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Abstract—For pilot sequence based multiple input multiple
output (MIMO) channel estimation, the arrangements of pilot
symbols, such as the block or comb type arrangement, is known to
play an important role. In this paper we compare the performance
of block and comb pilot symbol patterns in terms of uplink mean
square error (MSE) and spectral efficiency when the receiver at
the base station employs least square (LS) or minimum mean
square error (MMSE) channel estimation and MMSE equalizer
for uplink data reception. For this system, we derive a closed
form solution for the MSE and spectral efficiency that allows us
to obtain exact results for an arbitrary number of antennas. Our
key observation is that the comb pilot arrangement allows for
unequal pilot-data power allocation in the frequency domain,
which leads to a significant spectral efficiency increase. This
spectral efficiency increase is particularly important with LS
estimation and as the number of base station antennas grows
large. It also gives noticeable gains with MMSE estimation. Our
main conclusion is that with a large number of antennas, unequal
power allocation facilitated by comb arrangement can give large
gains over alternative pilot arrangements. 1

I. INTRODUCTION

Since the seminal work by Hassibi and Hochwald [1],

a number of papers investigated the trade-off between the

resources used for channel state information (CSI) acquisition

and data transmission. For example, assuming a block fading

reciprocal channel, a finite number of symbols in the time

and frequency domains are available for CSI acquisition, and

uplink as well as downlink precoding and data transmission

[2], [3]. Also, under a fixed power budget, pilot symbols reduce

the transmitted energy for data symbols, as it has been pointed

out in [4] and [5] where the optimal pilot-to-data power ratio

(PDPR) is investigated for various pilot patterns and receiver

structures. The results of [5], for example, indicate that the

optimal PDPR provides about 2-3 dB gain compared with

equal power for pilot and data symbols. Subsequently, [6]

derived a closed form of the optimal PDPR for minimum mean

square error (MMSE) channel estimation and showed that a

tight bound lying in the quasi-optimal region provides a good

approximation for the optimal PDPR. More recently, [7] de-

rived a closed form PDPR that maximizes the capacity bound
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the Swedish Foundation for Strategic Research Strategic Mobility SM13-0008
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of MIMO-OFDM systems and studied the impact of carrier

frequency offset (CFO) on maximizing power allocation.

In [8] and [9], equivalence conditions for the achiev-

able spectral efficiency between block-fading channels and

continuous-fading channels are discussed. An approximate

closed-form analytical expression of the spectral efficiency is

derived in the hypothesis of MMSE estimation.

In our previous work [10], we investigated the effects of

the PDPR on the MSE, assuming a single pilot and a single

data symbol under a fixed sum power budget with least square

(LS) channel estimation at the base station (BS). While [10]

provides insight into the trade-off related to PDPR, it does not

consider the trade-off related to the number of symbols used for

CSI acquisition and data transmission, which is critical for the

spectral efficiency. Therefore, the purpose of the present paper

is to devise a methodology to find the optimum number of pilot

and data symbols and the optimum PDPR. It turns out that the

constraints for these trade-offs depend on the pilot pattern that

is used in the time and frequency domains. Specifically, the so

called block type arrangement dedicates all frequency channels

within a given time slot to either channel estimation or data

transmission whereas the comb pilot pattern employs pilot and

data symbols mixed in the frequency domain within a single

time slot.

The design of the uplink demodulation reference signals

(DMRS) specifically in 3GPP Long Term Evolution Advanced

(LTE-A) systems is described in [11]. In the LTE uplink,

DMRS:s are used to facilitate channel estimation for the

coherent demodulation of the physical uplink shared and

control channels. The LTE DMRS:s occupy specific OFDM

symbols within the uplink subframe according to the block

type arrangement and support a large number of user equip-

ment utilizing cyclic extensions of the well known Zadoff-Chu

sequences [12].

Our key contribution in the present paper is the derivation

of a closed form solution for both the uplink data MSE

and spectral efficiency specifically taking into account the

constraints of the comb and block type pilot arrangements.

As a major difference with respect to previous works (i.e.,

[1]–[9], this closed form result allows us to find the close-to-

optimum number of pilot symbols and pilot power for a generic

channel estimation method. In particular, we compare LS and

MMSE channel estimation in block-type and comb-type pilot

arrangement, for a BS employing a large number of antennas.
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This approach enables us to arrive at some insights that we

believe are novel in the massive MIMO literature.

The system model, including the description of the block and

comb type pilot patterns, is defined in Sect. II. Next, Sect. III,

discusses the LS and MMSE channel estimation algorithms

specifically in block or comb systems and, in Sect. IV, we

introduce the the MSE and spectral efficiency for the equalized

uplink data symbols assuming linear MMSE reception. Our

main analytical results are derived in Sect. V. Sect. VI presents

numerical results and Sect. VII concludes the paper.

II. SYSTEM MODEL

We consider the uplink transmission of a multi-antenna

single cell wireless system, in which users are scheduled on

orthogonal frequency channels. It is assumed that each mobile

station (MS) employs an orthogonal pilot sequence, so that no

interference between pilots is present in the system. This is a

common assumption in massive multi-user MIMO systems in

which a single MS may have a single antenna. The base station

(BS) estimates the channel h (column vector of dimension

Nr, where Nr is the number of receive antennas at the BS)

by either LS or MMSE channel estimation to initialize an

MMSE equalizer for uplink data reception. Since we assume

orthogonal pilot sequences, the channel estimation process can

be assumed independent for each MS. We consider a time-

frequency resource of T time slots in the channel coherence

time, and F subcarriers in the coherence bandwidth, with a

total number of symbols τ = F · T . We denote by τp the

number of symbols allocated to pilots, and by τd the number

of symbols allocated to data (τp + τd = τ ). Moreover, we

consider a transmission power level Pp and P for each pilot

and data symbol, respectively. With this setup, we consider

two pilot symbol allocation methods, namely block type and

comb type, which we discuss in the following subsections.

A. Block Type Pilot Allocation

The block type pilot arrangement consists of allocating

one or more time slots for pilot transmission, by using all

subcarriers in those time slots. This approach is a suitable

strategy for slow time-varying channels. Given T slots, a

fraction of Tp slots are allocated to the pilot and Td = T −Tp

slots are allocated to the data symbols. Note that a maximum

transmission power Ptot is allowed in each time slot, among

all F subcarriers. This power constraint is then identical for

both the pilot (Pp) and data power (P ), i.e.,

FPp ≤ Ptot FP ≤ Ptot. (1)

The power cannot be traded between pilot and data, but the

energy budget can be distributed by tuning the number of time

slots Tp and Td, i.e., τp = FTp and τd = FTd.

B. Comb Type Pilot Allocation

In the comb type pilot arrangement a certain number of

subcarriers are allocated to pilot symbols, continuously in time.

This approach is a suitable strategy for non-frequency selective

channels. Given F subcarriers in the coherence bandwidth, a

fraction of Fp subcarriers are allocated to the pilot and Fd =
F − Fp subcarriers are allocated to the data symbols.

Each MS transmits at a constant power Ptot, however,

the transmission power can be distributed unequally in each

subcarrier. In particular, if we consider a transmitted power Pp

for each pilot symbol and P for each data symbol transmission,

the following constraint is enforced:

FpPp + (F − Fp)P = Ptot. (2)

The total number of symbols for pilots is τp = TFp and for

data is τd = TFd. However, with comb type pilot arrangement,

the trade-off between pilot and data signals includes the trade-

offs between the number of frequency channels and between

the transmit power levels, which is an additional degree of

freedom compared with the block type arrangement.

III. CHANNEL ESTIMATION

Let us consider a MS that transmits an orthogonal pilot

sequence s = [s1, ..., sτp ]
T , where each symbol is scaled as

|si|2 = 1, for i = 1, .., τp. Thus, the Nr × τp matrix of the

received pilot signal at the BS from the MS is

Yp = α
√

Pphs
T +N, (3)

where we assume that h is a circular symmetric complex

normal distributed vector of r.v. with mean vector 0 and co-

variance matrix C (of size Nr), denoted as h ∼ CN (0,C), α
accounts for the propagation loss, N ∈ CNr×τp is the spatially

and temporally additive white Gaussian noise (AWGN) with

element-wise variance σ2.

In this paper, we consider two techniques, i.e., the least

square (LS) and the minimum mean-square error (MMSE)

channel estimation that are detailed in the following subsec-

tions.

A. LS Estimation

Conventional LS estimation relies on correlating the re-

ceived signal with the known pilot sequence. The BS estimates

the channel based on (3) assuming

ĥLS = h+ h̃LS =
1

α
√

Pp

Yps∗(sT s∗)−1 = h+
1

α
√
Ppτp

Ns∗.

(4)

Note that Ns∗ =
[∑τp

i=1 s
∗
ini,1, ...,

∑τp
i=1 s

∗
ini,Nr

]T
, then

Ns∗ ∼ CN (0, τpσ
2INr

).

By considering h ∼ CN (0,C), it follows that the esti-

mated channel ĥLS is a circular symmetric complex normal

distributed vector ĥLS ∼ CN (0,RLS), with

RLS = E{ĥLSĥ
H
LS} = C+

σ2

α2Ppτp
INr

. (5)

The channel estimation error is defined as h̃LS = h− ĥLS ,

so that h̃LS ∼ CN (0,WLS) with

WLS =
σ2

α2Ppτp
INr
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and the estimation mean square error (MSE) is derived as

εLS = E{||h̃LS||2F } = tr {WLS} =
Nrσ

2

α2Ppτp
, (6)

where || · ||2F is the Frobenius norm.

B. MMSE Estimation

We define a training matrix S = s⊗INr
(of size τpNr×Nr),

so that SHS = τpINr
. The τpNr × 1 vector of received signal

(3) can be conveniently rewritten as

Ỹp = α
√

PpSh+ Ñ.

where Ỹp, Ñ ∈ CτpNr×1.

The MMSE equalizer aims at minimizing the MSE between the

estimate ĥMMSE = HỸp and the channel h. More precisely,

H =argmin
H

E{||HỸp − h||2F }

=α
√

Pp(σ
2INr

+ α2PpCSHS)−1CSH ; H ∈ C
Nr×τpNr .

The MMSE estimate is then expressed as

ĥMMSE = α
√

Pp(σ
2INr

+ α2PpτpC)−1CSH(α
√

PpSh+ Ñ)

=

(
σ2

α2Ppτp
INr

+C

)−1

C

(

h+
1

α
√

Ppτp
SHÑ

)

.

(7)

Notice that SHN ∼ CN (0, τpσ
2INr

), therefore the esti-

mated channel ĥMMSE is also a circular symmetric complex

normal distributed vector ĥMMSE ∼ CN (0,RMMSE), that is

ĥMMSE = h+ h̃MMSE ,

and

RMMSE = C2

(
σ2

α2Ppτp
INr

+C

)−1

, (8)

where we considered C = CH and applied the commutativity

of C and INr
to substitute

(
σ2

α2Ppτp
INr

+C

)−1

C = C

(
σ2

α2Ppτp
INr

+C

)−1

.

The channel estimation error is h̃MMSE = h− ĥMMSE so

that h̃MMSE ∼ CN (0,WMMSE) with

WMMSE = C

(

INr
+

α2Ppτp
σ2

C

)−1

and the estimation MSE simply follows as

εMMSE = tr

{

C

(

INr
+

α2Ppτp
σ2

C

)−1
}

. (9)

Notice that for both LS and MMSE channel estimation, the

estimation MSE is a monotonically decreasing function of the

pilot energy per antenna Ppτp.

In the next section, we characterize the receiver and the

uplink signal MSE and spectral efficiency based on h̃ which

is computed for LS (ĥLS) and MMSE estimation (ĥMMSE )

in this section.

IV. LINEAR MMSE RECEIVER

We consider a MMSE receiver at the BS. For each trans-

mitted data symbol x, the data signal received by the BS can

be written as

y = α
√
Phx+ n,

where n ∼ CN (0, σ2INr
).

Using a linear detection matrix G of size 1×Nr, the mean-

square error between the estimate Gy and the transmitted sym-

bol x is (Gy−x)2. The resulting MSE(h) = Ex,n{(Gy−x)2}
is

MSE(h) =G(α2PhhH + σ2I)Nr
GH

− α
√
P (Gh+ hHGH) + 1. (10)

According to [13], the instantaneous signal-to-noise-ratio

(SNR) of the MMSE receiver is given by:

γ(h) =
1

MSE(h)
− 1.

Using this relationship, the achievable spectral efficiency can

be expressed as:

S(h) =
(τ − τp)

τ

[

log

(
1

MSE(h)

)]

. (11)

We recall that the performance of the MMSE receiver

depends on the availability of channel state information (CSI)

at the receiver. In the considered scenario, the channel h is not

available at the BS. The BS implements the MMSE receiver by

using the estimated channel ĥ as if it was the actual channel,

[10], i.e., the detection matrix, which is a function of ĥ (more

precisely, ĥLS or ĥMMSE ) is calculated as

G = G(ĥ) =
α
√
P ĥH

α2P ||ĥ||2 + σ2
. (12)

In the next section, we derive a closed form analytical

expression for the uplink MSE and the spectral efficiency for

both LS and MMSE channel estimation.

V. ANALYTICAL DERIVATION OF THE SPECTRAL

EFFICIENCY

In this section, we propose an analytical model to study

the performance of the single-cell multiple antenna system

illustrated in the previous section, in order to derive the optimal

resource (slot/frequency/power) allocation for pilot and data.

We first introduce a useful lemma and then we derive (10) and

(11) analytically, by considering the MMSE receiver in (12).

A. Conditional Distribution of the Channel

When implementing the MMSE receiver in (12), the expres-

sion of the uplink MSE in (10) contains both the actual channel

h and the estimated channel ĥ. However, since the square

error is averaged over n, the MSE depends on the conditional

distribution (ĥ|h) or, equivalently, (h|ĥ). Therefore, in order
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to compute the unconditional MSE analytically, we introduce

the following lemma.

Lemma 1: The conditional distribution of the channel given

its estimation ĥ is

(h|ĥ) ∼ CN (Dĥ,Q), (13)

where

D =

{
CR−1

LS for LS estimation

INr
for MMSE estimation

Q =

{
C−CR−1

LSC for LS estimation

C−RMMSE for MMSE estimation

with RLS and RMMSE given in (5) and (7), respectively.

Proof: The proof is reported in the appendix.

B. Calculating the Uplink MSE

By using Lemma 1, the MSE in (10) can be conveniently

expressed as a function of only the estimated channel ĥ as

MSE(ĥ) =G(ĥ)
(

α2P (DĥĥHDH +Q) + σ2INr

)

G(ĥ)H

− α
√
P
(

G(ĥ)Dĥ+ ĥHDHG(ĥ)H
)

+ 1. (14)

In the special case of independent channel distributions with

identical variances (i.e., C = cINr
), we exploit the following

lemma.

Lemma 2: Assume C = cINr
, where c ∈ R

+, then the

matrices D and Q are diagonal with D = dINr
and Q = qINr

and the MSE is given by

MSE(ĥ) =
p2||ĥ||4(d− 1)2 + p‖ĥ‖2(2σ2 − 2dσ2 + b) + σ4

(

p‖ĥ‖2 + σ2
)2 ,

(15)

where p = α2P and b = qp+ σ2.

Proof: The proof is reported in the appendix.

It is important to notice that (15) depends on the channel only

though the norms ‖ĥ‖2 and ||ĥ||4.

C. Calculating the spectral efficiency

The spectral efficiency expression in (11) can be also

conveniently rewritten as a function of ĥ, by using the results

from Lemma 1 and 2. The average spectral efficiency is then

S̄ =
(τ − τp)

τ
E
ĥ

{[

log

(

1

MSE(ĥ)

)]}

. (16)

which lead to the following results.

Result 1 (Spectral efficiency with LS estimation): Assume

C = cINr
, where c ∈ R+, then the average spectral efficiency

with LS channel estimation and MMSE receiver is

S̄LS =
(τ − τp)

τ

(
2G(x0)− G(x1)− G(x2)

(Nr − 1)!
− log(d− 1)2

)

(17)

with x1,2 = 1
2

(

− 2σ2−2dσ2+b
p(d−1)2 ±

√
(

2σ2−2dσ2+b
p(d−1)2

)2

− 4σ4

p2(d−1)2

)

,

x0 = σ2

p , p = α2P , b = qp+σ2, q = c(1−c/r, r = c+ σ2

α2Ppτp
,

and where

G(x) = MeijerG
1,3
2,3

(
0, 1

0, 0, Nr

∣
∣
∣
∣

x

r

)

, (18)

is the Meijer G-function.

Proof: The proof is reported in the appendix.

Result 2 (Spectral efficiency with MMSE estimation):

Assume C = cINr
, where c ∈ R+, then the average spectral

efficiency with MMSE channel estimation and MMSE receiver

is

S̄MMSE =
(τ − τp)

τ

(

log(pb) +
2G(x3)− G(x4)

(Nr − 1)!

)

(19)

with x3 = σ2

p , x4 = σ2

pb , b = qp + σ2, q = σ2c
σ2+α2cPpτp

, and

G(x) defined in (18).

Proof: The proof is reported in the appendix.

We notice that for a fixed pilot energy, the average spectral

efficiency decreases with τp. Intuitively, this means that for a

given pilot energy (τpPp), this energy should be concentrated

to as few time slots as possible with the maximum allowed

pilot power Pp. This is because the estimation MSE in Eqs.

(6) and (9) only depend on the τp and Pp through the product

(that is the pilot energy). The hypothesis of independent and

identical channel distributions (i.e., C = cINr
) is necessary to

obtain a tractable analytical expression and it is widely adopted

in the related literature (i.e., [8]). Although correlation among

antennas may have an effect on the value of achievable spectral

efficiency, the optimal pilot resource allocation is not expected

to change significantly with the antenna correlation.

D. Summary

In this section, we derived the spectral efficiency for a

single cell multi-antenna system with pilot-based channel

estimation that implements a linear MMSE receiver. Moreover,

we provided a closed form analytical expression of the spectral

efficiency that makes use of the Meijer G-function, for both

LS and MMSE channel estimation methods.

We started by deriving the conditional distribution (h|ĥ),
which allows for computing the uplink MSE as a function of

the norm of the estimated channel ‖ĥ‖2 through Lemma 2. By

averaging the spectral efficiency over the distribution of ‖ĥ‖2,

we derived the closed form expression of the spectral efficiency

for LS estimation in Result 1 and for MMSE estimation in

Result 2.

Under the constraints (1) and (2) for symbols and power

in the time-frequency domain, this model reproduces the

behavior of the block type and comb type pilot arrangement,

respectively, as we show in the following section.
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2 4 6 8 10 12 14
Pilot Time Slots

0.1

0.2

0.5

1.0

2.0

SE

Nr=1000

MMSE

LS

Nr=10

SE

Fig. 1. Spectral efficiency (SE) in bps/Hz in log scale of block type channel
estimation as a function of the number of pilot time slots with Nr = 10 and
Nr = 1000 antennas at the BS. With block type arrangement and EPA, all
F = 12 subcarriers in each of the T = 14 time slots are dedicated to either
pilot or data transmission with Ptot = 250 mW total transmit power shared
equally in the frequency domain. The Tp that maximizes spectral efficiency
is clearly different with LS and MMSE estimations.

VI. NUMERICAL RESULTS

A. Equal Power (Power Density for Each Symbol) Allocation

Recall that equal power allocation (EPA) implies that all

symbols within a slot are transmitted with Ptot/F transmit

power. In this case, the pilot-data resource allocation trade-off

consists of the number of time slots (Tp out of T ) in the case of

block type arrangement or the number of frequency channels

(Fp out of F ) in the case of comb type arrangement used for

pilot transmission.

Figure 1 shows the spectral efficiency in bps/Hz as the

function of time slots Tp when using LS and MMSE channel

estimation with Nr = 10 and Nr = 1000 BS antennas for a

specific value of the large scale fading (50 dB). As expected,

the maximum spectral efficiency that can be reached with

MMSE estimation (3 bps/Hz) is much higher than that of

the optimum spectral efficiency value with LS estimation (1

bps/Hz). Also, the optimum spectral efficiency is reached with

different Tp settings: while with MMSE Tp = 2 maximizes

the spectral efficiency, with LS we need to spend more slots

on CSI acquisition (Tp = 5).

Figure 2 shows a similar tendency in terms of the necessary

frequency channels (subcarriers) that optimize the spectral

efficiency with comb type pilot arrangement. The similar

(almost identical) behavior that can be seen in Figure 1 and

2 can be explained by noticing that under the assumption of

channel coherence in the time and frequency domains of a

resource block of F = 12 frequency channel and T = 14 time

slots, block and comb type arrangements with equal power

allocation among the F × T = 168 resource elements result

in the same total pilot energy. That is under the coherence

assumption, the roles of the time and frequency domains from

the perspective of pilot energy are the same.

B. Optimum Power Allocation

When using the comb pilot symbol pattern, it is possible

to use Fp subcarriers for transmitting pilot symbols and the

2 4 6 8 10 12
Pilot Channels

0.1

0.2

0.5

1.0

2.0

SE
SE

Nr=1000

MMSE

LS

Nr=10

Fig. 2. Spectral efficiency (SE) in log scale of comb type channel estimation as
a function of the number of pilot channels in the frequency domain with Nr =

10 and Nr = 1000 antennas at the BS. With comb type arrangement and EPA,
Fp subcarriers (each with Ptot/F transmit power) are used to transmit pilot
symbols in each of the T = 14 time slots. The Fp that maximizes spectral
efficiency is clearly different with LS and MMSE estimations.

200 400 600 800 1000
Nr

50

100

150

200

Optimal Pilot Power

LS

MMSE

Fig. 3. Optimum pilot power in mW as the function of the number of receive
antennas at the BS when using LS (upper curve) or MMSE (lower curve)
channel estimation. With LS estimation, the optimum pilot power increases
with the number of antennas, whereas with MMSE estimation, the optimum
pilot power is constant (staying at 40% of the total power budget Ptot in each
time slot).

remaining F −Fp symbols for data transmission in each time

slot. In this case, it is also possible to use unequal total power

for pilot (Pp) and data symbol transmission as long as the sum

over the F symbols in each time slot does not exceed the Ptot

power budget. In this case, each of the Fp pilot subcarriers are

transmitted with Fp/Pp transmit power and both Fp and Pp

are design parameters.

Figure 3 shows the value of the pilot power Pp in mW

that maximizes the spectral efficiency when using the comb

arrangement and employing LS (upper) and MMSE (lower)

channel estimation as the number of antennas grows from

Nr = 2 to Nr = 1000. With LS, the optimal pilot power

grows from about 40% to around 80% of the Ptot total power

budget, whereas with MMSE estimation, the optimal pilot

power remains the same.

Figure 4 shows the achieved spectral efficiency as the
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MMSE – Optimal P

MMSE – Equal P

LS – Equal P

LS – Optimal P

Fig. 4. The spectral efficiency (SE) as the function of the number of receive
antennas at the BS, when employing LS (lower 2 curves) and MMSE (upper
2 curves) channel estimation. In both cases, optimum pilot power allocation
is compared with equal power allocation between pilot and data transmission.
With LS estimation, optimum pilot power allocation gives large gains, whereas
with MMSE estimation, this spectral efficiency gain obtained by optimum pilot
power allocation is less, although still significant.

function of the antennas with LS and MMSE estimation with

equal (EPA) and optimal pilot power allocation. Optimizing

the pilot power is clearly beneficial with both LS and MMSE

estimations. With LS estimation, optimizing the pilot power is

particularly important as the number of antennas grows large,

but even with MMSE estimation, the spectral efficiency in-

creases by 20%. Recall that unequal power allocation over the

subcarriers in each time slot requires comb type arrangement,

implying that with block type pilot pattern, MMSE estimation

gives large gains over LS estimation when the number of

antennas is large.

Figures 5 and 6 compare the achievable spectral efficiency

as the function of the pilot power and the number of pilot

frequency channels with Nr = 10 and Nr = 1000 receive

antennas. With Nr = 10, the achievable spectral efficiency is

similar with LS and MMSE channel estimation, whereas with

Nr = 1000 antennas, the optimal spectral efficiency is roughly

twice as high with MMSE as with LS.

VII. CONCLUSIONS

In this paper, we considered the trade-off between the time,

frequency and power resources allocated to the transmission

of pilot and data symbols and its impact on the MSE and

spectral efficiency of the uplink of a single cell system, in

which the number of receive antennas grows large. We made

the point that the joint allocation of frequency, time and

power resources is subject to constraints that depend on the

specific pilot pattern, such as the pattern used by the block and

comb type pilot arrangements. In this rather general setting,

we provided an analytical method to calculate the MSE and

the uplink spectral efficiency that enabled us to derive exact

numerical results when the receiver at the base station employs

LS or MMSE channel estimation and MMSE equalizer for

uplink data reception. We found that with a large number of

antennas, exploiting the engineering freedom of tuning both the

Fig. 5. Spectral efficiency with comb pilot arrangement and LS (lower) and
MMSE (upper) channel estimation as a function of the number of frequency
channels and the total pilot power (out of the Ptot) with Nr = 10 receive

antennas. The pilot power that maximizes spectral efficiency is around P opt
p =

100 mW with both LS and MMSE.

Fig. 6. Spectral efficiency with comb pilot arrangement and LS (lower) and
MMSE (upper) channel estimation as a function of the number of frequency
channels and the total pilot power with Nr = 1000 receive antennas. The

pilot power that maximizes spectral efficiency is around P opt
p = 200 mW

with LS and 100 mW with MMSE estimation.

number of pilot symbols and the pilot transmit power levels

become increasingly important, especially if the relatively

simple LS estimator is used at the base station. Also, the gain

of using MMSE estimation (preferably with optimized pilot

power allocation) increases over LS estimation. Interestingly,

the optimal PPDR is different when using MMSE and LS

estimators and the gain in terms of spectral efficiency when

optimizing both the number of pilot symbols and the transmit

power levels increases as the number of antennas increases. We

believe that our methodology as well as the obtained insights

are new and provide useful guidelines for designing practical

large antenna systems.
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APPENDIX

PROOF OF LEMMA 1

Given h ∼ CN (0,C), and ĥ ∼ CN (0,R), from (10.24)–

(10.27) of [14], it follows that h|ĥ is a complex normal dis-

tributed random vector with the following mean and covariance

E(h|ĥ) = E(hĥH)R−1ĥ,

C
h|ĥ =C− E(hĥH)R−1E(ĥhH).

For the LS channel estimation model in (4), we derive

E(hĥH) = C+
1

α
√

Ppτp
E(hsTNH) = C.

For the MMSE channel estimation model in (7), we derive

E(hĥH) =

(

σ
2

α2Ppτp
INr

+C

)

−1

C

(

C+
1

α
√

Ppτp

E
(

hÑ
H
S

)

)

=

(

σ
2

α2Ppτp
INr

+C

)

−1

C
2 = C

2

(

σ
2

α2Ppτp
INr

+C

)

−1

.

The expressions of D and Q in (13) are obtained by

substitution.

PROOF OF LEMMA 2

Let us assume C = cINr
. In the LS estimation case, from (5)

we have

RLS =

(

c+
σ2

α2Ppτp

)

INr

and therefore by using Lemma 1, D = dINr
and Q = qINr

,

where

d = c

(

c+
σ2

α2Ppτp

)−1

and q = c− c2
(

c+
σ2

α2Ppτp

)−1

.

In the MMSE estimation case, from (8) we have

RMMSE = c2
(

c+
σ2

α2Ppτp

)−1

INr
,

and therefore by using Lemma 1, D = dINr
and Q = qINr

,

where

d = 1 and q = c− c2
(

c+
σ2

α2Ppτp

)−1

.

By replacing D = dINr
, Q = qINr

and (12) in (14), we

obtain

MSE(ĥ) =1− 2‖ĥ‖2dα2P

‖ĥ‖2α2P + σ2
+

‖ĥ‖2α2P
(

‖ĥ‖2α2P + σ2
)2

×
[

‖ĥ‖2d2α2P + qα2P + σ2
]

=

=

(

‖ĥ‖2p+ σ2
)2

(

‖ĥ‖2p+ σ2
)2 − 2‖ĥ‖2dp(‖ĥ‖2p+ σ2)

(

‖ĥ‖2p+ σ2
)2 +

+
‖ĥ‖2p(‖ĥ‖2d2p+

b
︷ ︸︸ ︷

qp+ σ2)
(

‖ĥ‖2p+ σ2
)2 .

MSE(ĥ) =
p2||ĥ||4(d− 1)2 + p‖ĥ‖2(2σ2 − 2dσ2 + b) + σ4

(

‖ĥ‖2p+ σ2
)2 ,

where p = α2P , b = qp+ σ2.

PROOF OF RESULT 1

The key step to prove Result 1 is to derive the expectation

of the log term in Eq. (16).

By considering the MSE in (15), the log term in Eq. (16)

can be written as:

log

(

1

MSE(ĥ)

)

= − log
(

MSE(ĥ)
)

=− log
(
p2Y 2(d− 1)2 + pY (2σ2 − 2dσ2 + b) + σ4

)

+ 2 log
(
Y p+ σ2

)

where Y = ‖ĥ‖2.

We therefore need to calculate the following expectation:

E
ĥ

[

− log
(

MSE(ĥ)
)]

= 2

∫ ∞

x=0

log
(
xp+ σ2

)
fY (x)dx (20)

−
∫ ∞

x=0

log
(

p2x2(d− 1)2 + px(2σ2 − 2dσ2 + b) + σ4
)

fY (x)dx,

where the density function of Y – being the sum of exponen-

tially distributed random variables of parameter r, where r is

the diagonal element of R –, is given by [10]:

fY (x) =
r−NrxNr−1e−x/r

(Nr − 1)!
x > 0.

Notice that for LS estimation, d = c
(

c+ σ2

α2Ppτp

)−1

6= 1,

therefore the terms of the integral can be rearranged as follows

E
ĥ

[

− log
(

MSE(ĥ)
)]

= 2

∫ ∞

x=0

log (p (x+ x0)) fY (x)dx

−
∫ ∞

x=0

log
(

p2(d− 1)2(x2 + a1x+ a0)
)

fY (x)dx

=2

∫ ∞

x=0

log(x+ x0)fY (x)dx − log(d− 1)2

−
∫ ∞

x=0

log(x2 + a1x+ a0)fY (x)dx (21)

where x0 = σ2

p , a0 = σ4

p2(d−1)2 , and a1 = 2σ2−2dσ2+b
p(d−1)2 .

The last integral can be further simplified by considering

log(x2 + a1x+ a0) = log(x− x1)− log(x− x2),

where x1,2 = 0.5
(

−a1 ±
√

a21 − 4a0

)

.

In conclusion, we have to compute integrals of the form
∫∞

x=0
log (x+A) fY (x)dx, which can be solved in Mathemat-

ica [15] via the Meijer G-function.
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Specifically:
∫ ∞

x=0

log(x +A)fY (x)dx =

ANr

(Nr − 1)!rNr

MeijerG
1,3
2,3

(
−Nr,−Nr + 1
−Nr,−Nr, 0

∣
∣
∣
∣

A

r

)

(22)

where A,Nr > 0, r > 1 and MeijerGm,n
p,q

(
a1, ..., ap
b1, ..., bq

∣
∣
∣
∣
z

)

is the Meijer G-function with parameters p, q,m, n.

Recognizing that

zNrMeijerG
1,3
2,3

(
−Nr,−Nr + 1
−Nr,−Nr, 0

∣
∣
∣
∣
z

)

= MeijerG
1,3
2,3

(
0, 1

0, 0, Nr

∣
∣
∣
∣
z

)

,

(22) is equivalent with:

∫ ∞

x=0

log(x +A)fY (x)dx =

MeijerG
1,3
2,3

(
0, 1

0, 0, Nr

∣
∣
∣
∣
z

)

(Nr − 1)!
(23)

where z = A
r .

By substituting the result of (23) in (21), (17) follows.

PROOF OF RESULT 2

The proof follows with similar steps as for Result 1. How-

ever, in the MMSE case, we have d = 1, and the expectation

in (20) can be conveniently rewritten as

E
ĥ

[

− log
(

MSE(ĥ)
)]

=

=2

∫ ∞

x=0

log
(
xp+ σ2

)
fY (x)dx −

∫ ∞

x=0

log
(

pxb+ σ4
)

fY (x)dx

= log(pb)+2

∫ ∞

x=0

log (x+x3) fY (x)dx−
∫ ∞

x=0

log (x+x4) fY (x)dx,

with x3 = σ2

p , x4 = σ2

pb , b = qp+ σ2, q = σ2c
σ2+α2cPpτp

,

which is solved in Mathematica by using the Meijer G-function

defined in (18).
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