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Abstract—This paper considers coexisting wireless networks
sharing radio resources with contradicting performance objec-
tives. A multi-objective optimization framework is proposed to
investigate the fundamental trade-off between the performance
of the coexisting networks. For a given set of radio resources,
the optimal achievable performances of the coexisting networks
are characterize by a multi-dimensional Pareto set. If the per-
formance objectives of some of coexisting networks are modified
or adjusted, the proposed framework provides the maximum
corresponding achievable variation to the performance of the rest
of coexisting networks. The quantitative information provided by
the proposed framework facilitates joint design and optimization
of coexisting networks and can be further exploited for regulating
the collaborations among coexisting networks. We further show
that the corresponding Pareto set can be in fact engineered by
adjusting the technologies adopted in each of these networks. We
then apply the proposed framework to two coexisting cellular
networks. An improvement of 25% on the achievable rate is
observed in return of a slightly higher interference tolerance at
one of the coexisting networks.

I. I NTRODUCTION

Coexisting wireless networks scenario provides many op-
portunities for improving spectrum usage for the fifth gen-
eration (5G) wireless communication networks [1]. In the
related literature however, there is no concise analyticaltool
for investigating the performance trade-offs in such a system.
In this paper, we formulate the function of a system comprising
coexisting networks as a multi-objective optimization problem
(MOP) to investigate its fundamental performance trade-offs.
The corresponding MOP includes a set of contradicting objec-
tives such as maximizing achievable throughput, minimizing
delay and minimizing outage probability. Since achieving such
objectives in any of the coexisting wireless networks require
allocating a larger portion of the shared radio resources,
in principle it compromises the performance of the other
coexisting networks.

Multi objective optimization theory introduces techniques
that simultaneously optimize multiple yet contradicting objec-
tive functions [2], [3]. For MOP, instead of a single solution,
there exists a set of optimal solutions characterize byPareto
optimality that simultaneously optimizes all contradicting ob-
jectives [3]. Here, we show that the corresponding Pareto set
for coexisting wireless network provides essential quantitative
information which can be used in design and management

of collaboration between multiple coexisting operators sharing
the same radio resources. We further provide examples to high-
light how this framework can be used to establish a theoretical
ground for collaboration between coexisting networks.

The Pareto set, also referred to as Pareto frontier, charac-
terises the achievable performance of the multiple systems
based on the available shared radio resources, the resource
constraints in each of the coexisting networks, and their cor-
responding quality-of-service requirements. We further show
that the Pareto frontier can be engineered by adjusting the
technologies adopted in each of these networks. This can
facilitate joint design of the multiple networks to maximize
the utilization of the shared radio resources.

Multi objective optimization is utilized in different engineer-
ing applications, see, e.g., [4] and references therein. MOP
is adopted [5] as a tool for designing routing algorithms in
ad-hoc networks. An applications of MOP in radio resource
scheduling in cellular networks is also presented in [6] where,
MOP is used to develop a distributed resource allocation
scheme. Further in [7] MOP is utilized in beamforming design
for secure communications in a wireless system. In [8] MOP
approach is used for formulation of the optimal link adaptation
problem of orthogonal frequency division multiplexing in a
cognitive radio system, where secondary users can opportunis-
tically access the spectrum of primary users. MOP model in [8]
is developed based on joint maximizing the cognitive system
throughput and minimizing its transmit power. As it is seen,
in the related literature MOP has been used as an algorithmic
tool which facilitates developing new algorithms for single
networks. To the best of our knowledge, this paper for the first
considers MOP as a modeling too for coexisting networks to
investigate their fundamental performance trade-offs.

To show the application of the proposed framework here
we also present cognitive beamforming as a case study in
which two systems, primary and cognitive (also referred to as
secondary) share the same spectrum. The secondary system is
facilitated by multiple antenna and capable of beamforming.
We then formulate the function of this spectrum sharing
system using MOP with a set of contradicting objectives. One
objective is to minimize the interference due cognitive base
station (BS) transmission on the primary system receivers.
Maximizing the intended signal received at all cognitive users
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are also considered as performance objectives in this system.
Using the analytical tools provided by the multi objective

optimization theory, we then derive an equivalent standard
semi-definite programming form with adjustable parameters
that facilitate system design. The obtained solution set pro-
vides the best achievable throughput (characterized by the
maximum intended signal power at each cognitive user) for
a given level of interference tolerance in the primary system.
It also evaluates the maximum achievable gain on the system
throughput if the primary system is able to make compromises
and increase its interference tolerance, such framework could
be a base for negotiations between the operators. Note that in
practice reaching to the optimal points might be hard even
impossible. Nevertheless it provides the best each network
can achieve out of the available resources in a given set-
ting. Simulation results show that a possible improvement of
10bits/s/channel-use in the secondary system total throughput
is achievable in return of a slightly higher interference thresh-
old in the primary system.

The organization of the paper is as the following. In Section
II, the preliminary definitions for multi objective optimization
as well as the system model are presented. Based on a practical
example we further discuss engineering of Pareto frontier in
Section III . Then in Section IV we present a case study
followed by simulation results. The paper is concluded in
Section V.

Notations: Tr (·): trace operator;Y � 0: a positive
semi definite matrix;4: element-wise inequality;(yi)

U

i=1 :[
y1 y2 · · · yU ;

]T
; E(x): expected value of random vari-

ablex.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a system consisting ofP objective functions
indexed by p, fp(x), where x is the resource allocation
vector/matrix. Examples of the objective functionfp(x) in-
clude maximum delay, outage probability, or a combination of
different key performance indicators in the coexisting networks
such as a utility function.

The function of this system is modelled as a multi objective
optimization problem (MOP) as the following:

min
x∈X

f (x) = min
x∈X

(f1 (x) , · · · , fp (x)) , (1)

whereX and f (x) ∈ R
p are the resource allocation space,

and the objective space, respectively. In factX characterise
the solution space based on the available resources in the
networks, the quality-of-service requirement for the network
users, as well as the adopted air interface technology in each
of the coexisting network.

For instance for a network with energy constraint provid-
ing bit-error-rate sensitive services, adopting an air interface
technology with higher tolerance to interference (e.g, an air
interface including sophisticated channel coding technique)
results in a larger solution set comparing to the case where

an interface technology with lower interference tolerancehas
been adopted.

An MOP is further characterized by its feasible set, objec-
tive function vectorf , and the objective space. The objective
function vectorsy = f (x), i.e., x ∈ X , are mapped fromRp

to an ordered space, e.g.(Rp,4), where comparisons are made
using the order relation. This mapping is called the model map,
θ. An MOP is completely described by

(X , f ,Rp) /θ/ (Rp,4) ,

which includes feasible set, objective function vector, objective
space, model map and order space. An MOP class is the set
of all MOPs with the same model map and order space which
is denoted by•/θ/ (Rp,4).

A. Solution Set and Optimality

Here we consider Pareto optimality for a class of MOPs:
•/i.d./ (Rp,4), where the model map is an identical mapping
(i.d.), i.e.,θ(y) = y.

Consider the following MOP of the class•/i.d./ (Rp,4):

min
x∈X

(f1 (x) , · · · , fp (x)) . (2)

Let Y = f (X ) be the image of the feasible setX under the
objective function mappingf(.).

Definition Pareto Optimality: A feasible solutionx̂ ∈ X
is calledPareto optimal if there is no otherx ∈ X such that
f (x) 4 f (x̂). If x̂ is Pareto optimal thenf (x̂) is said to be a
non-dominated point. Ifx1,x2 ∈ X andf

(
x1
)
4 f

(
x2
)
, then

it is said thatx1 dominatesx2 and f
(
x1
)

dominatesf
(
x2
)
.

The set of all Pareto optimal solutions, i.e., Pareto optimal set,
x̂ ∈ X is represented byXE . Non-dominated set, is denoted
by YN , where all non-dominated pointŝy = f (x̂) are inY.

Pareto optimal set is also referred to asPareto Frontier.
Pareto optimality allows no improvement in any objective
function is the set without trade-offs from the others.

III. PERFORMANCETRADE-OFFS: PARETO FRONTIER

To have a better understanding, here we consider a sys-
tem including two coexisting networks. Two contradicting
objectives are: maximizing the throughput in the first network
(f1 (x) = −1 × R), and minimizing the outage probability
in the second network (f2 (x) = POutage). Outage occurs if
the received interference due to the second network activity
is higher than a given interference threshold,Ith. In such a
system the Pareto frontier forms a curve as illustrated in Fig. 1.

As it is seen for a given outage probabilityO1, the maxi-
mum theoretical achievable throughput for the second system
is R1. This provides a benchmark for comparison of the actual
performance with that of the maximum achievable. Fig. 1 also
indicates that the outage probability in the first system canbe
traded in return of an increase in the throughput of the second
system: assume that first system is able to be more flexible on
the outage probability,O2, the second system is then able to
achieve the maximum rate ofR2, whereR2 > R1. An instance



Fig. 1. An illustration of the Pareto frontier for two coexisting system with
f1 (x) = −1×R, andf2 (x) = Poutage in two cases of with and without
extra channel coding.

of increasing outage tolerance is where a the first network has
an interference limited air interface (e.g., 3G CDMA-based
air interface) and shares the same spectrum with the second
network. If the first network experiences a lower traffic load,
thus for a given receiver performance, it is theoretically able to
tolerate a higher level of interference from the second network,
i.e.,I ′th, andI ′th > Ith. Tolerating a largerI ′th can be translated
to a higher outage probability withIth.

In the above example, a higher level of interference from the
coexisting network can be also tolerated in the first network
if it has an improved outage probability requirements. For
instance, in [9] we design a sophisticated coding technique
to improve the robustness of the first system to the received
interference. Adopting such a coding scheme in the first
network enables the second system to increase its throughput.
Using new coding scheme in the first network accordingly
modifies the Parto frontier of the system as shown in Fig. 1. In
this case for given outage probabilityO1 a higher throughput
of R′

1 is achieved in the second network. The Pareto frontier
in Fig. 1 further provides the maximum achievable gain on the
throughput in the second network,∆R . Based on Fig. 1 we
can also evaluate the lowest possible outage probability inthe
first network, for a given throughput in the second network.

Modification of the Pareto frontier using channel coding in
the above example is an instance of engineering the Pareto
frontier by using new combination of physical layer technolo-
gies. Such modifications based on the tools provided by MOP
model can help us to manage the compromises and achieve a

higher spectral efficiency.

IV. CASE STUDY: COGNITIVE BEAMFORMING DESIGN

In this section we apply the above MOP framework to model
the performance of a spectrum sharing system. In this system
primary and secondary systems are coexisted cellular systems
both access a shared spectrum. The secondary system is also
cellular and utilizes underlay spectrum access [10]. In the
secondary network, a cognitive base station (BS) supportsU
secondary users sharing the uplink spectrum of the primary
network, subject to the received interference threshold atthe
primary receivers.

The cognitive BS is equipped withM antenna elements and
capable of beamforming. For simplicity, we also assume single
antenna setting at the secondary users (SUs) and the primary
BS. The received signal at the SUi, i ∈ {1, · · · , U}, is

yi = hH
s,iwisi +

U∑

j=1,j 6=i

hH
s,iwjsj + ni, (3)

wherehH
s,i ∈ C1×M is the channel between the cognitive BS

and SUi, wi ∈ CM×1 is the beamforming vector for the SU
i, si is the data symbol to be sent to the SUi and ni is a
zero mean circularly symmetric complex Gaussian noise with
varianceσ2

i , i.e., ni ∼ CN (0, σ2
i ).

The primary network imposed interference at the SUs is
considered as an additive background noise. For brevity the
average transmitted symbol energy to SUi at the cognitive
BS is assumed to be unity. LetRs,i = E

(
hs,ih

H
s,i

)
and

W = {w1,w2, · · · ,wU} be the set of candidate beamforming
vectors in the cognitive BS for all SUs. The SINR at SUi is

gi (W) =
wH

i Rs,iwi∑U

j=1,j 6=i w
H
j Rs,iwj + σ2

i

. (4)

LetRp = E
(
hph

H
p

)
, wherehH

p ∈ C1×M is the channel be-
tween the cognitive BS and the primary BS. Total interference
at the primary BS induced by cognitive BS is

∑U

i=1 w
H
i Rpwi.

A. MOP Formulation

Here the objective is to maximize the intended signal power
received at each SUi defined as

fi (W) = −wH
i Rs,iwi,

while minimizing the interference imposed at the primary BS,

f0 (W) =
U∑

i=1

wH
i Rpwi.

The intended signal power received is directly lined to the
achievable throughput. Therefore, the objective vector is

f (W) = (f0 (W) , f1 (W) , · · · , fU (W)) .



As it is seen the above formulation is in fact an MOP. Now,
we define the decision space

D ,

{
W | (γi)

U

i=1 4 (gi (W))Ui=1 ,
U∑

i=1

wH
i wi ≤ Pm,

U∑

i=1

wH
i Rpwi ≤ Im

}
, (5)

whereγi is the required SINR level at SUi, Pm is the cognitive
BS maximum transmit power, andIm is the interference
threshold at the primary BS. We propose the following MOP
class

(
D, f ,RU+1

)
/i.d./

(
R

U+1,4
)
:

min
W∈D

(f0 (W) , f1 (W) , · · · , fU (W)) . (6)

The intended signal received power at the secondary re-
ceiver is an indication of the maximum achievable rate. In
practice for a given interference threshold at the primary re-
ceiver the solution set for (6) provides the maximum intended
received signal power, i.e., the maximum achievable rate.

Using the tools provided by multi objective optimization
theory, we then find the solutions to (6). We adopt weighted
sum method [3] to obtain the solutions. Using this method
(6) is reduced to a single objective problem as the following
non-xonvex optimization:

ProblemO1:

min
W

λ0

U∑

i=1

wH
i Rpwi −

∑

i∈Ss

λiw
H
i Rs,iwi,

s. t.
wH

i Rs,iwi∑U

j=1,j 6=i w
H
j Rs,iwj + σ2

i

≥ γi, ∀i,

U∑

i=1

wH
i wi ≤ Pm,

U∑

i=1

wH
i Rpwi ≤ Im.

(7)

Here, we define beamforming matrixWi = wiw
H
i , where

Wi � 0 andWi is a rank-one matrix. A matrix is rank one
if its largest number of linearly independent columns/rowsis
one. Then, by rearranging the constraints, usingxHYx =
Tr
(
YxxH

)
, and dropping the rank-one condition onWi, (7)

is converted to:

ProblemO2:

min
{Wi}

λ0Tr

(
Rp

U∑

i=1

Wi

)
− Tr

(
U∑

i=1

λiRs,iWi

)
,

s. t. ki ({Wi}) ≥ 0, Wi � 0, ∀i,

Pm −
U∑

i=1

Tr (Wi) ≥ 0,

U∑

i=1

wH
i Rpwi ≤ Im,

Wi � 0, ∀i,

(8)

where{Wi} = {W1, · · · ,WU} is the set of beamforming
matrices and

ki ({Wi}) = Tr (Rs,iWi)− γi

U∑

j=1,j 6=i

Tr (Rs,iWj)− γiσ
2
i .

We then prove thatO1 andO2 are equivalent. The proof is
not provided here due to space limitation.

The optimization problem inO2 is a convex semi-definite
programming [12], thus can be solved by the SeDuMi solver,
provided by CVX optimization package [12], to obtain the
set of optimal beamforming matricesW⋆

i . Finally, the corre-
sponding optimal solution to (7) isw⋆

i =
√
ǫ⋆iv

⋆
i , whereǫ⋆i

andv⋆
i are the eigenvalue and the corresponding eigenvector

of the rank-one matrixW⋆
i , respectively [13].

B. Simulation Results

We simulate the scenario with a cognitive BS serving 2 SUs,
i.e., U = 2. The SUs are located at−30◦ and50◦ while the
primary BS is located at10◦ relative to the array broadside
of the cognitive BS. The distances from the SUs and primary
BS to the cognitive BS are 0.5km and 1km, respectively. The
channel covariance matricesRs,i andRp are obtained using

Rs,i = βs,iR (θs,i, σa) andRp = βpR (θp, σa) , (9)

respectively, whereβs,i or βp represents the channel gain
coefficient, θs,i or θp is the angle of departure,σa is the
standard deviation of the angular spread, and the(p, q)th entry
of R (θ, σa) is, [13]:

e
j2π∆

λ
[(q−p)sinθ]e−2[π∆σa

λ
{(q−p)cosθ}]2 . (10)

In (9) βs,i or βp captures the distance-dependent path-loss
according to34.5+35log10(l), wherel is the distance in meters
with l ≥ 35m, a log-normal shadow fading with 8dB standard
deviation and a Rayleigh component for the multi-path fading
channel. In (10),σa = 2◦ and the antenna spacing at the BS
∆ = λ/2, whereλ is the carrier wavelength. The subcarrier
bandwidth, the noise power spectral density, the noise figure at
each user receiver and antenna gain are assumed to be 15kHz,
-174dBm/Hz, 5dB and 15dBi, respectively.
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In (8), Pm = 40dBm, λ0 = λ1 = λ2 = 1/3, andγ1 = γ2 = 10dB.

Fig. 2 illustrates an approximation of the Pareto frontier,
where the total SU throughput with different numbers of an-
tenna elements at the cognitive BS, versus various interference
thresholds, i.e.,Im, at the primary BS. In other words, for
each givenIm, Fig. 2 gives the maximum achievable system
throughput. It is also seen that in this case one way to engineer
the Pareto frontier is modifying the number of antennas. For
larger number of antennas, the total SU throughput becomes
constant irrespective of interference threshold level at the
primary BS. This is because the beamformer has a better
resolution at higher number of antenna elements, i.e., see
Fig. 3. As it is seen in Fig. 2 at the interference threshold
of -30dBm by engineering the Pareto frontier through in-
creasing antenna elements to 16, an improvement of almost
7 bits/s/channel-use is achieved in the system throughput.In
case of 6 antenna elements it is also seen that by increasing
the interference threshold from -23dBm to -20dBm results in
25% improvement in the system achievable rate.

V. CONCLUSION

We proposed an analytical framework based on multi objec-
tive optimization for coexisting wireless networks accessing
the same shared radio resources with contradicting perfor-
mance objectives. The proposed framework shed light on
the fundamental performance trade-offs in such system. We
showed that for a given set of radio resources, the optimal
achievable performances of the coexisting networks form a
multi-dimensional Pareto set. If the performance objectives of
some of coexisting networks are modified or adjusted, the
proposed framework provides the maximum corresponding
achievable variation to the performance of the other coexisting
networks. We further showed that the corresponding Pareto
front can be engineered by adjusting the technologies adopted
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Fig. 3. Radiation pattern at the cognitive BS with 6 and 16 antenna elements.
In (8), Im = −40dBm, Pm = 40dBm, λ0 = λ1 = λ2 = 1/3, and
γ1 = γ2 = 10dB.

in each of these networks to fit the design consideration in a
coexisting environment. The proposed framework in this paper
provides tools which facilitate joint design and optimization of
coexisting networks to maximize the utilization of the shared
radio resources. We the applied the proposed framework to the
case of two coexisting cellular systems. It was shown through
simulation that at the interference threshold of -30dBm by
engineering the Pareto frontier through increasing antenna
elements to 16, an improvement larger than 7 bits/s/channel-
use is achieved in the system throughput.

ACKNOWLEDGMENT

This work was partly supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) under grant
EP/K/022725/1, and EU Marie Curie Career Integration Grant
(MC-CIG) under grant 304086-S3isE.

REFERENCES

[1] L. Qian, H. Niu, A. Papathanassiou, and G. Wu, ”5G networkcapacity:
key lements and technologies,”IEEE Vehicular Technology Magazine,
vol. 9, no. 1, pp. 71–78, 2014.

[2] R. Devarajan, S. C. Jha, U. Phuyal, and V. K. Bhargava, “Energy-
aware resource allocation for cooperative cellular network using multi-
objective optimization approach,”IEEE Transactions on Wireless Com-
munications, vol. 11, no. 5, pp. 1797–1807, May 2012.

[3] M. Ehrgott, Multicriteria Optimization. Springer, 2005.
[4] A. Johan. “Survey of multiobjective optimization in engineering design,”

Department of Mechanical Engineering, Linktjping University, Sweden,
2000.

[5] K. Jaffres-Runser, C. Comaniciu, and J. Gorce, “A multiobjective
optimization framework for routing in wireless ad hoc networks,” arXiv
preprint arXiv:0902.0782, 2009.

[6] M. Elmusrati, H. El-Sallabi, and H. Koivo, “Applications of multi-
objective optimization techniques in radio resource scheduling of cellular
communication systems,” IEEE Transactions on Wireless Communica-
tions, vol. 7, no. 1, pp. 343–353, 2008



[7] D. Ng, L. Xiang, and R. Schober, “Multi-objective beamforming for
secure communication in systems with wireless informationand power
transfer,” in proceedings of the IEEE 24th International Symposium on
Personal Indoor and Mobile Radio Communications (PIMRC), 2013.

[8] E. Bedeer, O. Dobre, M. Ahmed, K. Baddour, “A multiobjective opti-
mization approach for optimal link adaptation of OFDM-based cognitive
radio systems with imperfect spectrum sensing,”IEEE Transactions on
Wireless Communications, vol. 13, no. 4, pp. 2339–2351, Apr. 2014.

[9] N. Mokari, H. Saeedi, and K. Navaie, “Channel coding increases the
achievable rate of the cognitive networks,”IEEE Comm. Letters, vol. 17,
pp. 495–498, 2013.

[10] M. G. Khoshkholgh, K. Navaie, and H. Yanikomeroglu, “Access strate-
gies for spectrum sharing in fading environment: Overlay, underlay and
mixed,” IEEE Trans. Mobile Comput., vol. 9, no. 12, pp. 1780–1793,
Dec. 2010.

[11] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[12] M. Grant and S. Boyd,CVX Users’ Guide for CVX version 1.2 (build
711), 2009, http://www.stanford.edu/∼boyd/cvx/download.html.

[13] T. A. Le and M. R. Nakhai, “Coordinated beamforming using semidef-
inite programming,” inProc. IEEE Int. Conf. Commun., Jun. 2012, pp.
1–5.


