob-
lems, scheduling problems and several others [7]. All so-
lutions rely on the basic ideas derived from real-life ants.
A single ant operates autonomously (in cases of labor di-
vision, transport etc.), but as a whole they provide highly
coordinated behavior in order to solve complicated problems
without using any centralized control [7]. Ants generally co-
ordinate their actions by using so-called pheromones which
can be set by ants during a decision process and have influ-
ence on the decision-making of following ants. Every time an
ant has to make a decision during an algorithm (e.g. which
way to go next), it sets a pheromone mark according to the
decision outcome (e.g. way A has been chosen). The follow-
ing ants are able to read the pheromone marks of previous
ants and make their decision by considering the different
pheromone strengths for every possible decision outcome.
Because ants that make the right decisions will solve the
problem in a shorter period of time, the pheromone marks
of the best option will grow a lot faster than the others and
the following ants are pushed towards the globally optimal
solution. The algorithms used in our P2P meta-scheduler
are based on this idea.

In our approach, Ants can be regarded as autonomic agents
that carry information about other nodes, transport jobs
and trigger certain events in AntNests. The network ex-
ploration of our Ants is not deterministic. Their decision
about which AntNest to target next is made by considering
the current AntState. The list of already visited nodes (new
nodes are preferred) and generally all the information about
neighboring nodes is present in the current AntNest’s rout-
ing table (see section 3.1). The Core Module is responsible
for handling the Ants and can be regarded as the AntNest.
Receiving and sending out the Ants is the task of the Com-
munication Module, which stands in direct contact with the
underlying P2P network. In the ACO context, the Com-
munication Module can be regarded as the entrance to the
AntNet. The other modules are not part of the AntNest but
nevertheless important for the system. For communication
purposes with other meta-schedulers or users, the Submis-
sion Module receives the jobs to dispatch and hands them
over to the Core Module. The Reliability Module uses the
peer grouping mechanism of the underlying P2P network
for reliability purposes. The connector to the Grid middle-
ware is the Execution Module. The functionality of these
components will be described in more detail later.

In our P2P meta-scheduler, Ants can operate in three dif-
ferent states that determine their behavior. The Free state
is the initial state that Ants are in after their creation. In
this state, Ants just wander around as long as their time-
to-live value (TTL) allows, spread information about other
nodes to the visited AntNests and look for jobs that can be
picked up for scheduling. If a job is found, the Ant picks it
up and switches to the SearchPeer state in which it searches
for an appropriate node for job execution. After having vis-
ited enough nodes in order to make a scheduling decision,
the Ant switches to the DirectTransfer state and transfers
the job to the chosen node where it is scheduled using the
local scheduler. For single Grid nodes this local scheduler
may be fork or even no scheduler. In the case of a Grid
node that represents a cluster, Sun Grid Engine, Torque or
other schedulers are used. Having deposited the job, the Ant
returns to the Free state, as shown in Fig. 2.

Figure 2: Ant states.

3. ANT ALGORITHMS

3.1 Ant Routing and Forwarding
Ants are routed through the P2P network according to the

information that is made available by routing tables which
are located at every AntNest (and every Ant as well). These
routing tables have one entry for every remote node that is

known by the AntNest. Ants carry routing tables in order
to spread the newest entries for all nodes throughout the
P2P network. Each entry in the AntNest routing table con-
sists of the following components: NodeId, localTimestamp,
loadValue, fitRatio, QueueLength, prefValue, Grid$. The
first two components identify the node which has published
this information about itself, and the local timestamp (the
clock value of the specific node) indicates when the inf-
ormation has been generated. The rest of the entry con-
sists of pheromone components, which form the pheromone
trail that is used to forward Ants. loadValue describes
the local load (CPU usage) of the specific node whereas
fitRatio indicates the general usability of a node regard-
ing job execution. Since a job can be equipped with spe-
cial requirements that must be fulfilled by a node in or-
der to execute the job, fitRatio is defined as the quotient
(number of processed Ants that carried a job whose require-
ments matched the nodes properties)/(number of all pro-
cessed Ants in SearchPeer state). QueueLength is the length
of the queue which contains jobs that are ready to be car-
ried away by the next Ant. Grid$ describes the cost of one
computational unit (e.g. a CPU second) that the user who
submitted the job has to pay if the job will be executed at
the specific node. This all takes place in the Core Module.

As already mentioned, Ants carry routing tables to spread
information. When an Ant arrives at an AntNest, the Com-
munication Module receives its routing table and hands it
over to the Core Module where both routing tables are
merged such that both tables contain the same information
for every node. If an entry for a specific node is present in
both tables, the entry with the higher localTimestamp will
be chosen to prevail because it is newer. By performing this
two-way-merge, Ant and AntNest get the newest information
about nodes that are currently in the P2P network.

The routing tables play an important role in the process
of determining the next node for an Ant. When the deci-
sion has to be made, a subset of the ”pheromone compo-
nents” is used to calculate a single weight value for each
entry in the AntNest routing table. The calculation of this
value depends on the current state of the Ant. In the Free

state, QueueLength increases the weight (see 3.5), while the
fact that an Ant has already visited the current node has a
decreasing effect. In the SearchPeer state, loadValue de-
creases the weight, whereas fitRatio increases it. In this
case, previously visited nodes are disadvantaged. Grid$ is
a knock-out criterion if an explicit maximum cost value is
assigned to the carried job. In both cases, prefValue has
an increasing effect on the calculated weight value.

The calculated weight value for every node in the rout-
ing table is now used as input for a function which chooses
the desired node randomly while preferring the nodes with a
comparably higher weight. This corresponds to the behav-
ior of real Ants that walk randomly but are influenced by
pheromone trails.

3.2 Ant Population and Congestion Control
A major source of problems in our approach might re-

sult from the unequal distribution of Ants in the P2P net-
work. While one node might be overwhelmed by arriving
Ants and not be able to process them in a reasonable period
of time, another one might not have enough Ants in order
to schedule jobs or to publish the local routing table entry.
The previously described routing algorithm makes this even

worse because certain nodes (with the highest performance
capabilities) are preferred to others. Since in a dynamic dis-
tributed system no global information is present at a single
location, a set of algorithms and mechanisms is necessary to
solve this problem.

In a stable system (with no node failures and departures),
keeping the overall number of Ants constant is simple. In
a dynamic system, however, node failures, node departures
or the already mentioned unequal Ant distribution might
lead to a regional insufficiency of Ants. A straightforward
solution is to allow every AntNest to create and remove Ants.

However, handling regional and overall overpopulations
requires more sophisticated measures. Several known algo-
rithms have been developed to address this issue [20], but
they all can lead to mass mortality of Ants, require a syn-
chronous system or try to compulsively maintain a constant
inter-arrival time at every AntNest. In the given context, all
of this is neither desirable nor necessary. The algorithm we
propose is based on a constant monitoring of the Ant pro-
cessing latency (i.e. the difference in time between arrival
and departure of an Ant) at every single AntNest. We use
adaptive blacklists to prevent sending Ants to unavailable
nodes and to shut down the reception of Ants.

The fact that Ants have a global unique time-to-live (TTL)
value allows every AntNest to create a new Ant after the
TTL-th Ant has been processed. Therefore, it makes sense
to define a global maximum latency that a single AntNest

is willing to wait since the last arrival of an Ant. If this
maximum amount of time has passed for a specific AntNest,
it simply creates a new Ant that is processed immediately.
If the monitored Ant processing latency exceeds a globally
defined value for the last Ant in the queue, then two coun-
termeasures can be utilized. The first one is to shut down
the reception of any new Ants. This measure utilizes the
fact that neighboring AntNests then regard the ”shut down”
node as temporarily unavailable, and the Ants put it on their
adaptive blacklists. Adaptive blacklists prevent an AntNest

from sending Ants to nodes which have not been available
recently. However, a node can also disappear from a black-
list when the AntNest receives a newly propagated routing
table entry from an arriving Ant. The whole concept of
adaptive blacklists is described in section 3.3. By following
this procedure, the local queue of Ants can be relieved and
processed before new Ants arrive. If the monitored thresh-
old is not exceeded anymore, the reception of new Ants can
be turned on again.

The described solution does not provide any measures for
handling global or regional overpopulation of Ants. For this
reason, a second countermeasure has to be utilized in the
following way. If the monitored threshold is exceeded sig-
nificantly, then, in addition to shutting down Ant reception,
Ants in the local queue that are in their Free state can sim-
ply be deleted in order to relieve the queue. The return to
a normal state can be performed as described above. All of
this is handled by the Core Module.

3.3 Failure Safety
In a dynamic distributed P2P system, a large variety of

failures can occur. The most common ones that are handled
in our approach are failures of the communication subsystem
(temporary or permanent network failure) and node failures.
Failures generally have an impact on two major functions of
the P2P meta-scheduler. The first one is the direct transfer

operation of an Ant between two AntNests and the second
one is the safe and secure scheduling and processing of jobs.
The transfer of an Ant between two nodes has to be made
fail-safe since the underlying P2P network does not provide
any functionality in that direction. The fail-safe transfer
of Ants between two nodes can be provided by means that
are common in transport-level protocols like TCP. These
measures include message IDs, timeouts, resends, replies etc.
Since they already have been sufficiently discussed in the
literature, there is no need for a detailed description here.

More interesting is the impact of failures on the schedu-
ling of jobs. We have discovered two major failure scenarios
which can occur in different stages of the scheduling process.
The first scenario is the crash of a node while an Ant is visit-
ing, i.e. the Ant and jobs that it carries get lost. Moreover,
the currently executed jobs on the failing node will also be
destroyed. Here, the P2P meta-scheduler has to define a de-
centralized mechanism for detecting the loss of jobs in their
scheduling or execution stage and for recovering from these
losses by re-inserting those jobs into the system.

The second failure scenario is caused by temporary or per-
manent failures in the communication subsystem (if more
than one node is concerned, we have a network partitioning).
This means that a node is not reachable by other nodes any-
more, but internally is still functioning (the separated node
might still be able to execute the local jobs). For a perma-
nent failure, this scenario can be handled exactly like the
first scenario. The case of a temporary network partition is
more complicated because it is not possible to distinguish
between a permanent and temporary failure at the moment
when the decision for re-scheduling has to be made. This
may result in duplicated jobs and must be avoided. Our gen-
eral solution in this case is to allow job duplications as long
as the network is partitioned, but to return to a consistent
state (i.e. without duplicated jobs) when the separated net-
works are eventually merged again. Our algorithm proposed
to solve this problem is described in the following.

A user submits a job to the P2P meta-scheduler’s Sub-
mission Module, which hands it over to the Core Module
where it gets transfered to the Communication Module and
from there to the node in the P2P network. When a job is
submitted at any node, a globally unique identifier (UUID)
for the job is generated, which is used by the Reliability
Module to construct a unique multicast group (in the fol-
lowing: JobTrackerGroup) in the P2P network to track and
monitor the location and execution status of the dedicated
job from the creation to the successful or unsuccessful com-
pletion of execution. To construct the JobTrackerGroup for
a newly submitted job, the AntNest that received the job
description sends a join-message to a set of known nodes
(the size of the set is predefined) and asks them to join
the multicast group for the job with identifier UUID. When
all the requested nodes have joined the JobTrackerGroup,
the job is ready for handling by an Ant. In the following,
the Ant that carries the job sends an alive message to the
JobTrackerGroup every time it arrives at a new AntNest.
When the scheduling process has succeeded and the job is
executed by a particular node, periodic alive messages are
sent to the JobTrackerGroup.

Every member of the JobTrackerGroup continuously che-
cks for timeouts, i.e. for a predefined time no alive-messages
have been received. When a timeout is detected, the corre-
sponding node asks the other members whether they agree

to the timeout or not. If they do not agree (false alert, pos-
sibly caused by message loss), they all continue as if nothing
has happened. If they do agree, all members know that the
implied job has timed out. The task now is to determine a
coordinator, i.e. a node that performs the re-scheduling.
The necessity for having a coordinator arises due to the
possibility that one or more members have departed dur-
ing the time since the JobTrackerGroup has been created.
There are several existing distributed election algorithms
[14] [15] which can be utilized to solve this problem. One
quite simple mechanism is to assign to every member of the
JobTrackerGroup a unique delay value that the node has to
wait between the detection of a timeout and the actual re-
scheduling of the job. The coordinator node does two things
after the agreement over the timeout has been approved:

• First, it sends a message to all other members to in-
form them of the upcoming re-scheduling (in the sim-
ple election mechanism, the receivers cancel their can-
didature as coordinator) and checks if the JobTracker-
Group still has sufficient members. If not, new mem-
bers are invited to participate.

• Second, the job is re-scheduled and the JobTracker-

Group restarts the job monitoring and tracking.

The described modus operandi, however, does not yet
solve the problem of duplicated jobs caused by a tempo-
rary network partition. For this purpose, the self-repairing
features of the peer grouping mechanism can be used if pro-
vided by the P2P network. When the formerly partitioned
parts of the network join again, the grouping mechanism
automatically repairs the multicast group and all members
of the JobTrackerGroup will receive multiple alive-messages
from different nodes caused by the duplicate jobs. This fact
can be detected by the group, and one of the duplicate jobs
can be canceled in order to rebuild the consistent state. Fi-
nally, when job execution completes, a corresponding mes-
sage is sent to the JobTrackerGroup, so every member can
stop checking for timeouts.

3.4 Node Evaluation
During the participation of a node in the Grid and the

P2P meta-scheduler, the node’s individual performance prop-
erties become known and can be used to improve meta-
scheduling. The main idea behind this node evaluation is
to route job-carrying Ants preferably to nodes which have
proven to be reliable and powerful in the past. For this
reason, the routing table attribute prefValue, which has al-
ready been described above, can be used to influence the
routing decision in the desired way. At first, it is neces-
sary to find appropriate criteria to determine the prefValue
for each node. In this context, the prefValue is preferably
calculated by the quotient (number of jobs that could be
completed successfully before the deadline)/(number of all
locally executed jobs) for each node. In addition, a con-
siderably smaller actual duration of the job execution than
estimated by the user might also have a positive influence
on the prefValue. Every node has to calculate that value
continuously and update its routing table entry accordingly.

3.5 Load Balancing
Apart from matching Job requirements to node proper-

ties, load balancing is an important criterion for success-
ful meta-scheduling. Appropriate load balancing algorithms

need to operate non-preemptively in this context, because
it is not (yet) possible to migrate running jobs from one
node to another node by current Grid middleware systems.
Several distributed load balancing algorithms are based on
the principle of collecting sufficient information locally and
making the scheduling decision at a single node (mostly the
one where the job is located) [16] [5]. Other algorithms are
based on autonomous agents that migrate between nodes,
collect specific information needed for job scheduling and
eventually decide where the job will finally be executed [21]
[18]. Clearly, this category of algorithms is very well-suited
for the existing agent-based infrastructure of our P2P meta-
scheduler. The Messor Ant Load Balancing algorithm [18]
can be easily fitted into the existing routing mechanism, as
described in the following.

In the original algorithm, Ants operate in two phases.
In the first phase, an Ant searches for highly loaded nodes
(searchMax). In the P2P meta-scheduler, this searchMax

state of the original algorithm corresponds to the Free state,
in which Ants are preferably routed towards nodes with a
long queue of jobs that can be scheduled. When an Ant in
its Free state reaches a node with a non-empty job queue,
it picks up the job and switches to the searchPeer state
(which corresponds to the searchMin state of the second
phase of the Messor Ant algorithm). In this state, Ants

are preferably routed towards nodes that have a low local
load until a predefined threshold for (minLoad/maxLoad) is
reached (the values for minLoad and maxLoad are the mini-
mum and maximum load values of previously visited nodes).
Then, the visited node that is able to execute the job and
has the lowest load value will be selected to execute the
job. As an alternative to load balancing, Ants can also op-
erate in an Economic Grid environment [9] [11]. With some
small changes to the previously described algorithm, Ants
can explore the P2P network and select nodes which offer
the least cost for job execution (simply select the visited
node with the lowest Grid$-value) or nodes which are ex-
pected to give the best performance while charging less than
a maximum price (for performance comparisons prefValue

and loadValue is considered, for cost Grid$).
The algorithm is illustrated in Fig. 3. The upper picture

shows the normal order of events:

1. A client submits a job to AntNest B. A new JobTracker-

Group is created (AntNests B and A); each of its mem-
bers holds the complete job information.

2. Ants are preferably routed towards AntNest B, because
the job queue is not empty. An Ant picks up the job
and searches for an AntNest that fits to the require-
ments and is appropriate according to the other sched-
uling criteria. At every visited AntNest, an additional
message is sent to the JobTrackerGroup to indicate
the current Ant position.

3. The job is released by the Ant and AntNest F starts
to execute the job. Alive-Messages are sent out pe-
riodically to inform the JobTrackerGroup about the
current status of the job. When the job is finished,
the JobTrackerGroup is informed.

The lower picture shows the order of events in the case of
a node failure:

1. AntNest F fails during job execution and is not avail-
able any longer.

Client

E

1

4

3

2

B C

D

F

A

E

1

3

2

B C

D

F

A

2

Client

5

2

2

2

Figure 3: Load balancing example

2. Because Ants cannot be sent to AntNest F any more,
other AntNests put F on their adaptive blacklist (this
has nothing to do with job execution). Furthermore,
AntNests A and B do not receive Alive-Messages any
more and realize that the job is lost.

3. AntNests A and B start a distributed election to decide
which one of them is allowed to re-insert the job.

4. AntNest A is elected and puts the job into its queue.

5. An Ant passes AntNest A in the SearchPeer state and
picks up the job. The scheduling process starts again.

4. EXPERIMENTAL RESULTS
The prototypical implementation of our approach is based

on the FreePastry P2P framework [19]. FreePastry is an
open source Java implementation and provides a peer-group-
ing application called Scribe which allows to arrange peers
in a self-repairing multicast tree.

The service-oriented Grid middleware used in our imple-
mentation is Globus Toolkit 4.0.3. Its scheduler interface is
called WS-GRAM (Web Service Grid Resource Allocation
Manager) which provides a Grid service interface to one or
more local schedulers. The Monitoring and Discovery Sys-
tem (MDS 4) is the Globus information space which stores
information from several sources as a XML-document and
is accessed through Grid service interfaces.

Our P2P meta-scheduler has been implemented in Java
(1.5/1.6). Job requirements are XPath statements which
can be evaluated to a boolean value when used with the
XML-compliant information provided by the local MDS 4.

The following evaluation demonstrates the feasibility of
our approach and shows its performance in a set of experi-
ments.

4.1 Test Environment
Our test environment are 10 workstations with Intel Pen-

tium 4 and Intel Core Duo CPUs, one or two gigabytes of
main memory, 100 MBit network interfaces and a switched
network. The used Java virtual machine is version 1.6.0.

4.2 Test Cases
The goal of our test series is to obtain information about

the speed in which the P2P meta-scheduler reaches certain
quality levels concerning the fulfillment of given scheduling
criteria. The selected scheduling criterion is the load bal-
ancing between the participating nodes. We assume that all
jobs have the same load effect, which allows us to express
the quality of load balancing as the standard deviation of
the number of jobs: the lower the standard deviation, the
better the load balancing.

The time required for job distribution, as expressed by the
number of hops reclined by a job carrying ant until a schedu-
ling decision is made, is one of the parameters we measured.
Another measured parameter is the total time required from
job delivery to the completion of the allocation. The corre-
sponding threshold (minLoad/maxLoad < threshold) for the
scheduling process described in section 2 is set to 0.95, which
implies a fast job distribution.

In total, 12 measurements with 11, 21, and 31 nodes re-
spectively AntNests running on the workstations were per-
formed. The unusual number of nodes is explained by a
boostrap node for the P2P network and an even number of
peers. Different experiments in which 250, 500, 1000 and
2000 jobs were initially submitted to a single AntNest were
conducted to evaluate the load balancing capabilities of our
approach.

4.3 Results
The results of our experiments are shown in Fig. 4. The

standard deviation is lower than five jobs, which means that
the scheduling criterion is fulfilled with high quality. The
low total time for the scheduling process (50 seconds for
2000 jobs and 11 AntNests) indicates that our solution is
fast enough for real world applications. The efficiency of
our routing algorithm is expressed by the few hops the ants
needed to schedule a job.

The scheduling works better, the more unbalanced the
load at the beginning, the more dynamic the system and
the more heterogeneous the load effect of the jobs is. The
test cases used here had opposite characteristics and can be
seen as worst cases. The algorithm tries to find a node that
fits best to the job requirements instead of placing it at the
next node. This effect results in a higher number of hops.
In a real world Grid application, the results may be even
better than in our worst case scenario.

5. RELATED WORK
Buyya et al. [10] present some real world economic models

such as an auction model, bargaining model, commodity
market model, contract-net model and bartering model. The
authors reason how these economic models can used in Grid
computing environments, however, without presenting an
implementation. Economic Grid scheduling is an interesting

0

10

20

30

40

50

60

250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

11 11 11 11 21 21 21 21 31 31 31 31

Number of Jobs
Number of AntNests

N
um

be
r o

f J
ob

s
N

um
be

r o
f A

nt
N

es
ts

se
co

nd
s

Standard deviation
Number of Hops
Duration

Figure 4: The first row below the X axis shows the number of jobs to distribute and the second row shows
the number of AntNests for the particular test. The Y axis shows the standard deviation as the number of
jobs, the number of hops as the number of AntNests and the total time in seconds from job delivery to the
completion of the allocation

subject which can be realized as an add-on to our P2P meta-
scheduler implementation.

Nimrod/G [8] is a Grid aware (the implementation is based
on the Globus Toolkit) resource management and schedu-
ling system based on the parameter sweeping system Nim-
rod [4]. The architecture is extensible to use any other Grid
middleware services such as Legion, Condor and NetSolve.
Nimrod/G comprises a centralized architecture and makes
an attempt to incorporate economic ideas into scheduling.
Each resource is associated with a price and each job has
a given budget. Nimrod/G focuses on managing the execu-
tion of parametric studies. Our P2P meta-scheduler is not
devoted to a special type of jobs. Due to its decentralized
architecture, it is more fail-safe than Nimrod/G.

GridWay is a centralized meta-scheduler developed by
Huedo et al. [17]. GridWay enables large-scale, reliable
and efficient sharing of computing resources managed by
different local schedulers within a single organization (en-
terprise Grid) or scattered across several administrative do-
mains (partner or supply-chain Grid). In contrast to our
P2P meta-scheduler, GridWay is a single point of failure in
a Grid.

Chakravarti et al. [12] present an agent-based approach
to perform a distributed Cannon matrix multiplication in an
unstructured, large-scale P2P network. A tree-structured
overlay network is constructed in which a receiver-initiated
dynamic scheduling process is initiated. Fault tolerance is
preserved under utilization of the tree structure, i.e. parent
nodes monitor their children and take measures in case of
failures and vice versa. The main difference to our approach
is the fact that we have developed a sophisticated Ant rout-
ing and forwarding scheme which can be used regardless of

the desired computation. Moreover, our approach provides
seamless integration into contemporary service-oriented Grid
environments, such as the Globus Toolkit 4.x.

In [13], Chakravarti et al. propose a new design for desk-
top Grids that relies on a self-organizing, fully decentralized
approach called the Organic Grid which is modeled accord-
ing to the way complex biological systems organize them-
selves. Existing Grid middleware systems are not supported,
and the execution of jobs is handled by the developed sys-
tem itself instead of using local schedulers. For a compute
cluster site, the software must be installed on each cluster
node which usually is a no-go. In contrast, our solution is
capable of handling single Grid nodes or compute clusters.
Since we have developed a meta-scheduler, we do not have
to care about the local scheduling environment.

6. CONCLUSIONS
In this paper, we have presented the design and implemen-

tation of a P2P meta-scheduler that is able to decide where
to execute a job in a service-oriented Grid environment con-
sisting of several administrative domains each running dif-
ferent local schedulers. Our approach is completely decen-
tralized, fault tolerant, scalable, dynamic and does not re-
quire complex administration. It is based on the ant colony
metapher: Ants act as autonomous agents and AntNests
offer information services to support the decision process.
This information is stored in routing tables, which are dy-
namically updated whenever an Ant arrives at a node or
AntNest. We presented a method to equally distribute Ants
in a dynamic distributed system by constantly monitoring
the Ants’ processing latency at every AntNest. Further-
more, an approach to handle failures of the communication

subsystem and node failures to assure the safe and secure
scheduling of jobs has been proposed. Experimental results
have shown that scheduling decisions are made in a short
amount of time and lead to a good balance of the computa-
tional load.

There are several topics for future research. For special
purposes, additional scheduling criteria might be of interest
(in Data Grids, for example, it is important to execute a
job on a node which has a minimum cost for accessing the
required data repositories) which need to be represented as
pheromone components. Furthermore, an adequate scheme
has to be developed to give every new pheromone component
a specific weight compared to the other pheromone compo-
nents so that Ants can be routed accordingly considering
their current state. For population control, more research
(stochastically or empirically) is required regarding the re-
lationship between the number of Ants in a dynamic Grid
environment and the corresponding scheduling performance
in order to develop more sophisticated methods for perfor-
mance optimization. In this context, it is also interesting
to control the distribution of Ants more actively such that
the performance of the P2P meta-scheduler can be maxi-
mized. For economic scheduling, it needs to be determined
which market models (existing or new ones) will prevail in
practice and how they can be efficiently integrated into the
P2P meta-scheduler. Another goal is to achieve a sched-
uling process for Grid services which allows to implement
computational tasks as Grid services and schedule them like
jobs as treated in this paper. Scheduling Grid services is
mainly important for on-demand Grid environments where
each node runs the Grid middleware, but ”classic” Grids
in which each Grid middleware node represents a compute
cluster could also benefit. Another topic for future research
could be replacing the ACO algorithms by other algorithms
and comparing the results.

7. ACKNOWLEDGEMENTS
This work is financially supported by the German Fed-

eral Ministry of Education and Research (BMBF) (D-Grid
Initiative).

8. REFERENCES
[1] EGEE – Enabling Grids for E-Science,

http://www.eu-egee.org.

[2] The Globus Alliance, http://www.globus.org.

[3] The Unicore Forum, http://www.unicore.org.

[4] D. Abramson, R. Sosic, J. Giddy, and B. Hall.
Nimrod: a tool for performing parametrised
simulations using distributed workstations.
High-Performance Distributed Computing, pages
112–121, 1995.

[5] W. Aiello, B. Awerbuch, B. M. Maggs, and S. Rao.
Approximate load balancing on dynamic and
asynchronous networks. In Symposium on Theory of
Computing, pages 632–641, 1993.

[6] O. Babaoglu, H. Meling, and A. Montresor. Anthill: A
framework for the development of agent-based
peer-to-peer systems. In 22th International Conference
on Distributed Computing Systems, pages 15–22,
Vienna, Austria, 2002. IEEE.

[7] C. Blum. Review of ”ant colony optimization” by M.
Dorigo, T. Stützle, MIT Press, Cambridge, MA, 2004.

Artificial Intelligence, 165(2):261–264, 2005.

[8] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An
architecture of a resource management and scheduling
system in a global computational grid. Computing
Research Repository, cs.DC/0009021:1–7, 2000.

[9] R. Buyya, D. Abramson, and J. Giddy. A case for
economy grid architecture for service-oriented grid
computing. In IEEE International Parallel and
Distributed Processing Symposium, pages 83–98. IEEE
Computer Society, 2001.

[10] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger.
Economic models for resource management and
scheduling in grid computing. Concurrency and
Computation: Practice and Experience, 14:1507–1542,
2002.

[11] R. Buyya, H. Stockinger, J. Giddy, and D. Abramson.
Economic models for management of resources in
peer-to-peer and grid computing. In Proceedings of
Society of Photo-Optical Instrumentation Engineers
Vol. 4528, p. 13-25, Commercial Applications for
High-Performance Computing, 2001.

[12] A. J. Chakravarti, G. Baumgartner, and M. Lauria.
Application-specific scheduling for the organic grid. In
IEEE International Conference on Cluster Computing,
2004, pages 146–155. IEEE Computer Society, 2004.

[13] A. J. Chakravarti, G. Baumgartner, and M. Lauria.
The organic grid: Self-organizing computation on a
peer-to-peer network. IEEE Transactions on Systems,
Man, and Cybernetics, 35:373–384, 2005.

[14] Chang and Roberts. An improved algorithm for
decentralized extrema-finding in circular
configurations of processes. Communications of the
ACM, 22:281–283, 1979.

[15] H. Garcia-Molina. Elections in a distributed
computing system. IEEE Transactions on Computers,
C-31(1):48–59, 1982.

[16] B. Ghosh and S. Muthukrishnan. Dynamic load
balancing in parallel and distributed networks by
random matchings. In Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 226–235,
1994.

[17] E. Huedo, R. S. Montero, and I. M. Llorente. A
framework for adaptive execution in grids. Software,
Practice and Experience, 34(7):631–651, 2004.

[18] A. Montresor, H. Meling, and Ö. Babaoglu. Messor:
Load-balancing through a swarm of autonomous
agents. In G. Moro and M. Koubarakis, editors,
International Workshop on Agents and Peer-to-Peer
Computing, volume 2530 of Lecture Notes in
Computer Science, Springer, pages 125–137, 2002.

[19] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. Lecture Notes in
Computer Science, Springer, 2218:329–351, 2001.

[20] T. Suzuki, T. Izumi, F. Ooshita, and T. Masuzawa.
Biologically inspired self-adaptation of mobile agent
population. In DEXA Workshops, pages 170–174.
IEEE Computer Society, 2005.

[21] Y. Wang and J. Liu. Macroscopic model of
agent-based load balancing on grids. In Autonomous
Agents and Multiagent Systems, pages 804–811. ACM,
2003.

