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Abstract—Dynamic spectrum access (DSA) is an attractive
approach to solve the spectrum scarcity problem. Among DSA
techniques, spectrum overlay is an approach where the spectrum
licensed to a primary user (PU) is shared by a secondary user
(SU) while protecting the PU from the interference caused by SU
spectrum reuse. In the case where PU traffic is dynamic, spectrum
sharing is difficult as satisfying requirements of spectrum sensing,
the challenging accuracy, quickness and low cost requirements
in practice, is difficult. For this issue, we propose a new concept
of smart spectrum access (SSA) where useful information related
to PU spectrum utilization is used to achieve not only the above
requirements but also more efficient spectrum utilization. We also
show an approach to realize practical SSA and it consists of a
spectrum awareness system (SAS) and a dynamic spectrum access
system (DSAS). The main role of the SAS is to provide useful
information to the DSAS. The information can be obtained by
the SAS through spectrum utilization measurement and analysis
of the measurement data. In this paper, we present a framework
for smart spectrum access and discuss the challenges of this
approach. In addition, we report some of the experimental results
related to SAS.

I. I NTRODUCTION

To resolve the spectrum scarcity problem, dynamic spec-
trum access (DSA) using cognitive radio techniques employed
by the unlicensed user (secondary user: SU) on the spectrum
reserved for the licensed user (primary user: PU) has been
investigated [1]. Spectrum overlay is one of the possible DSA
techniques where the goal is to achieve more flexible and
efficient spectrum management [2]. In spectrum overlay based
DSA, the SU can utilize spectrum left vacant by the PU as
long as it will not cause any harmful interference. In order to
enable DSA, techniques for understanding current spectrum
state at given time/location, such as spectrum sensing [3] and
geolocation database, have been investigated.

In TV white space (TVWS) which is one of DSA ap-
proaches, the spectrum sharing can be enabled by using
a geolocation database [4]. Spectrum sharing based on the
geolocation database is suitable due to the static nature of the
TV broadcast traffic. On the other hand, in mobile wireless
systems where the traffic is sporadic and the terminals can
move around this is not possible and the SU has to rely to
other means of obtaining the spectrum state.

However, in practice, the requirements for spectrum sensing
are very challenging. Specifically, very accurate PU signal
detection performance is required. For example, detection

probability of higher than 90% at low SNR region, such as less
than -10 dB, has been suggested [5]. Another important issue is
fast detection, i.e., the SUs are expected to detect the presence
of PU signals as fast as possible. Achieving these goals
within the limitations of computational requirements and cost
requirements is very challenging. The first two requirements,
accuracy and quickness, are for protecting PUs properly and
the last one is to achieve practical SU terminal.

To enable spectrum sharing in the case of dynamic PU,
awareness of the instantaneous state of the spectrum (occu-
pied/vacant) with the above requirements is significant issue.
For this issue, we propose a concept of smart spectrum access
(SSA). In a typical DSA approach, there are two important
points; the first one is how to share and utilize the spectrum
among heterogeneous wireless systems [2] and second one
is how to find available spectrum. On the other hand, SSA
exploits information about the PU spectrum utilization which
has potential to achieve not only the requirements of spectrum
sensing but also to provide other benefits for DSA. In fact,
current state of the spectrum, i.e. vacancy or occupancy, is a
target of spectrum sensing. In SSA, any useful information
such as statistical information of the spectrum utilization can
be target. For example, it has been shown that knowing the
channel occupancy rate [6] can improve spectrum sensing
performance [7]. In [8], statistical channel utilization model
was also used to improve spectrum sensing performance.
Channel occupancy rate is also useful to achieve efficient MAC
protocol design and spectrum management method as has been
demonstrated in [9]–[11].

In fact, there are many related works where statistical infor-
mation in terms of the spectrum utilization is used to enhance
the performance of DSA. In [12], several key techniques and
theory for opportunistic spectrum access have been introduced
for example game theory, Markovian decision process, optimal
stopping theory and multi-armed bandit problem. It can be
summarized that there is still a common significant issue; how
to obtain the statistical information. In fact, this is related
to feasibility of DSA such as the issue in spectrum sensing.
In SSA, we will consider this issue carefully for achieving
practical SSA and this point is the most significant difference
compared to traditional DSA.

In SSA, the following key issues have to be considered:
1) How much gain, for example in terms of spectrum uti-
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lization efficiency and spectrum awareness performance,
can be obtained by exploiting the spectrum utilization
statistics?

2) How can we obtain this information as efficiently as
possible?

3) How does the whole system and processes for obtaining
the information and providing it to the DSA, have to be
designed?

In the past works regarding the DSA, the first issue has been
considered to a certain extent but still the effect of estimation
error of the utilization statistics and required cost to obtain the
statistical information have not been investigated deeply. The
second issue is related to the actual implementation issues
of the statistics acquisition such as computational costs and
feasibility. To obtain the statistics of spectrum utilization by
the PUs, long duration, wide band and broad area spectrum
measurements are required. This obviously leads to significant
burden in the SUs. The third issue is related to the earlier
issues. Specifically, SSA system can be implemented as a
network which we have to design and allocate the roles to the
entities of the network to achieve an effective SSA system.

SSA has two important roles, spectrum awareness and
spectrum access for actual wireless communication services.
In our approach, the roles are assigned to different systems,
namely spectrum awareness systems (SAS) and dynamic spec-
trum access systems (DSAS), respectively. This approach can
lessen the burden of spectrum measurement of the SUs in
DSAS. However, this opens up a new challenge which is the
development of an efficient SAS.

The main role of SAS is to obtain and provide useful
statistics (such as duty cycle, channel occupancy rate [7] as
well as statistics of the idle and busy periods [13]) related
to spectrum utilization by PUs to the DSAS based on the
spectrum awareness process. By using this information in
the DSAS, not only spectrum sensing but also prediction of
spectrum utilization and spectrum resource management can
be enhanced. In fact, this approach is useful not only for
the spectrum overlay DSA, such as cognitive radio systems,
but also other spectrum sharing systems such as 802.11
MAC protocol based on wireless local area networks, wireless
systems in Industry-Science-Medical (ISM) bands and inter-
operator spectrum sharing which have been investigated for
future wireless systems such as 5G. [14].

This paper is divided in two parts. The first part, Section II,
describes the concept of SSA using SAS and DSAS. We also
discuss the issues related to the design of efficient SAS and
DSAS.

In the second part, Section III, we present a prototype of
SAS that we have developed. We have investigated the design
issue of spectrum measurement for duty cycle estimation for
which we provide numerical evaluation results obtained by
computer simulations and real spectrum measurement experi-
ments.

Fig. 1: Smart spectrum access for spectrum overlay scenario.

Fig. 2: Wireless network implemented SAS.

II. SMART SPECTRUM ACCESS

We introduce the envisioned SSA concept which is shown in
Fig. 1. In this example, we assume spectrum overlay scenario,
i.e., there are PUs who own the spectrum and SUs who can
opportunistically access the spectrum as long as the PU protec-
tion constraint is satisfied. In addition, there is an SSA system
which consists of DSAS and SAS as described earlier. The
SSA is divided into two separate systems each responsible for
different functionalities which has the benefit of simplifying
the subsystem design and lessening the computational load.

SAS is dedicated for spectrum awareness. The essential
functions of the SAS are observation, spectrum analysis (e.g.
power spectrum via fast Fourier transform), spectrum usage
detection, and analysis process for obtaining the spectrum
utilization statistics. These functions are illustrated in the block
diagram in Fig. 1. The observation block includes the part
from the RF frontend to the analog-to-digital-converter (ADC)
which is responsible for obtaining the I-Q baseband sam-
ples. Spectrum analysis process then converts the measured
IQ samples into power spectral density (PSD) information
which is more practical for later analysis. Based on the PSD,
spectrum usage detection block provides measured spectrum
utilization data in a two-dimensional time-frequency grid.



Finally, statistical information, such as duty cycle and statistics
of the idle and busy periods, can be estimated based on the
spectrum usage detection result.

SAS is expected to cover wide area as well as observe a
wide band of spectrum for sufficiently long time. In order to
cover a wide enough area, it is necessary to deploy a large
number of observation equipment (OE). Deployment of high
performance OEs commonly used in spectrum measurement
is not feasible due to high costs but on the other hand, cheaper
OEs, such as sensor in wireless sensor networks, might not be
able to satisfy the required measurement accuracy.

In fact, the SAS has to be implemented to interface with
a wireless network and an example of such implementation
shown in Fig. 2. In our approach, SAS consists of a small
number of high performance OEs and many low-cost OEs,
i.e. sensors. The high performance OEs also serve as a fusion
center and control station for the sensors which are within
the respective coverage area. To achieve accurate measurement
results with the sensors, one approach to enhance the accuracy
is cooperative measurement with multiple sensors. This is
similar to cooperative spectrum sensing which can achieve
improved sensing performance by exploiting spatial diversity
gain [3], [15]. However, additional time is required to gather
the spectrum usage/utilization information within the SSA
network/system coverage. In spectrum sensing, the time cost
is not negligible since spectrum sensing has to know state
of spectrum instantaneously. On the other hand, in spectrum
usage measurement, the time cost is not a critical issue.

The SSA system has to be designed properly by considering
all the different functions jointly. There can be multiple ways
to obtain the information, thus, we need to consider for
example the computational cost at each sensor, required burden
of information gathering in cooperative measurement, and
how much the performance of DSAS can be improved when
designing the SSA. For example, the type of the estimated
statistical information obtained by the SAS determines the
achievable performance gain that can be provided to the DSAS
as well as the required computational cost and load at each
sensor. In our approach, the functions of observation and
spectrum usage detection are implemented at the sensor level.
This can reduce the burden of communication between sensor
and high performance OE since the spectrum usage detection
is binary information. However, this requires us to develop
reliable, low complexity signal detection methods.

In the database and analysis block, the measured spectrum
utilization data is at first stored in a two-dimensional time-
frequency grid. This data can be later used to analyze the
statistical characteristics such as duty cycle, channel occu-
pancy rate, and statistics of the idle and busy periods of
the spectrum utilization. The statistical data is stored in the
database for the required time and can be update according to
newer measurement results. Finally SAS provide the statistical
information to DSAS to enhance the performance of the
DSAS.

III. PROTOTYPE OF SPECTRUM AWARENESS SYSTEM

In this section, we present a spectrum measurement pro-
totype which corresponds to a possible implementation of
the SAS. Specifically, obviously there is other approaches
to realize SAS. So far, the developed prototype has been
investigated to provide accurate spectrum usage detection by
using Welch FFT based signal detection. In this prototype, all
of function blocks in Fig. 2 are involved but we have mainly
investigated signal processing parts in spectrum analysis and
spectrum usage detection.

A. Issue of threshold setting in spectrum usage detection

In most of the spectrum measurements [4], [16], energy
detector (ED) with threshold is used to detect PU spectrum
utilization in the considered frequency bins. ED is simple
and does not require any prior information about the PU
signal [17], however the detection performance depends on the
threshold setting [18], [19]. There are several ways to set the
threshold and the most appropriate approach is constant false
alarm rate (CFAR). In this case, noise floor (NF) estimation
is an important issue for the threshold setting, however most
of the previous works have not considered this issue deeply
but instead assumed that the NF is known.

In [20], [21], median filtered FCME with a correction factor
β (MED-FCME-β) has been proposed and this algorithm can
estimate NF properly. Thus, the threshold can be set according
to target false alarm probability. The median filter is used to
avoid the effect of large outliers andβ is used to compensate
the effect of biased estimation error.

We have revealed that the NF estimation performance of
the MED-FCME-β deteriorates in the region where SNRγ is
around zero. Similar problem has been observed in several
works for example [22], [23]. This degradation is due to
frequency fluctuation caused by randomness of data symbols.
For this issue, we used Welch FFT in MED-FCME-β and this
method is denoted by MED-FCME-Welch [24]. In [25]–[27],
Welch’s method has been employed for signal detection. In
[24], the benefits of Welch FFT in the NF and duty cycle (DC)
estimations have been shown through computer simulation
based numerical evaluations. We will show the benefits by
experimental evaluations with a prototype system of SAS
system and this can provide validity of the prototype system.
estimation and DC estimation.

B. System model

Block diagram of the prototype system with single OE
is shown in Fig. 3. Cooperative measurement has not been
implemented yet and this is a future issue. The target frequency
band of our measurement system is 2.4 G Hz industry-
science-medical (ISM) band. This is because that in this band
variegated and dynamical spectrum usages can be expected
and we would like to evaluate our measurement system in
such situations.

In this prototype system, there are a real-time spectrum
analyzer (RSA6100A), high capacity hard disk, and two
computers, control computer (PC 1) and signal processing



Fig. 3: Prototype system of spectrum measurement.
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Fig. 4: Time frame configuration of spectrum usage measure-
ment in the SAS system.

computer (PC 2). The role of PC 1 is providing a trigger
signal in terms of spectrum measurement schedule presented
by time frame as shown in Fig. 4, and information of spectrum
measurement specifications to the real-time spectrum analyzer.
Based on the instruction by PC 1, the real-time spectrum
analyzer obtains I-Q samples for the studied frequency band
during the observation period and stores the obtained data to
the hard disk during data transfer and estimation period. This
means the role of observation is implemented in the real-time
spectrum analyzer.

Spectrum analysis, spectrum usage detection and DC esti-
mation are implemented in the PC 2. During data transfer and
estimation period, PC 2 obtains a stored data corresponding
to observation during one observation period. In PC 2, all
processes shown in Fig. 5 are performed in Fig. 5 according to
time frames, superframe and FFT frame. These configurations
of superframe, and FFT frame represent process units of
NF estimation, and Welch FFT, respectively. The observation
period is composed hierarchically and one superframe consists
of NF frames.

Now we focus on data analysis in the analysis computer
in the nF th frame. The block diagram of the data anal-
ysis part is shown in Fig. 5. During one FFT frame, the
OE obtains observed equivalent baseband signaly[n](n =
nFNS , nFNS + 1, · · ·nFNS + NS − 1) with sampling rate
fs Hz and the sampled complex signal is given by

y[n] = x[n] + z[n] (1)

where x[n] represents PU signal component,z[n] represent
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Fig. 5: Block diagram of spectrum analysis, spectrum usage
detection, and DC estimation.

noise component which is circularly symmetric normal com-
plex random variable with zero mean and unit variance. SNR
is defined byγ = E[|x[n]|2]/E[|z[n]|2] andE[] is expectation
operator. Without loss of generalityNS is assumed to be power
of two. In the Welch FFT,NS samples are divided intoNseg

sample groups where each group consists ofNW samples. The
configuration is shown in Fig. 4. In thensegth segment, ob-
served time complex samplesynseg [n] (n = 0, 1, · · · , NW −1)
are given by

ynseg [n] = y[n+ (nseg − 1)NW /2], (2)

without loss of generality we assumeNW is even number
and there is overlapped samples between neighboring sample
groups, i.e. the number of overlapped samplesNO is set to
NW /2 = NO. In this case,NS , Nseg andNW satisfies the
following equation:

Nseg = (2NS)/(NW )− 1 (3)

whereNW is assumed to be divisor of2NS .
Then, the discrete power spectrum density is given by

P (seg)
nseg,cseg =

∣∣∣∣ 1√
NW

NW−1∑
k=0

(hh[k]ynseg [k]e
−j2πcsegk)

∣∣∣∣2 (4)

wherecseg is the index number of the frequency bin andhh[k]
is hamming window. In this case, the power spectrum density
based on Welch FFT is given by

P (Welch)
nF ,cseg =

1

Nseg

Nseg−1∑
nseg=0

P (seg)
nseg,cseg . (5)

The averaging process in the the above equation can sup-
press the frequency fluctuation. Specifically, each spectrum



in segmentP (seg)
nseg,cseg has independent frequency selectivity

characteristic and the averaging leads to nearly flat spectrum.
In the NF estimation block, NF estimation is performed

every time frame and the estimated noise power is denoted by
PN (nF ). To avoid effect of outliers of frequency fluctuation,
median filter is used. The details of the NF estimation methods
is shown in [24].

In the threshold setting block, the thresholdτ is set based
on the target false alarm ratėPFA. Specificallyτ has to satisfy
the following equation

ṖFA = Pr (PnF ,nB > τ |H0) , (6)

wherePr() indicates a probability for an event.
In the signal detection block, based on the thresholdτ ,

signal occupancy is detected at two dimensional bin(nF , nB)
as

DnF ,nB =

{
1 (PnF ,nB

> τ)
0 (otherwise).

(7)

Although median filter can provide accurate NF estimation,
misdetection of the PU channel usage would still be possible
with ED. For this issue, localization algorithm based on
double-thresholding (LAD) with adjacent cluster combining
(ACC), LAD-ACC, is used in [21].

LAD-ACC algorithm composed of LAD process and ACC
process, and details are shown for example in [21], [24]. In
the LAD, two thresholds, low thresholdτL and high threshold
τH, are used and they are set based on target clean sample
rejection rate (CSRR),̇PFA,L and ṖFA,H, respectively. Using
the low threshold is possible to achieve high sensitivity for
detecting low level signal while less false alarm probability can
be achieved by the high threshold. In addition, ACC process
can further compensate the miss detection.

The output of ACC based onDnF ,nB is denoted byAnF ,nB

and DC for a binnB is given by

DC =
1

nB,max

nB,max∑
k=0

AnF ,k, (8)

wherenB,max is the number of observed time samples in a
superframe.

C. Experimental results based on the prototype system

We evaluate DC estimation performances in terms of MED-
FCME-β and MED-FCME-Welch. The main difference be-
tween two methods is that Welch FFT is used in MED-FCME-
Welch, but normal FFT is used in MED-FCME-β. There are
three target probabilities, the first one is CSRR for setting
ṖFA,CSRR for setting TCME, the second one isṖFA,L for
setting τL, and the third one isṖFA,H for setting τH . They
are set as follows;ṖFA,CSRR = 0.01, ṖFA,H = 4.54 · 10−5,
and ṖFA,L = 0.01. FFT sizeNS and segment size in Welch
FFT NW are set to1024 and64, respectively.

In [24], we have confirmed that MED-FCME-Welch can
achieve better DC estimation performance by computer sim-
ulation, but now we confirm it with experimental demonstra-
tion. The SG transmits data packet based on IEEE 802.11g

standard with a specified DC to real-time spectrum analyzer
(RSA6100A) with a cable. The bandwidth of the transmit
signal is around 20MHz and the observed bandwidth is set
to 40MHz. The DC estimation performance as a function of
transmit power of the SG is shown in Fig. 6 with different
DCs (0.1, 0.52, 0.89). We can confirm that our proposed
method outperforms the MED-FCME-β. The gain obtained
by the MED-FCME-Welch compared to the MED-FCME-β
is from 12 dB to 15dB and this is obtained byNseg = 31
times averaging process, i.e.10 log10 31 ≈ 14.9 dB.

The location of the experiment is in 4th floor, building
number 5, Tokyo university of agriculture and technology,
in Tokyo, Japan. The university is not located in downtown
Tokyo, but it is located in small city. In the 4th floor, there is
one laboratory which uses the sixth channel (center frequency
is 2.437 GHz) in 2.4 GHz wireless LAN channel with one
access point, and the laboratory locates in front of the location
of experiment. The signal transmitted by the access point is
the most significant in the observed signal.

The result of DC estimation is shown in Fig. 7. DC
estimation obtained by MED-FCME-Welch is always slightly
larger than that of MED-FCME-β while false alarm perfor-
mances are almost equivalent. This indicates that sensitivity of
MED-FCME-Welch is better than that of MED-FCME-β. In
addition, DC during week days is larger than DC in weekend
(Saturday and Sunday). This is because number of users (in
this case students and staff in the laboratory) during the
weekend is less than the number during weekday. In addition,
the behaviors of DC during one day in week days have strong
correlations and this is also related to the behavioral pattern
of the users.
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IV. CONCLUSION

In this paper, we have shown the idea of smart spectrum
access which consists of SAS and DSAS. This approach has a
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potential to achieve practical and efficient dynamic spectrum
access even if the traffic of PU is dynamic. The main reason of
the division of roles, i.e. SAS and DSAS, is to reduce burden
per system and terminal. In SAS, cooperative measurement
is one of key approaches sine this approach can achieve
accurate spectrum awareness due to space diversity while it
can maintain low cost OE. However, burden of information
gathering in the cooperative measurement is a significant
future issue.

We have also shown a prototype system of spectrum aware-
ness system. Experimental results provides a validity of the
prototype system.
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