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Abstract—The fifth generation of wireless networks should enable 

the same experience to users at home, in the office or on the move 

thanks to seamless handover. Call admission control (CAC) 

provides the means to avoid call drops due to lack of resources at 

a target cell during handover. The purpose of the CAC is to 

decide if handover should be initiated or if a new call can be 

established. A specific quantity of resources is reserved to the 

users entering the cell in the future to avoid call drops. A 

prediction of user's movement and amount of resources required 

by the users after handover can be performed in order to 

optimize amount of reserved resources. In this paper, we address 

prediction of the number of resources required by the users at 

the target cell after handover. To that end, we propose new 

approach for prediction of channel quality indicator (CQI) after 

handover. The prediction exploits knowledge of handover 

hysteresis and decomposition of interference into two parts. As 

the results show, the proposed algorithm increases ratio of 

successfully predicted CQI up to 1.9 times with respect to existing 

approaches. 

Keywords- 5G, call admission control, handover, interference, 

prediction, mobility 

I.  INTRODUCTION 

Mobility of users essentially influences radio resource 
management in OFDMA-based wireless networks. The reason 
is that the amount of physical resources allocated to a user 
equipment (UE) is varying with user's movement. This happens 
due to changing signal to interference plus noise ratio (SINR). 
In addition, mobility must be handled also from a handover 
procedure point of view. If the UE is moving, handover has to 
be performed to avoid a connection drop and to guarantee 
required QoS (Quality of Service). In the most common case, 
handover is performed if a target cell provides a higher quality 
of signal than a serving cell. With expected increase in density 
of small cells in 5G networks comparing to today 3G/4G 
networks [1], handover becomes even more frequent, 
especially in densely populated areas. Besides fulfilling 
conditions on handover from the signal quality point of view, 
the target cell must be also able to offer enough radio resources 
to guarantee QoS to the users. Resource availability is managed 
by Call Admission Control (CAC) in mobile networks. 

One of the most critical problems occurs if the UE is 
leaving the coverage area of its serving cell and enters the new 
cell, which is not able to provide enough radio resources. In 

this case, the connection is either dropped or QoS of the UE is 
degraded. This situation is considered by the users to be even 
more critical than if the connection would not be established at 
all [2][3]. Therefore, a part of resources at each cell must be 
reserved for the UEs potentially performing handover. 
However, the resource reservation may significantly influence 
overall QoS of all UEs in the network as the reserved resources 
cannot be used by any UE. Thus, if the amount of resources to 
be reserved is over-estimated, the UEs currently served by the 
target cell can exploit only lower amount of resources while 
some resources might not be utilized at all. Therefore, the 
amount of resources to be reserved must be carefully 
determined in order to avoid degradation of QoS for both 
currently served UEs and the UEs performing handover.  

To minimize potential QoS degradation due to the 
reservation of resources, it is useful to predict expected amount 
of users performing handover and quantity of resources 
required by these users. The amount of users performing 
handover is frequently addressed in literature via mobility 
prediction [3][4][5]. However, the quantity of resources 
required by users is omitted in most cases [6] or the same 
amount of resources consumed at the time of prediction is 
expected to be spent also after the handover [7]. Similar 
approach is proposed in [8], where the authors assume to 
reserve amount of Resource Blocks (RBs) according to the type 
of service. However, this assumption is not valid in OFDMA-
based networks, since the number of required RBs does not 
depend only on the required bitrate but also on the experienced 
SINR. Another approach is to estimate QoS/QoE (Quality of 
Experience) for the users [9]. Nevertheless, even for this case, 
the amount of RBs consumed after the handover needs to be 
known. So far, no prediction has been implemented or 
considered for standardization in 4G networks. One of the main 
reasons are accuracy of the prediction and high requirements 
on computation as most of the prediction approaches demand 
heavy computation and processing of information collected in 
the past. Nevertheless, with Cloud-Radio Access Networks (C-
RAN) like approach [10], where network management is 
placed in a powerful cloud, computation capabilities are no 
longer a limiting aspect. Also, the small cell cloud (SCC) 
approach [11] can be exploited for processing of prediction. 
Both above-mentioned approaches seem to be very promising 
candidates for 5G. The implementation of advanced computing 
capabilities in C-RAN or SCC can be seen as a key enabler for 
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exploitation of advanced procedures for mobility management 
based on prediction. The prediction for mobility management 
opens a way how to address problem of seamless connectivity, 
which is one of the essential technical objective in 5G [12]. 

In this paper, we propose a novel algorithm for prediction 
of SINR and CQI after handover is performed. The proposed 
approach exploits knowledge of system parameters related to 
handover and possibility to decompose the overall interference 
into two components. With accurate CQI prediction, the 
number of RBs required by the UEs after the handover can be 
derived and network performance can be improved.  

The rest of the paper is organized as follows. Next section 
defines system model for the proposed prediction. Section III 
describes methodology for performance evaluation and 
presents simulation results. Last section summarizes the major 
findings and outlines future work. 

II. SYSTEM MODEL FOR PREDICTION 

This section describes the system model and, then, it 
presents a novel approach for prediction of SINR and CQI 
experienced by the UE after handover. 

During the UE's movement, received signal strength from 
all cells is varying. Therefore, if the UE crosses boundary 
between two cells, handover to the target cell is performed. 
Handover in mobile network is typically initiated if the signal 
level observed by the UE from the serving cell (ss) drops below 
the signal level from the target cell (st) at least by a hysteresis 

(∆HM), i.e., handover is initiated if: 

HMts ss ∆−<  (1) 

Usually, this condition must hold for the time-to-trigger 
(TTT) interval in order to avoid ping-pong effect. For the same 
reason, ss and st represent statistic values averaged over time in 
real networks and also in our evaluations.  

In OFDMA networks, efficiency of data delivery depends 
not only on the level of ss but also on the interference caused by 

other neighboring cells (ιn) and noise (n). Thus, the crucial 
parameter for determination of the channel quality is SINR 
defined as: 
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where sj represents received signal from the j-th 

neighboring cell. 

The objective of our work is to derive SINR level after the 

handover. To that end, we propose to decompose the overall 

interference after the handover (ιHO) into two parts. The first 

part is the interference caused by the former serving cell. The 

interference due to the serving cell is known very accurately 

as, in fact, this is a difference between st and ss, which is equal 

to hysteresis, i.e., st – ss = ∆HM (see Figure 1). The interference 

caused by serving cell can be influenced also by the TTT. 

However, this impact is negligible as the TTT value is 

typically in tens or hundreds of ms [13]. Moreover, the TTT is 

indirectly proportional to the speed of users (i.e., lower value 

for faster user). Therefore, we can neglect the impact of the 

TTT. The second part of the ιHO is the interference due to other 

(neighboring) cells and noise. This level of interference is not 

known and its prediction is a very complex problem. We 

propose to exploit knowledge of the level of interference 

caused by all neighboring cells but the target cell at the time 

when the prediction is carried out. Thus, we calculate 

interference of all cells except the serving and target cells (ιn) 

in the time of prediction (tp) as:  
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where sj(tp) represents the signal level measured by the UE 

from the j-th cell in the time tp (see Figure 1). 

Knowing ιn and quality of signal from the target cell, we 

define new parameter – "signal of target cell to interference 

plus noise ratio" (γT): 
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 Then, the interference at the time of handover (ιHO) is a 

function of the γT and ∆HM. To simplify the complex problem of 
interference prediction, we assume the interference due to the 
neighboring cells is not varying significantly. This assumption 
holds for a short interval before the handover. The interval of 
validity of this assumption is investigated later in this paper. 

The function describing relation between ∆HM (representing 

impact of interference caused by the former serving cell) and γT 
(representing impact of interference caused by all neighboring 
cells except the target one) must be found to calculate expected 

SINR at the handover time (γHO). In this regard, we define 
relative significance of both components with respect to their 

mutual levels. In other words, predicted γHO depends on 
whether the former serving cell will be a dominant interferer 
with respect to the sum of interference produced by all 
neighboring cells or not. Three cases can be distinguished: 

• First, if ∆HM << γT, the γHO is more influenced by ∆HM as 
the former serving cell will produce more significant 
interference than all neighboring cells together.  

• Second, if ∆HM >> γT, the γHO should be closer to the γT 
as the neighboring cells introduce higher level of 
interference than the former serving cell.  

• Third, if γT ≈ ∆HM, the γHO will be lower than both ∆HM 

and γT. In this situation, the final γHO depends on mutual 
difference of both components.  

 

 
Figure 1. Principle and parameters for SINR/CQI prediction. 



To reflect all three above-mentioned cases for relation 

between ∆HM and γT, we propose the function for prediction of 

the γHO as follows: 
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where the first term, min(∆HM, γT), defines upper bound of 

the γHO corresponding to the lower value of both interference 
components; k1 is the coefficient introducing impact of the 
relative difference between both interference components (we 
have derived the most suitable value of k1 by simulations and, 

in this paper, equals to 75); and εdB stands for the 
compensation of a prediction error in dB to minimize 

over/under-estimation of the γHO; β represents the case when 
both former serving cell and neighboring cells cause the same 

level of interference (γT = ∆HM). Parameter β is derived as 

follows. Generally, sum of the interferences produced by 
several cells with exactly the same level of signal can be 
calculated as: 

)N(log10 n10icumul ×+= ιι  (6) 

where Nn represents the number of cells generating the 

same level of interference (ιi). If γT = ∆HM, both sources of 

interference (γT and ∆HM) are of the same importance and 

Nn = 2 in (6). Consequently, )2(log10 10×=β  in  (5). 

Usually, exact knowledge of γHO is not necessary as the 
transmission efficiency, representing the number of bits carried 
per resource block (bRB), is expressed by modulation and 

coding scheme (MCS). The MCS is selected according to γHO, 
which is indicated by CQI in LTE(-A) networks [14]. 

Therefore, CQI is predicted instead of exact γHO for practical 

implementation. The predicted CQI (CQIp) is derived as: 

( ) CQIHOp fCQI εγ +=
   

(7) 

 where function f maps modulation and coding derived from 

SINR to CQI [14], and εCQI is the compensation of the 

prediction error. The compensation is implemented by means 

of manual shifting the CQI index in order to minimize 

over/under-estimation of the CQIp. 

 The knowledge of UE’s capacity requirements (creq) and 

CQIp enables to derive exact number of resource blocks per 

frame (nRB) to be required by the UE just after the handover: 

 RBreqRB bcn =  (8) 

where  ⋅ represents ceiling function. 

The nRB derived by our proposal is intended to be used for 
reservation of resources for the UE at the target cell to avoid 
call dropping after the handover [1][3]. In addition to this, the 
nRB can be exploited also to schedule transmission of other UEs 
in the network with respect to the estimated amount of 
consumed RBs in the future (e.g., for opportunistic delay 
tolerant content or for sync of content of mobile devices). 

III. PERFORMANCE EVALUATION 

Performance of the proposed prediction algorithm is 
evaluated by means of simulations in Matlab. In the first 
subsection, models, scenarios and performance metrics are 
defined. Simulation results are presented afterwards. 

A. Models, scenarios and performance metrics 

In simulations, four microcells are deployed in line with 
deployment of cells by Vodafone CZ in Prague, Czech 
Republic (see Figure 2). In addition, we randomly deploy 
between 0 to 90 femto access points (FAPs) inside buildings. 
Major simulation parameters are summarized in Tab. I.  

For exploitability of predicted γHO, the prediction itself must 
be carried out before the handover. Since exact time of 
handover (tHO) is not known in advance, we exploit definition 
of handover as a relative difference between ss and st, i.e., tHO is 

the time when st – ss = ∆HM. Analogically, the time of 
prediction tp is related to the time when the difference between 

both signal levels drops below ∆p=ss – st (see Figure 1). Then, 
the time advance (tadv) is understood as the time corresponding 

to the relative change between ss and st from ∆p to ∆HM (see 

Figure 1). Therefore, the tadv is proportional to ∆p + ∆HM. Based 
on our performed simulations, the average values of the 
tadv are 1/5/13/23/35 s for handover to/from macrocell eNB for 

∆p equal to 0/1/3/5/7 dB and ∆HM = 0dB. For handover between 

FAPs, the tadv is 1/4/9/15/22 s for the same values of ∆p and 

∆HM. 

We average results over five simulation drops (each drop is 
distinguished by different random deployments of the FAPs 
and user's movement patterns), which last 18 000 s. We 
monitor SINR on frame by frame basis for MCS evaluation. 
The CQI is reported every 1 s as pedestrians, moving with 
speed of 1 m/s, are assumed in simulations. 

 
Figure 2. Simulation scenario with position of microcells (blue dots) and 

femtocells (orange crosses). 

TABLE I 

SIMULATION PARAMETERS 

Parameter Value 

Carrier frequency 2GHz 

Bandwidth 20 MHz 

Transmitting power of eNB/FAP 27/15 dBm 

Wall loss 10 dB 

Path loss model from FAP/eNB ITU-R P.1238/Okumura Hata 

Number of UEs/eNBs/FAPs 60/ 4/{0-90}  

Speed of UEs 1 m/s 

Mobility model Manhattan-like (see [15]) 

Simulated real-time/ No. of drops 18 000 s / 5 

Simulation area 640 x 360m 

 



Two metrics are considered for evaluation of the proposed 
approach: prediction efficiency and prediction inaccuracy. The 

prediction efficiency, ηeff, represents ratio of correct 
predictions. The correct prediction means that CQIp = CQIHO, 
where CQIHO is the CQI really experienced by the UE just after 

the handover. The ηeff, is defined as: 

( )i
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c
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c
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where 
c

CQIn  and 
i

CQIn represents the number of correct and 

incorrect predictions of CQI, respectively.  

The prediction inaccuracy, σiac, is defined as average level 
of inaccuracy in CQI prediction by means of error in predicted 
amount of bits per RB (bRB,p) and real amount of bits per RB 
assigned to the UE just after handover (bRB,HO): 
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B. Simulation results 

In this section, performance of the proposed approach for 
prediction of resources consumed by the UEs after the 
handover is assessed. The distribution of error in CQI 
prediction, defined as ECQI = CQIp –CQIHO, is presented in 
Figure 3. As can be seen, the probability of correct CQI 
prediction (i.e., ECQI = 0) is influenced by prediction correction 

εdB. The negative value of εdB decreases probability of correct 
prediction (ECQI = 0) and increases probability of ECQI = –1. 

This behavior is expectable as εdB just shifts predicted value of 

γHO (see  (5)). Nevertheless, the important fact observed in this 
figure is that situation when P(ECQI=–1) > P(ECQI=0) can be 

reached by setting appropriate εdB in  (5). It enables us 
to increase probability of correct prediction by joint tuning of 

εdB and εCQI (in Figure 3, maximum efficiency is reached for 

εdB = –2dB and εCQI = –1).  

The further results are presented for combination of εCQI 

and εdB, which reaches the highest ηeff for every density of 
FAPs. Deeper analysis of impact of these parameters is left for 
future research together with design of algorithm for dynamic 
adaptation of parameters according to changes in network's 
environment and in users' behavior. 

Figure 4 shows ηeff over time advance of prediction before 

handover (∆p) for various FAPs’ densities. Subplots in Figure 4 

represent cases when i) no prediction error is observed 
(ECQI = 0), ii) error is up to one CQI level (|ECQI| ≤ 1), and iii) 
error is up to two CQI levels (|ECQI| ≤ 2). As can be seen from 
Figure 4a, the ratio of correct predictions for the proposed 
algorithm (in figures denoted as "Prop") is decreasing with 
density of FAPs from roughly 95% (no FAPs) to 93% (90 

FAPs) if ∆p = 0 dB and from 66% (no FAPs) to 52% (90 FAPs) 

if ∆p = 7 dB. With respect to the state of art (SoA) approach 

described in [7] (in figures denoted as "SoA"), the ηeff is 
improved 1.2 times for no FAPs, and 1.9 times if 90 FAPs are 
deployed. In the proposed approach, always more than 96% 
and 97.5% of predictions are within |ECQI |≤1 over all 

investigated range of ∆p for no FAPs and 90 FAPs, respectively 
(see Figure 4b). Figure 4c further shows that at least 97.3% (for 
no FAPs) and 99.7% (90 FAPs) of predictions are within 
|ECQI |≤2. For competitive state of the art approach, only 81% 
and 94.7% predictions are within |ECQI |≤1 and |ECQI |≤2, 

respectively, for ∆p = 7 dB. Therefore, we can conclude that the 
prediction efficiency is significantly improved by our scheme, 
especially, if the prediction needs to be done earlier before 

handover (i.e., for higher ∆p). 

Figure 5 depicts the impact of density of cells and ∆p on the 

average prediction inaccuracy, σiac. The σiac increases with 

time advance of the prediction (∆p) but decreases with higher 
density of FAPs due to more homogeneous interference caused 
by neighbor cells. The average prediction error, expressed in 

 

 
(a)     (b)     (c) 

Figure 4.  Prediction efficiency ηeff for various acceptable error in CQI prediction (ECQI = 0 in (a), | ECQI |≤ 1 in (b), | ECQI |≤ 2 in (c)) 

 
Figure 3. Probabilistic density function of ECQI for ∆p=3dB and 30 FAPs. 

 



b/RB, varies between only 0.023 and 0.21 b/RB for our 

proposal while the competitive scheme reaches σiac from 0.027 
to 0.23 b/RB. This corresponds to a gain by our proposal up to 
roughly 15%.  

IV. CONCLUSIONS AND FUTURE WORK   

The algorithm for prediction of the CQI after handover has 
been proposed. The prediction is based on knowledge of 
hysteresis defined by networks for handover and level of 
interference produced by neighboring cells. As the results 
show, the algorithm predicts CQI correctly in 52% to 95% 
depending on time advance of the prediction and density of the 
FAPs. This efficiency is up to 1.9 times higher than in case of 
existing scheme and the gain increases if prediction is 
performed earlier before handover. Moreover, error up to one 
CQI level is reached in 96% for all investigated time advances 
and densities of the FAPs. Such precise prediction of CQI 
enables to exploit this approach not only for call admission 
control purposes in 5G but also for advanced scheduling and 
resource allocation in 5G, especially for opportunistic non-
urgent content. 

In the future, we plan to enhance the proposed algorithm 
considering learning process for derivation of error correction 

parameters (εdB and εCQI) to maximize its efficiency. Further, 
we plan to jointly integrate proposed channel quality prediction 
with handover prediction to show impact on QoS parameters 
such as call drops. 
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Figure 5.  Impact of density of cells and ∆p on prediction inaccuracy σiac. 

 


