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ABSTRACT
In this article, we address the problem of estimating the tail
parameter of a flow size distribution from sampled packet
traffic. Based on synthetic data, we perform a systematic
comparison of several estimators proposed in the literature.
In the course, we propose a variant to an existing method
which takes into account some statistical a priori on the
expected distribution. This adapted estimator shows a sig-
nificantly improved performance, as compared to the others.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring ; G.3 [Probability and
Statistics]

General Terms
Measurement, Theory

Keywords
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1. INTRODUCTION
1.1 Motivation
Grids are distributed systems, based on shared computa-
tional, storage and visualisation resources interconnected
by long distance networks. Compared to clusters, they in-
troduce new scales in terms of heterogeneity and number
of co-operative equipments, users’ community size, number
of inter-dependant processes, processing capacities, band-
width, etc. The large distances between computation en-
tities leading to large delays, together with the increasing
possibility of loosing packets turn communications perfor-
mance into a major challenge in grid networks.

For a decade, research on grid performances have essentially
been based on internet transport protocols such as TCP or

UDP. However, the particular topology of grid networks and
the specificity of grid applications makes the grid context
very different from the internet’s one. For example, our grid
testbed, Grid5000, an experimental grid platform gathering
a total of 5000 CPUs is based on a dumbbell core topology
interconnecting 9 sites geographically distributed in France
with very high speed access links. The access rate of com-
puting nodes in such environment is 1Gb/s. Some resources
are interconnected by 10Gb/s links. In grid networks, the
aggregation level is often quite low.

This gives rise to a few interrogations : are these internet
protocols adapted to grid applications ? do they guarantee
optimal Quality of Service (QoS) and security ? what are
the influence of the different parameters of these protocols
on the performance of specific applications ? To answer
these questions, traffic characteristics have to be studied in
grid context.

Traffic characteristics have already been studied in the in-
ternet for a decade. Long Range Dependance (LRD) and
self similarity have been observed in internet traces. Typ-
ical flow characteristics such as heavy tail have also been
observed. Then, the modelling of the traffic has become a
very active field of research. A few theoretical and empiri-
cal results arose about traffic characterisation [14, 10]. But
these results are mainly based on the traffic observed in the
internet. Are these results still valid in the grid context ?
To what extend can they be adapted to grids ?

Lots of methods (see [1] and references within, [9, 5, 8, 13]
for traffic characterisation are based on the observation of
the entire traffic (i.e. every packets are picked).

However, such methods are very challenging in very high
speed networks because of memory and CPU consumption
issues. For example, in the worse case where we have to
deal with a 64 Bytes packet stream reaching the maximal
bandwidth of 10Gb/s, the time available to process a packet
is about 50 ns. Moreover, to stock a 56 Bytes header for
each packet would need to stock more than 1GB/s. It is
then necessary to sample, i. e. to pick only a sub-sample of
the packets going through the link. When observing only a
sub-sample of the traffic, the estimation of the flow size dis-
tribution tail parameter α and LRD parameter H is harder.
The major question addressed in this paper is the estimation
of the tail parameter α from sampled traffic.
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1.2 Contribution and outline
The problem we address in this article has been tackled
in many different ways by various authors, and despite its
relative simplicity, no close form solution was found. In
all cases, inevitable assumptions of different natures yield
only approximated solutions with their own advantages and
drawbacks. Our first objective is therefore to compare these
different approaches, assessing the accuracy of the corre-
sponding α’s estimators on synthesized, thus totally con-
trolled flow streams. Then, in the course of our systematic
study, we were led to propose slight adaptations to an ex-
isting method, namely the scaling method, to exploit some a
priori information concerning the expected flow size distri-
butions. Based on the same data set, we empirically demon-
strate that compared to its companion forms, the resulting
estimator shows significantly improved performances, both
in terms of bias and of variance.

Layout of our article is as follows: In section 2, we clearly
expose the estimation problem and develop its mathematical
formulation. Basic definitions are introduced and the usual
notations are posed. Section 3 itemizes some of the pro-
posed methods to solve the α estimation problem. We start
with statistical approaches aimed either at maximizing the
likelihood function with an EM algorithm [6, 7] or at (ap-
proximately) inverting the conditional probabilities [7]. Our
methodological contribution comes here, where we derive a
parameterized inversion which is adapted to the statistical
a priori we have on the flow size distributions. A fourth ap-
proach relies on a non-parametric wavelet-based estimator
of the distributions tail exponent [8]. The last estimator we
tested is based on a totally different approach, and resorts
to stochastic counting techniques [2]. Section 4 reports ex-
perimental results obtained from numerical simulations. To
properly evaluate the bias and the variance of each estimate,
we advisedly used a flow stream simulator which allows for
tuning traffic parameters that deem relevant to our study.
Section 5 ends with conclusive remarks and our future work
plan.

2. FORMULATION AND NOTATIONS
2.1 Notations
In this study, we focus on flow-oriented analyses to charac-
terize traffic distributions.

Our (traffic) time series correspond to a succession of con-
tiguous IP packets with variable sizes, observed over a time
window of duration T . This segment is analyzed indepen-
dently from the rest of the traffic.

The rigorous definition of a flow is a delicate task which de-
pends on the required degree of refinement. For instance, a
timeout is commonly considered which fixes the maximum
acceptable time interval between two consecutive packets of
a same flow. As for us, we will disregard this timeout, and
adopt an oversimplified definition of a flow, as the set of
packets occurring in period T with the same source and des-
tination IPs, the same source and destination ports, and the
same protocol (TCP or UDP). As it introduces no difference
between bulk data transfer, control traffic, workloads, etc.,
the flow notion such defined is not application oriented.

The flow size (or flow length) is a random variable noted X,

and corresponds to the number of packets of a given flow.
The original flow size distribution reads:

PX(X = i) = φi ∝ E{fi}, (1)

where E stands for the ensemble mean or expectation opera-
tor, and fi is the frequency of flows of size i observed during
period T .

A random variable Z is called heavy tailed with tail param-
eter α if

PZ(|Z| ≥ z) = z−αL(z), (2)

where L is a slowly varying function, i.e. L(tz)/L(z) → 1
as z → ∞ for any t > 0. In the sequel, we systematically
assume original flow size distributions with heavy tail, and
endeavor to estimate the tail exponent α.

There exist many efficient ways, parametric or not, for esti-
mating the asymptotic distribution decay from independent
realizations of a random variable X. For instance, the Hill
[9] and the Nolan [13] estimators are maximum likelihood
estimators in the case of Pareto and Alpha stable distri-
butions respectively. More simply also, the tail exponent
α can be associated to the asymptotic slope obtained when
performing a linear regression of the distribution in a log-log
plot.

However, memory consumption and CPU limitations, may
prohibit to collect and to analyze every packets going through
a high speed link. In those situations, we are compelled to
apply a sampling procedure in order to reduce the amount
of treated data. Naturally then, neither the random variable
X, nor its distribution PX , is directly observable anymore.

The most straightforward way for down-sampling the pack-
ets acquisition is to sequentially retain one packet every
N ∈ N, where 1/N is the sampling rate. This method, called
deterministic sampling, is implemented in Cisco routers, [4].
However, a random sampling procedure, which would consist
in randomly selecting a packet with a probability p = 1/N ,
drastically simplifies theoretical developments, even if the
two methods are equivalent when a sufficiently large number
of intertwined flows is assumed [3]. Thereafter, we assume
probabilistic sampling for theoretical issues, although it is a
deterministic sampling that is experimentally used.

After sampling, the observed variable becomes the sampled
flow size, that is the number of packets belonging to same
initial flow that were picked. We designate by Y this random
variable and its distribution is noted:

PY (Y = j) ∝ E{gj}, (3)

where gj is the frequency of the sampled flows with size j
observed in a time window of length T . Let us stress that the
sampling procedure has a double impact on the distribution
PY : not only the actual flow size i scale down to a sampled
flow size j ≤ i, but also the number of occurrences fi of
original flows (of a given size i) reduces to a smaller number
of effective observations.

The goal of this paper is then to compare some possible
approaches to estimate the tail parameter α of an original
distribution PX from the distribution PY of observed sam-
pled flows.



2.2 Mathematical formulation
Sampled flow distribution. Assuming random sampling with
probability p = 1/N , the probability for a sampled flow to
be of size j given that it comes from an original flow of size
i is governed by a binomial law:

PY |X(Y = j|X = i) = Bp(i, j) =

 
i

j

!
pj(1 − p)i−j . (4)

Then, the complete probability formula permits to express
the sampled flow sizes distribution in terms of the actual
distribution:

PY (Y = j) =
∞X

l=j

Bp(l, j)PX (X = l)

=

∞X

l=j

Bp(l, j)φl, (5)

a key relation which must be inverted to get the original flow
size distribution.

Maximum likelihood solution. Whenever it is analytically
feasible, a classical solution to this estimation problem is

to find an estimate bφ = {bφi, i = 1, . . . ,∞} that maximizes
the conditional probability P (g|φ) to observe the particular
realization g = {gj , j = 1, . . . ,∞}. For practical reasons,
this conditional probability is often replaced by the so-called
log-likelihood function L(φ) = log P (g|φ), and the resulting

maximum likelihood estimate denoted bφML, is solution of
the following constrained optimization problem:

bφML = argmaxφ∈∆L(φ), (6)

where the constraint φ ∈ ∆ = {φ : φi ≥ 0∀i,
P

i φi = 1}

compels bφML to be an admissible probability density func-
tion.

Implicitly, the likelihood function L(φ) assumes that no
original flow is missed by the sampling procedure, mean-
ing that we observe at least one sampled packet per flow. If
it is so, the log-likelihood can be written as:

L(φ) =
X

j≥1

gj log
X

i≥j

φicij , (7)

where cij = Bp(i, j).

In practice however, the assumption that no flow was with-
drawn hardly holds. In that case, it is necessary to first
calculate the conditional probability φ′

i that a flow is of size
i, knowing that at least one of its packets was observed.
Only then, can we solve the maximum likelihood (6) where
L(φ′) is adapted accordingly.

Analytical solutions for the maximum likelihood principle
are generally difficult to find. But, as we will see in the next
section, there exist an iterative algorithm, called Expectation-
Maximization (EM), which permits to numerically solve the
constrained optimization problem of equation (6) and to ap-

proximate the maximum likelihood estimator bφML.

Inverse approximation. As an alternative to ML estimation,
we can strive to directly invert the relation (5), and express

the conditional probability PX|Y using the Bayes Formula:

PX|Y (X = i|Y = j) =
PY |X(Y = j|X = i)PX(X = i)

PY (Y = j)

=
Bp(i, j)PX(X = i)P∞
l=j Bp(l, j)PX(X = l)

. (8)

In this expression, it is now necessary to set PX to an a
priori distribution, in order to infer the searched original
distribution via the marginal relation:

PX(X = i) =
∞X

j=0

PX|Y (X = i|Y = j)PY (Y = j). (9)

Needless to say that the estimation accuracy of PX severely
depends on a consistent choice (guess) for the a priori dis-
tribution.

Tail exponent estimation. Let us assume for now, that we
were able to get a satisfactory estimation of PX . The corre-
sponding complementary cumulative density function reads:

F (i) = Pr(X ≥ i). (10)

Under the heavy tail hypothesis of equation (2), we have

F (i) −→

i → ∞

„
b

i

«α

, (11)

with b some real constant. Taking the logarithm, this asymp-
totic relation becomes linear:

lim
i→∞

log F (i) = −α · log(i) + log(b), (12)

and α is simply estimated by a linear regression over an
appropriately chosen scale range.

3. DIFFERENT ESTIMATORS
3.1 Statistical inference
This section presents a first class of possible tail exponent
estimators, which consist in estimating the original flow size
distribution first, and then apply the linear regression of
equation (12) to get an estimate of the parameter α.

MLE via EM algorithm. As we mentioned it, the EM (for
Expectation-Maximization) algorithm permits to numerically
solve the maximum likelihood problem of equation (6). This
approach was first used in [7] to estimate original flow size
distributions from sampled traffic, and later on in [11] with
some sensible adaptations.

The EM algorithm was introduced in [6], and a detailed de-
scription can be found in [12]. This versatile algorithm is
an iterative procedure that converges to the maximum like-
lihood estimate (6) when missing data prohibit its straight-
forward calculation. Observed data are said incomplete and
viewed as an observable function of the so-called complete-
data. Let fij denote the frequency of original flows of size
i which give rise to sampled flows of size j. The set of the
fij for every i and every j is the complete data. The obser-
vation g can simply be recovered from the complete data :
gj =

P
i≥1 fij . Assuming the complete data to be known,

we form the complete data log-likelihood :

Lc(φ) =
X

i≥j≥1

fij log φicij . (13)



After an initialisation (choose some initial flow length distri-

bution φ(0), let us say for example a uniform distribution),
the algorithm iterates the following two steps:

E step. Form the expectation Q(φ, φ(k)) of the complete data
log-likelihood, conditionally to the observation, con-
sidering the distribution at the k-th iteration φ(k) :

Q(φ, φ(k)) = Eφ(k) {LC(φ)|g} (14)

M step. Define and determine:

φ
(k+1) = argmaxφ∈∆Q(φ, φ(k)). (15)

In our case, a direct calculation of the expectation of step E,
and utilisation of the Lagrange multipliers to maximize Q
under the same constraint as in (6), lead to the expression :

φ
(k+1)
i =

φ
(k)
iP

j≥1 gj

iX

j=1

gjcijPI
l=j φ

(k)
l clj

. (16)

As it is often the case with EM algorithms, this estimation
is computationally expensive. Moreover, as we will report
in the section 4, the choice of a timely stopping criterion,

has a crucial impact on our particular estimate bφML.

Inverse approximation – Uniform a priori (scaling method).
The simplest a priori we can plug in relation (8) to directly
evaluate the expression (9), is to start with X uniformly
distributed, i.e. PX(X = i) = C, ∀i. Then, the conditional
probability (8) becomes:

PX|Y (X = i|Y = j) =
Bp(i, j)P∞
l=j Bp(l, j)

=
Bp(i, j)

N
, (17)

which can even be further simplified, if Bq(i, j) is coarsely
approximated by a rectangle window with support jN ≤
i < (j + 1)N − 1. The resulting form:

PX|Y (X = i|Y = j) = 1/N, for i = jN, . . . , (j + 1)N − 1

= 0, otherwise (18)

leads to a very simple expression of the inferred original
density :

bfi =
1

N
g⌈ i

N
⌉, ∀i. (19)

This estimate conveys the naive idea that all the gj sampled
flows of size j exclusively come from original flow sizes i
comprised between jN and (j + 1)N , and hence, that it
suffices to re-scale g by the sampling rate 1/N to get f .

Along the same lines, the estimation accuracy of the fi’s can
substantially improve if we refine the choice of our a priori.
In particular, as we are expecting heavy tail distributions,
it seems reasonable to integrate this knowledge from the
beginning, and to consider an a priori PX that is itself an
heavy tail distribution. It is this approach that we develop
in our next section.

Inverse approximation – Pareto a priori. Let us then con-
sider an a priori distribution PX that follows a Pareto law

of the form of (2), with the tail exponent αap arbitrarily set.
We substitute this a priori in (8) which becomes:

PX|Y (X = i|Y = j) =

„
Bp(i, j)

i1+αap

«,0
@

∞X

l=j

Bp(l, j)

l1+αap

1
A ,

(20)
and we denote aij this conditional probability.

In the scaling method, this conditional probability was then
approached by a rectangle function centered on the interval
[jN, (j +1)N −1[. By construction, this approximation nec-

essarily yields piecewise constant estimates bf , with constant
step widths that singularly disrupt the linear regression of

of equation (12). Rather than duplicating the same bfi at
N different locations of i, we propose to choose for each j a
unique value of i, that we call 〈i〉 thereafter, on which all the
conditional probability mass will symbolically concentrate:

PX|Y (X = i|Y = j) = 1, for i = 〈i〉

= 0, otherwise. (21)

It is clear that the specific choice of 〈i〉 is determinant in
our method, and the perhaps most intuitive choice would
be to consider the mode of the conditional distribution :
〈i〉 = argmaxlPX|Y (X = l|Y = j). However, this latter is
not sensitive to the 1/x decay of the distribution and does
not reveal a pertinent choice for estimating α. Instead, we
recommend to set 〈i〉 to the geometric mean of the sequence
i = j, . . . ,∞, weighted by the conditional probability aij :

〈i〉 = exp

 P∞
i=j aij ln(i)
P∞

i=j aij

!
. (22)

Although we have no theoretical argument to support this
particular choice, an unweighted geometrical mean shows
natural as it preserves structures of the type y = 1/xα, since
then 〈y〉 = 1/〈x〉α.

3.2 Wavelet based estimation
In [8] was introduced a non parametric estimator of the
bound Q ∈ R such that all the moments of order q < Q of a
random variable Z are finite. It was also recalled that this
bound Q controls the asymptotic decay of PZ(|Z| ≥ z) ∼
z−Q as z goes to infinity. As for heavy tail distributions,
we have Q = α, the estimation of Q provides a consistent
estimator of the tail exponent α.
Without detailing the minors, it is a wavelet based estimator
that measures the regularity at the origin of the characteris-
tic function χ(u) = EeiuZ of the random variable Z. Applied
to a series {Zn, n = 0, . . . N − 1} of i.i.d. realizations of a
Pareto variable Z (Eq. (11)) , the resulting kernel estimator
reads:

W (s) =
1

N

N−1X

n=0

Ψ(s · Zn) ∼ sα, as s → 0+, (23)

where Ψ stands for the Fourier transform of some properly
chosen wavelet. Compared to more standard ones, this es-
timator presents the advantage to perform reasonably well
with small data sets.

Returning to our specific problem, it is proved in [3] that
asymptotically, PX and PY share the same asymptotic be-



havior, that is:

lim
j→∞

P (Y ≥ j)

P (X ≥ Nj
= 1. (24)

Thus, we propose to directly apply the estimator defined in
(23) to the random variable Y corresponding to the sampled
flow size, and to restrict the analysis to a scale range smin ≤
s ≤ smax that matches the asymptotic behavior of PY (or
equivalently of PX) where the flows of largest size prevail.

3.3 Stochastic counting
The method briefly sketched in this section was introduced
in [2], and relies on a probabilistic counting of original flow
sizes from the effective count of the sampled flows.

Let us consider a traffic segment of length T , as described in
section 2.1. This segment is itself chopped into M ′ smaller
packets sequences of length T ′ < T . P designates the total
number of packets, and K, the total number of flows, lying
within the window T ′. Let us redefine the variable gj as the
number of flows from which exactly j packets are sampled
over the period T ′. Then :

E{gj} = KE

( 
P
N

j

!„
X

P

«j „
1 −

X

P

« P

N
−j 1{X≥j}

)
.

(25)
It is demonstrated in [2] that, when P/N is large and X/P
is small, the following approximation holds :

E{gj} ∼ KE


e−X/N Xj

Nj j!

ff
, (26)

and corresponds to the Poisson approximation of the bino-
mial in (25). Moreover, if X is distributed according to a
Pareto law (11), and for K sufficiently large, then:

E{gj} ∼ K
pj

j!
αbα ·

Z ∞

b

xj−α−1e−pxdx. (27)

Finally, assuming there exists some threshold j0 delimiting
an asymptotic region where the influence of small flows can
be neglected, we end up with a very simple estimator of α:

bα = (j + 1)

„
1 −

E{gj+1}

E{gj}

«
− 1, for j ≥ j0. (28)

In practice, Egj is replaced by its empirical estimatePM′

n=1 g
(n)
j /M ′, where g

(n)
j comes from the n−th short time

window of length T ′ (and similarly for Egj+1).

4. NUMERICAL ANALYSIS
4.1 Experimental setup
We want to compare the accuracy of the different estimators,
for different values of α. Our systematic study relies on
synthetic traffic generated with Matlab R©, so that we can
flexibly control the tail exponent of the prescribed flow size
distributions.

Traffic simulator. The simulator we designed reproduces
a packet traffic on an aggregated link. A packets stream is
randomly generated with a time-stamp, a flow identifier and
a packet size associated to each packet.
To prescribe the flow size distribution, we chose a standard
compound model which combines :

• a uniform distribution, for i ≤ 10 (small flows),

• a Pareto distribution (11) with tail parameter α, for
i > 10 (large flows).

With this model, in the“most heavy-tail”case (i.e. α = 1.1),
99% of the flows have size less than 23 packets.

In addition to the flow size distribution, we fix the following
traffic characteristics:

• total trace duration is set to 2 hours,

• maximal bandwidth of the link is set to 1 Gbps with a
mean load equal to 0.43 (i.e. the mean throughput is
430 Mbps),

• packet size can be either constant and equal to 64 or
1514 Bytes, or uniformly distributed between these two
values,

• flows inter-arrival time follows a gamma distribution,

• packets arrival time follows a Poisson point process.

While they should not influence the flow size distribution
directly, these characteristics have been carefully chosen so
as to reproduce commonly measured traffic features. More
importantly though, we checked that they guarantee a good
mixing of the flows, which is a necessary condition to hy-
pothesize probabilistic sampling.

Methodology. We generate traffic traces for 5 different val-
ues of α: 1.1, 1.3, 1.5, 1.7 and 1.9. In accordance with
section 2.1, each trace is divided into non-overlapping seg-
ments of length T , corresponding to supposedly independent
traffic realizations. For the window size, we test two differ-
ent widths, T = 20 s and T = 100 s, leading to M = 360
and to M = 72 “independent” time series, respectively. The
devised choice of T and of the Pareto law parameters war-
rants that only a few flows last longer than the observation
period T , and spread over several adjacent windows. Still, as
the largest sampled flows measured within each segment are
liable to come from actual flows whose size exceeds the win-
dow length, they are systematically considered as truncated
and thus discarded from our analysis.

Finally, we sample the traffic time series at two different
sampling rates, corresponding to N = 10 and to N = 100.

Each tail exponent estimator of section 3 yields a sequence of
M estimates bα’s corresponding to the M traffic time-series.
Statistical performance of the estimators (bias and precision
of estimation) are then associated to the empirical means
and the empirical variances of the corresponding sequences.

4.2 Results
MLE via EM algorithm. Figure 1(a) represents the maxi-
mum likelihood estimates of PX , solved with the EM algo-
rithm. Despite an apparently good match between estimates
and prescribed distribution, this method calls for some im-
portant remarks. The distribution body is poorly estimated
as small flows are very likely to be missed by the sampling
procedure. Regarding tail estimation, oscillations appear
and intensify with N . These are due to an excessive number
of iterations, that we were not able to automatically adapt
to all our experimental parameters. Indeed, finding a sat-
isfying stopping criterion, operational for all sampling rates
N , all durations T and all tail exponents α showed a very
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Figure 1: Inferred original distribution for T = 100 s and α = 1.9. Black dots represent the prescribed
distribution. Estimated distributions are obtained: (a) after 50 iterations of EM algorithm, (b) with the
scaling method and (c) with the inverse approximation with Pareto a priori method with αap = 1, for N = 10
(blue) and N = 100 (red).

difficult task. As a result, inferring α from a linear regression
of these estimates turns hazardous for it is quite impossible

to define a significant regression range where log(bfi) linearly
stabilizes. Consequently, the statistical performance, which
we deemed not worth reporting here, show aberrant results
(diverging mean and variance). . .
Moreover, complexity and prohibitive computational cost of
EM algorithms lead us to believe that, as it stands, this
method is not adapted to our problem of estimating the tail
exponent of flow size distributions. However, an EM based
approach to directly get the maximum likelihood estimate of
α, without estimating the whole original distribution, should
perform better. This is under investigation.

Inverse approximation – Uniform a priori (scaling method).
Figure 1(b) shows the estimated distribution applying the
scaling method of equation (19). As commented in section
3.1, the resulting distributions are piecewise constant on
length N intervals (in Fig. 1(b), the steps width decreases
with i because of the logarithmic dynamic of axes). As ex-
pected, the resolution (i.e. the step width) decreases with N ,
but still, for large flows, accurate asymptotic decay remains,
allowing for estimating the tail parameter α from a linear

regression of log(bfi) over some interval [Njmin, Njmax] to be
determined. The values of jmin and jmax have to be chosen
such that the sampled flows we consider are much likely to
come from an original flow whose size lies in the tail of the
distribution. Let us denote B the supposed value of i that
delimits the body from the tail of the original distribution.
Then we define jmin and jmax as follows :

- jmin is the smallest value of j verifying Bp(B, j) ≤ ǫ where
j ≥ B/N , and ǫ is a threshold set to 0.01.

- jmax = j∗ − 1 where j∗ is the first j for which gj = 0.

This particular choice of jmin ensures that the probability
for a sampled flow of size j ≥ jmin to come from an original
flow of size i < B is less than ǫ. Although we imposed
in our simulations the flow size distribution to be Pareto
beyond i ≥ 10, selecting B obeys a bias-variance trade-off.
Indeed, a small value for B entails a small value of jmin, and

may introduce estimation bias due to original flows whose
size still lies in the body of the distribution. Conversely,
choosing large B leads to large jmin, and reduces the number
of points available for regression, thus it leads to an increased
variance. We chose B = 50. This leads to jmin = 5 for
N = 10 and jmin = 3 for N = 100.

The choice of jmax leads to discard observed flows of size
j > j∗. Thus the very end of the tail is not taken into
consideration. A possible solution to avoid this problem
could be to consider the mean frequencies of observed flows
in intervals of geometrically increasing size.

The results obtained with this estimator are summarized in
table 1(a) and in figure 2. Whatever the value of α, as the
number of observed flows diminishes with T and with the
sampling rate, the standard deviation on the estimate bα in-
creases accordingly. This phenomenon is naturally common
to all estimators.

Independently of T and N also, bias and standard deviation
increase with α. This can easily be explained by the fact
that the larger the α, the rarest the flow sizes with extreme
values. This tendency should persist in all methods.

The systematic bias one can observe in all configurations,
is probably due to the finite support approximation (18)
of the conditional probability. In this framework, for large
sampled flows, the corresponding gj ’s are discarded in the

estimation of bfi. This drawback should be circumvented
with the Pareto a priori method.

Inverse approximation – Pareto a priori. We now apply the
inverse approximation with Pareto a priori and approxima-
tion (21) of section 3.1. Characteristic estimates of PX are
displayed in figure 1(c), with parameter αap = 1. This value
of αap was tuned heuristically and chosen to yield the best
overall estimates for all values of α. In the sequel and in
all our experiments, this value is kept fixed. A closer look
at figure 1(c), shows that for both samplings N = 10 and
N = 100, the tail decay of the flow size distribution is rea-



sonably rendered, even for large flow sizes. In particular,
removal of the stepwise structure, turns easier the identifi-
cation of a regression range [〈i〉jmin , 〈i〉jmax ] to estimate α.
The bounds jmin and jmax are determined as for the uniform
approximation. Statistical performance of the resulting esti-
mator are summarized in 1(b), and collected with the others
in figure 2. While standard deviation remains close to that of
the scaling method, the bias has been considerably reduced
and now stabilizes with α (cf. table 1(b)).

Wavelet based estimation As explained in section 3.2, we
directly apply the estimator of equation (23) to the ran-
dom variable Y . We then need to define a scale range, im-
age of the tail asymptotic, over which to perform the lin-
ear regression of log W (s) versus log(s). According to [8],
the lower bound is set to smin = log2(

1
Y ∗∗ ), where Y ∗∗ is

the second largest value of Y (as explained in section 4.1,
the largest value Y ∗ is removed from analysis). The upper
bound should correspond to the frontier between the body
and the tail of the distribution. We chose smax = log2(

1
Y%

)

where Y% is a percentile of the distribution of Y . We con-
sidered a 85% percentile for N = 10 and a 50% percentile
for N = 100.

The results of this estimator are summarized in table 1(c)
and represented in figure 2.

Despite its relatively good behavior, it is worth noticing that
the slope obtained from the linear regression of log W (s) is
highly sensitive to the choice of the regression scale bounds.
This instability transposes to the bias and the variance of bα
which can significantly increase when the regression range
slightly changes.
Nonetheless, the stringent choice imposed to smax consider-
ably reduces the number of samples of Y that actually par-
ticipate to the estimation of α, and yet, the wavelet based
estimator is capable of a remarkably accuracy.

Stochastic counting Before applying estimation of expression
(28), we need to define j0 such as for j ≥ j0, small flows –
which do not follow the Pareto law – have no impact on gj .
In [2], j0 = 3 is suggested for N = 100. This value is equal to
jmin selected in the previous methods, and therefore we chose
j0 = jmin for any N . Notice that larger values for j > j0 are
theoretically admissible, however they experimentally lead
to a larger variance of estimation, as then, the number of
observed flows decreases.

The performance of the stochastic counting estimator are
summarized in table 1(d) and illustrated in figure 2. We
observe a systematic bias which decreases with α (no matter
what the value of N).

Increasing N though, does not drastically degrade the vari-
ance of estimation, which certainly is a clear asset of the
method. In addition, its extreme simplicity and its remark-
ably low computational cost prompt its usage for real time
measurements and monitoring.

5. CONCLUSION AND FURTHER WORK
Contrary to a natural first intuition, the utilization of the
EM algorithm to infer the MLE of the original distribution
does not lead to an accurate estimator of the tail parame-
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Figure 2: Estimation of α : comparison of the differ-
ent methods for five values of α : 1.1, 1.3, 1.5, 1.7, 1.9
(a little shift is introduced for clarity purposes). The
methods are : scaling method (blue), Pareto a pri-

ori method (green), wavelet-based method (black),
stochastic counting method (red).

ter. However, we are still working on the utilization of the
EM algorithm to directly access a ML estimate of the tail
parameter.

The method we propose, based on a Pareto a priori, proves
very promising, as it shows significant improvements com-
pared to the other methods. Despite a lack for theoretical
justification for the conditional probability approximation
based on a weighted geometric mean, experimental results
of the estimator tend to confirm its pertinence.

Although the stochastic counting method seems not to be
the most accurate one, we need to recall that it definitely
relies on the simplest approach. Then, it remains a very
interesting method, all the more so as it has little sensitivity
to a decreasing of the sampling rate.



Table 1: Results of the estimators for different val-
ues of N , T and α. In each case, the estimated value
of alpha (bα) and the standard deviation (std) are
presented.

(a) : Scaling method
T N est - α 1.1 1.3 1.5 1.7 1.9

20 s
10

bα 1.08 1.32 1.54 1.76 2.00
std 0.05 0.05 0.07 0.09 0.12

100
bα 1.04 1.35 1.64 1.93 2.18

std 0.08 0.12 0.17 0.25 0.35

100 s
10

bα 1.11 1.32 1.54 1.74 1.96
std 0.02 0.03 0.03 0.05 0.07

100
bα 1.11 1.35 1.61 1.85 2.11

std 0.04 0.07 0.09 0.12 0.16

(b) : Inverse approximation with Pareto a priori, with
αap = 1

T N est - α 1.1 1.3 1.5 1.7 1.9

20 s
10

bα 1.05 1.28 1.49 1.70 1.91
std 0.04 0.05 0.06 0.08 0.10

100
bα 0.95 1.20 1.44 1.69 1.91

std 0.06 0.09 0.12 0.18 0.24

100 s
10

bα 1.08 1.28 1.50 1.69 1.90
std 0.02 0.03 0.03 0.05 0.07

100
bα 1.03 1.24 1.47 1.66 1.88

std 0.04 0.06 0.07 0.09 0.12

(c) : Wavelet-based method
T N est - α 1.1 1.3 1.5 1.7 1.9

20 s
10

bα 1.11 1.32 1.55 1.71 1.90
std 0.03 0.04 0.05 0.04 0.04

100
bα 1.05 1.30 1.54 1.66 1.68

std 0.04 0.05 0.08 0.11 0.20

100 s
10

bα 1.11 1.33 1.54 1.72 1.92
std 0.03 0.03 0.04 0.03 0.03

100
bα 1.08 1.33 1.57 1.80 1.97

std 0.03 0.04 0.05 0.05 0.09

(d) : Stochastic counting method
T N est - α 1.1 1.3 1.5 1.7 1.9

20 s
10

bα 1.06 1.25 1.41 1.59 1.73
std 0.18 0.16 0.14 0.15 0.14

100
bα 1.06 1.26 1.42 1.61 1.75

std 0.22 0.19 0.18 0.18 0.19

100 s
10

bα 1.07 1.25 1.41 1.59 1.73
std 0.09 0.07 0.07 0.07 0.06

100
bα 1.06 1.26 1.42 1.61 1.76

std 0.08 0.08 0.08 0.09 0.09
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