
 1

 Abstract— This paper presents RaisAware, a collaborative
software development tool aimed at supporting the relationship
between software architecture and coordination of software
development activities. Our design is based on both dependency
analysis of software development artifacts and software
developers’ activities. We describe the motivations behind this
work, detail the design and implementation of RaisAware, and
present an evaluation of the tool using open-source project data.

 Index Terms — awareness, collaboration, collaborative
software development, dependency analysis

 I. INTRODUCTION
oftware development has been part of collaborative systems
research since CSCW initial years [1]. Studies of
collaborative software engineering, or CSE for short, have

resulted both in theoretical contributions to the collaborative
systems field [2] as well as in groupware tools to support this
activity [3]. In the first case, Grinter [4], for instance, studied
how software developers use configuration management tools to
coordinate their work. Meanwhile, Halverson and colleagues [5]
designed visualizations to support the management of change
requests in large software development projects. In this paper,
we are concerned with both types of approaches. More
precisely, we use results of published field studies of software
development teams to motivate the design of RaisAware, a
collaborative software development tool. RaisAware explores
the relationship between software architecture and work
coordination, a long acknowledged [6-11], but unexplored [12]
relationship. RaisAware’s design explores this relationship by
supporting dependency analysis of both software development
artifacts and software developers’ activities. Analysis of
software development artifacts is based on software dependency
analysis techniques [13] aimed at identifying dependencies
among software components, while analysis of software
development activities is based on co-change analysis [14] to
identify historical patterns of developers activities regarding
changes in the code. By representing different types of
dependencies, RaisAware goes beyond previous collaborative
software development tools like Palantír [15], ROSE [14],
Ariadne [16], and CollabVS[39].

 Jean M. R. Costa is with the Federal University of Pará, Belém, PA, Brazil,
66075.

Rafael M. Feitosa was with University of Pará, Belém, PA, Brazil, 66075.
He is now with the Federal University of Rio Grande do Sul, Porto Alegre,
RS.

Cleidson R. B. de Souza was with University of Pará, Belém, PA, Brazil,
66075. He is now with IBM Brazil, São Paulo, SP, Brazil, 04007, (e-mail:
cleidson.desouza@acm.org).

The rest of this paper is organized as follows. Section 2
describes previous tools that are similar to RaisAware. Section 3
describes briefly some of the theoretical and empirical studies
that motivated RaisAware. In particular, we use the impact
management framework proposed by de Souza and Redmiles
[12]. After that, we describe the software dependencies
approaches used in RaisAware in section 3. In Section 4 we
discuss some types of software dependencies and how they
relate to coordination of activities. Section 5 presents our tool
and its implementation details, while Section 6 presents the tool
evaluation using open source data. Finally, section 7 presents
our final comments and future work.

II. COLLABORATIVE SOFTWARE DEVELOPMENT TOOLS
As mentioned before, RaisAware is not the first tool to assist
collaborative software development activities; there are other
tools with this purpose. Researchers and practitioners have
created tools to support this endeavor. One of the more
traditional approaches is based on configuration management
systems such as CVS and Subversion. These systems allow
multiple developers to access a common set of artifacts and
manage different versions of these artifacts. Furthermore, they
also allow several developers to work in parallel. Parallel
development means that two or more developers are
modifying the same file at the same time [19]. This situation is
difficult to handle because it requires developers to coordinate
their work more carefully. In fact, parallel changes are
generally correlated with faulty code [19].
 Palantir [15] and Ariadne [16] are research tools to facilitate
the coordination of developers’ activities by facilitating the
awareness [32] of developers’ activities. Awareness is
achieved by viewing the information provided in the IDE
(Integrated Development Environment) of each developer.
Each of these tools has only one type of dependency, while
RaisAware extracts information from different types of
dependencies (see details in section 4).
 The Jazz environment [36] is a set of Eclipse plug-ins
aimed at facilitating collaborative software development. Jazz
does not make use of software dependency information, but
presents information about artifacts’ status in the developers’
IDEs, such as whether the artifact was saved locally and the
commit was not performed yet.
 FASTDash [35] is a tool to facilitate the awareness of the
team development activities based on a spatial representation
of the project and on highlighting the relevant activities of
members. This representation indicates, for example, which
files are being viewed or which classes and methods are being
modified at the time.
 Finally, CollabSV [39] is a collaborative software
development toool that uses a semi-synchronous model so that

Tool Support for Collaborative Software
Development based on Dependency Analysis

Jean M. R. Costa, Rafael M. Feitosa, Cleidson R. B. de Sousa

S

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.26

lacerda
Typewritten Text

 2

asynchronous and synchronous activities can be easily chosen
according to the task at hand. Furthermore, this tool uses
different types of static analysis not supported by RaisAware.
 The tools listed above are intended to assist the
collaborative software development using sophisticated
resources. However, another category of studies suggests that
even simple tools can be effective in helping the coordination
of software development activities. For instance, Fitzpatrick
and colleagues [30] illustrate how the usage of a simple
reporting system (a tickertape) can be appropriate, provided it
has an adequate infrastructure for information exchange and
developers have sufficient experience using the tool.

III. PREVIOUS STUDIES OF CSE
 RaisAware is inspired by results of field studies conducted
with software development teams. In particular, our own
previous work as reported by de Souza and Redmiles [12]. The
result of this work resulted in an analytical framework for
understanding the work of software developers in dealing with
the effects of software dependencies on their activities. The
framework is called impact management and is defined as: “…
the work performed by software developers to minimize the
impact of one’s effort on others and, at the same time, the
impact of others into one’s own effort” [12]. There are three
main aspects to impact management:
1. First, finding the network of people that might affect

one’s work and that might be affected by one’s work, a
concept that we call impact network. Identifying the
impact network is the most important aspect of impact
management, and, in fact, RaisAware’s main functionality
is to support this aspect;

2. Second, forward impact management is the work to
assess the impact of one’s own work on his respective
impact network and inform the members of this network
of such impact; and

3. Finally, backward impact management consists of
assessing the impact of the work performed by developers
in one’s impact network on his work, and the appropriate
actions to avoid such impact.

 de Souza and Redmiles [12] illustrate the impact
management framework using ethnographic data. However, this
same framework can be used to explain different findings of
previous studies of software development. We will detail some
of these aspects below, since they are used to inform the design
of our tool.

A common problem identified in the collaborative software
engineering literature is that developers are not aware of the set
of developers that can affect or be affected by a developer’s
changes, that is, developers are unaware of their impact
network. They adopt several approaches to deal with this
situation and to try to identify their network: some of
approaches are technical (for instance, using a database [12] or
consulting log files [2]) while other approaches are social (using
their’s and their manager’s social network or assigning
developers with the primary responsibility of communicating

with other developers who provide software components to the
team). Identifying the impact network becomes even more
difficult because these networks shrink and expand as the
development process progresses [12].

One of the important findings from de Souza’s and Redmiles’
study is the observation that software developers engage in
impact management because they are aware of the details of the
software architecture. Experienced developers know that some
software components are sources of dependency to several other
components and use this knowledge to guarantee the smooth
flow of work and avoid impacting their colleagues. In other
words, software components with a higher degree of
dependencies have to be handled more carefully because of
their larger “potential” for impacting other components in the
architecture, and as a consequence, their effect on the
coordination of developers’ activities. Furthermore, experienced
software developers change their activities accordingly when
dealing with these components.

Another important aspect of software development work in
general is the avoidance to parallel work [15, 17], that is,
developers adopt strategies (e.g., “speeding up” their work [18])
to avoid engaging in parallel development with their colleagues.
As mentioned in the previous section, parallel development
means that two or more developers are changing the same file.
This situation is difficult to handle because they require extra-
coordination among developers and, often, require some work
to be re-done.

IV. SOFTWARE DEPENDENCIES AND THE COORDINATION OF
ACTIVITIES

 The relationship between the structure of a software
organization and the software structure has been discussed since
Conway has originally proposed it [6]. In general, researchers
have associated the structure of the software with the technical
dependencies between the components i.e., it describes software
dependencies between components. A body of empirical
evidence indicates that these dependencies, as suggested
initially by Conway [6] and Parnas [7], play a major role in the
coordination of the work. Accordingly, one approach that
researchers have adopted is to use dependency analysis
techniques to understand the coordination of development
work [11, 16, 20]. This section describes the two most used
approaches to identify component dependencies, both of them
implemented in RaisAware.

A. Dependencies among software artifacts

In software engineering, different data structures can be used
to allow the explicit representation and manipulation of a
program’s dependencies. RaisAware uses system dependency
graphs (SDGs) to represent information about several
procedure calls and their parameters and return types [21].
SDGs are used to construct call graphs that “summarize the
dynamic invocation relationships between procedures. The
nodes of the call graph are the procedures in the program. An
edge (pl, p2) exists if procedure pl can call procedure p2 from
some call site within pl. Hence, each edge may be thought of

 3

as representing some call site in the program” [22]. A call
graph, then, reveals the potential dynamic structure of a
software system, i.e., it potentially unveils dependencies
among software developers responsible for the software
components [23]. For instance, assume that a software
component a depends on another software component b, and
that a is being developed by developer A and b is being
implemented by developer B. If a depends on b, we similarly
find that developer A depends on developer B. That is, these
software developers need to coordinate and communicate to
guarantee the smooth flow of work [24-27].

B. Dependencies among developers’ activities
 The view based solely on the explicit relationships among
software development artifacts is too narrow, however. For
instance, software connectors are used by software architects
to model interactions between components [28], but these
interactions are not captured by analyzing dependencies
between software artifacts [29]. In general, dependencies
between developers’ activities can be extracted by mining
software repositories and identifying evolutionary coupling
between components, that is, coupling between components
that are not necessarily identified through dependency
analysis. This is done by creating association rules between
files changed together, that is, files that are co-changed are
likely to be coupled, even though traditional dependency
analysis of these files does not indicate such coupling.
Because co-changes are built out of historical activities
(changes to be more precise) from software developers, we
call them dependencies among developers’ activities in
contrast to dependencies among software artifacts. As we will
describe in the next section, RaisAware supports both types of
dependencies.
 Zimmerman and colleagues [14] introduced two measures
to identify the degree of evolutionary dependencies among
artifacts:

• Support: it indicates how many times a artifact has
been modified with another;

• Confidence: it indicates the changes ratio, i.e., how
often two files were changed together.

 In RaisAware, an artifact is said to depend on another if the
support value is at least 7 and the confidence (or trust) value is
at least 35%. These values are similar to those proposed by
Zimmerman [14].

C. Dependencies in RaisAware
 RaisAware uses both types of dependencies, among
software artifacts and among software developers’ activities,
going one step further than other tools as Palantir [15] and
Ariadne [16]. Furthermore, we created an infra-structure in
which it is possible to add new types of software dependencies
as we see fit. For instance, Dewan and Hedge (2007) use
interface implementation as a way of identifying dependency
between software components. While this is not currently
implemented in RaisAware, we can easily add this new
feature. Finally, RaisAware allows one to identify his impact
network, a feature that is not available in any of these previous

tools. RaisAware is described in more details in the next
section.

V. RAISAWARE
This section describes the RaisAware tool. Initially, we

present its main features according the theoretical framework
of impact management. Then, we present the tool architecture
and the description of its operation.

A. Identification of the Most Dependent Artifacts
 As discussed earlier, experienced developers have
knowledge about the software architecture of the system being
built (e.g., files that have a high degree of dependency) and
use this knowledge to adjust their activities [18]. On the other
hand, inexperienced developers have no such knowledge, so
their activities more prone to errors. To facilitate the work of
these developers, RaisAware provides a mechanism for
identifying the most dependent files. In order to identify these
files, an analysis is made about the data contained in the
matrix that contains information about the dependencies in
order to find the 15% of files with more dependencies.
 The most dependent artifacts are visualized using
Decorators, i.e., graphical representations applied over the
corresponding files icons, as can be seen in Figure 1. In the
figure, icons with Decorators are circumvented by circles. The
idea is that when a developer notices a Decorator over the file
icon that he is planning to modify, he will notice that his
change can affect the work of several other developers, so he
will be aware that the file he is planning to modify needs to be
handled more carefully [18].

Fig. 1. Decorators used to identify the most dependent files in a view of
Eclipse.

B. Identification of the software components most impacted
 This feature allows the user to visualize the files that will be
impacted according either to his source-code modifications or
to source-code modifications from other developers. There are
two ways to view these files using RaisAware: (i) clicking the
right mouse button on the file icon (viewing files impacted or
impacting this file) or (ii) through the project icon (looking at

 4

all files and their corresponding impacts), by choosing "View
Technical Network”.
 To generate this view, the files that are being changed by
the software developer are initially identified. These files are
compared with files changed by other developers, since
information about the activities of other developers are also
stored locally when sent by other Workspaces (see the
description of the Architecture in the next section). When
RaisAware identifies that two developers are changing the
same file, i.e., that they are engaged in parallel development, it
creates two nodes representing the same file and an edge
connecting these files to indicate a potential conflict between
the developers. After that, RaisAware searches in the matrices
that contain the dependency information about which files are
impacted. One of these matrices contains dependency
information created from analysis of software artifacts, while
the other contains dependency information about developers’
activities created from co-changes. Once these files are
identified, it is verified whether they are being changed
remotely. If so, it is created an edge to represent that a file
modified by a developer can affect or be affected by another
file modified by another developer. RaisAware uses a
visualization framework called Prefuse to display this type of
information.
 Figure 2 shows an example of a visualization from
RaisAware. Parallel development (direct conflict) is
represented by thicker edges, while dependencies among
artifacts (indirect conflict) are indicated by directed edges, and
finally, dependencies among developers’ activities (co-
changes) are represented as non-directed edges in the network.
In Figure 2, the file Clock is involved in a direct conflict, i.e.
while a developer is editing the file Clock another developer is
simultaneously editing the same file. So, due to the parallel
development of this file, two files Clock are shown in the
figure. AbsoluteTime and Clock present an example of indirect
conflicts and, finally, the edge between RealTimeClock and
Clock illustrate an example of co-change dependency.
 Figures 3 and 4 show other visualizations from RaisAware.
In Figure 3 there is a menu on the right corner with a
checklist, which can be used to filter the information being
displayed, presenting only the nodes and edges corresponding
to the selected types of dependencies. There is also a tooltip
with detailed information about the file involved in the direct
conflict (Clock). Thus, it is possible to identify, for example,
that another user is editing this file in parallel. In Figure 4
there is a tooltip indicating the reasons for the existence of an
indirect conflict between the file Clock and the file
HighResolutionTime. Providing the rationale for the
dependency information is essential for the developer to
understand the reason why he might need to coordinate his
work with another developer.

Fig. 2. Set of files impacted calculated by RaisAware.

Fig. 3. Filter “Direct,Indirect” dependencies is activated. In addition, details
about the file Clock are shown.

Fig. 4. Explanation about the existence of an indirect conflict

C. Identification of the impact network
 Based on the information about files impacting other
developers and being impacted by others, RaisAware
“translates” this information into the impact network. To be
more precise, RaisAware replaces files by software developers’
names to generate the impact network, that is, the list of
software developers impacting and being impacted by the
changes performed by the software developer.

Figure 5 below presents an example of an impact network.
Similarly to the visualization of files, parallel development is
represented as thicker edges, artifact dependencies are indicated

 5

as directed edges, and developer activities’ dependencies are
represented as undirected edges in the impact network.

Fig. 5. Example of a social impact network

 The visualization of the impact network and of the
dependencies among artifacts is interactive: when the user
holds the mouse over a node for a few seconds different types
of information are displayed as a tooltip including name of the
developer, date modified, file impacted and reasons for
impacts. Likewise, when the user holds the mouse over an
edge, it is shown the type of dependency between the nodes
and the reason for this edge to exist. Figure 5, for example,
displays the edge connecting the node Jean with the node
Cleidson. This edge represents a dependency based on
activities (co-changes), since the files RealTimeClock and
Clock (which are being modified by developers Jean and
Cleidson) were modified together.

D. Tool architecture
 RaisAware has been developed using the Java programming
language and it is implemented as a plug-in for the popular
IDE (Integrated Development Environment) Eclipse. As a
plug-in, it is possible to use many resources already available
in the IDE. For instance, it is possible to monitor events on
each instance of Eclipse being used. Thus, whenever a
developer starts an action that the tool identifies as relevant,
such as starting the modification of a source code file, it fires
an event that, once processed by RaisAware, transmits the
obtained information to all developers.
 RaisAware’s architecture is shown in Figure 6. Arrows
represent the information flow while rectangles indicate the
software components. The upper block of each instance
containing Visualization, I / O, Parser and Communicator are
the components of RaisAware that were implemented, and the
others blocks identify the external components. The
description of the components and how they interact with each
other is discussed in the next section.

Fig. 6. Architecture of the RaisAware tool.

A. Setup
 The first step to use RaisAware is to register a project on
the tool, i.e., to select the project from which RaisAware will
collect data and transmit them as events. Once the project is
registered, the tool collects the dependency information aout
the artifacts. Basically, two threads are initiated at this point:
one, locally, retrieves dependencies based on the software
architecture, and another, remotely, identifies dependencies
from the activities of developers. We describe next how the
data obtained by these threads is used.

Dependency extraction from the software architecture
 To collect the dependencies from the software architecture,
a feature provided by Eclipse called ASTParser is used. This
feature allows, among other things, to identify the references
between the source code files of a Java project. Once the user
registers a particular project in RaisAware, the dependencies
for all Java classes from this project are calculated, and with
this information, RaisAware creates a call-graph representing
these dependencies. This call-graph is represented as a matrix
{Class X Class}, called call-graph matrix, which is stored in
the project root directory as a CSV file.

Dependency based on developers’ activities
 As mentioned before, the co-changes method [14] is used to
collect the dependencies based on developers’ activities. This
method allows the discovery of evolutionary dependencies
between artifacts based on the frequency they were modified
together. To identify whether an artifact has been modified
alongside with others, data is obtained from the configuration
management repository in which the project artifacts are
stored. All files that are submitted together in each commit are
analyzed by the Configuration Management plug-in (GC
component plug-in) that allows data access and retrieval from
configuration management systems. In the current
implementation the Subclipse plug-in is used as the GC plug-
in allowing access to Subversion repositories. In addition, an
integrated Eclipse plug-in allows RaisAware to access CVS
repositories. Once the data is obtained, it is created a matrix
{File X file} called co- changes matrix, which indicates how
many times each file was changed together with other files.
This matrix is used during the computation of support and

 6

confidence measures and is also stored in the project root
directory as a CSV file.
 Once the two matrices, the call-graph matrix and the co-
changes matrix, are generated RaisAware is ready to collect
and transmit information to other developers. This process
begins in the Workspace of the developer: when he performs
any action, events are triggered and are captured by
Workspace Listeners. These listeners are interfaces integrated
into the Eclipse Workspace that are able to identify the
occurrence of events. When these events are triggered, the
Communicator component of RaisAware, which implements
the Listeners, captures these events and forwards them to the
Notification Server component. This component is in charge
of sending the events it receives with their associated
information (e.g., file name, the developer who changed the
file, modified date, etc) for all developers who are using
RaisAware in the project on which the event has been
captured. The Notification Server component has been
implemented using Avis, an event routing service.
 In another developer’s workspace running another instance
of RaisAware, the Communicator component is responsible
for obtaining the events transmitted from the Notification
Server. Once the events are obtained, they are passed to the
Parser component, which interprets the information contained
in the events to identify the file name obtained in the
dependencies matrix. If the file name is found, it processes the
data to identify the dependencies and sends the result to the
I/O component. This component generates an XML file
containing information of all files being modified. Finally, the
View layer is responsible for presenting graphical user
interfaces related to the impact network and other aspects.
This is done by parsing the XML file.

VI. EVALUATION
 The evaluation of RaisAware has been made indirectly. In
other words, it was not possible to evaluate the tool
effectiveness neither in a real environment nor in an
experiment. We chose to simulate situations using the tool
from real data, and, by doing so, we were able to evaluate the
design of the tool, especially the visualizations that we
created. All these aspects are discussed in this section.

A. Methodology
 In order to evaluate the RaisAware we used the approach
described in [37]. More specifically, Ren and colleagues [37]
describe how they evaluated a tool that supports change
impact analysis in Java programs. The approach consists of (i)
obtaining details of the commits done in a software
development project during the period of one year, (ii)
partitioning the data into weeks, and (iii) analyzing the
commits that took place during the intervals of each week so
that these commits are considered as parallel activities. In
other words, this approach assumes that if commits were made
by two or more developers within a 1-week interval, parallel
activities possibly occurred during this period and,
consequently, direct conflicts. The analysis of the modified
source code files during the commits and of the entire

codebase allows the identification of indirect conflicts.
Finally, the historical analysis of the commits allows the
identification of co-changes conflicts. In summary, using this
approach the RaisAware tool could be evaluated taking into
account the conflicts (direct, indirect and co-changes) that
potentially occurred in each week of the project analyzed.
 During the evaluation of the tool, we did not have access to
data from corporate software development projects, therefore
we chose to analyze a free software project since data from
these projects is widely available. The project used was
MegaMek, a network game developed in Java that is
registered at SourceForge.net site since 2002, with the
participation of 33 developers in its implementation since
then. This project was chosen because it is one of the most
actives in the community, which is important for our
evaluation due to the high likelihood of conflicts.
 Since our tool focus on conflicts among software
developers, it is necessary to ensure that the commits in the
MegaMek project have been made by more than a single
developer. In our case, we wanted to identify time intervals in
which development activities in MegaMek were performed by
several developers. To identify the time interval to be used, we
used the TransFlow tool [38], which allows one to visualize
information about the commits in a software project.
 Figure 7 shows an image generated by TransFlow for the
first year of development of MegaMek. In the figure, each
square is a commit performed by a developer, and the color of
the square is used to distinguish the developers who performed
the commits. The squares are plotted using Cartesian
coordinates to plot two-variable values. In the case of Figure
7, the X-axis is a time axis that corresponds to the number of
commits performed, while the Y-axis indicates the number of
new classes added to the project. Based on this chart one can
identify the periods in which many developers actively
worked on the project. For example, the rectangle labeled “1”
indicates a period in which a single developer committed in
the project since all squares have the same color. Meanwhile,
the rectangle labeled “2” indicates a period in which several
different developers made commits, since the squares have
different colors. Based on this analysis, we decided to use the
entire first year of the project (periods 1 and 2) because we
could illustrate the lack of conflicts (in period 1) and its
existence (in period 2) when other developers joined the
project.
 In order to get data from the configuration management
repository of Megamek and calculate the conflicts that
occurred during its development, we implemented a software
module that allows RaisAware to identify the occurrence of
direct, indirect and co-changes conflicts for each week of
development. Once conflicts are identified, data from these
conflicts (number of conflicts, week number, filenames, etc)
are exported in CSV format so that they can be analyzed and
plotted in electronics spreadsheets.

 7

Fig. 7. Visualization generated by the tool Transflow for the first year of
development of MegaMek

B. Results
 The results obtained from our analysis can be seen in the
graphs below. For simplicity reasons, we will now refer to the
impact network as the social impact network because it refers
to software developers, and the dependencies among files as
the technical impact network, since it focuses on the technical
aspects of the software development activity. The data
presented in this section can be viewed for the entire project or
only considering the impact network, either from a technical
or social point of view.
 Initially, Figure 8 shows the occurrence of direct, indirect
and co-changes conflicts for each week from the technical
point of view. It should be noted that the values for the
conflicts are equal to zero in the beginning of the project,
which corresponds to the period of Figure 7 when only one
developer worked on the project. Only after 10 weeks, i.e., in
week 11, conflicts begun to emerge: the period “2” in Figure 7
when other developers started to participate in the project.
Furthermore, it is possible to notice that there were weeks in
which the number of files involved in conflicts had increased
substantially. For example, in the 39th week over 45 potential
conflicts were identified. This can be justified by the amount
of commits performed during this week, and also by the
number of developers who have submitted code during the
period. Figure 9 shows an image created by TransFlow that
shows the commits that were performed during this particular
week. In the figure, the X-axis represents the number of
commits that occurred, while the Y-axis indicates the number
of new classes added to the project. It can be seen in the
visualization that 25 commits were made, a much higher
number than the average number of commits for each week of
the year (13). Moreover, the number of developers who
worked during the 39th week is another factor to be
considered, since 4 developers committed files during the
week: twice the average of developers who committed files in
each week of the year analyzed.
 Figure 8 shows the number of files potentially involved in
conflicts for every week of the year. This is the total number
of files that may conflict in any given week, not the number of
files modified by a particular developer. Thus, Figure 8 shows

a super-set of the possible files that would be affected or
would affect a single developer. To assess the specific number
of files that could be in conflict with a developer’s work, the
following analysis was performed: for each file identified in a
given week, we identified the number of files that are
connected to this file in the impact network, i.e., the degree of
the file for that week. Thus, the average degree of each file
involved in possible conflicts was calculated for each week.
The results are shown in Figures 10 and 11: they present the
results for each week of the year for indirect conflicts and for
co-changes, respectively.

Fig. 10. Average number of impacted files by indirect conflicts for each file

Fig. 11. Average number of impacted files by co-changes conflicts for each
file

Figure 12 presents data of the potential conflicts identified
in the year, but now considering the social impact network.
Again, it should be noted that up to 10 weeks, no conflict was
identified, since only one developer was active in the project.

Finally, the mean and standard deviation for the number of
files (or people) possibly involved in a conflict was calculated
for each type of conflict. Results are presented in Table 1. It is
possible to verify that the average conflict by co-changes
(considering the technical point of view) is larger than the
other two types of conflicts, i.e., the amount of files on the
impact network based on the co-changes method are usually
larger than the values observed in direct and indirect conflicts.
Moreover, is possible to notice that the number of affected
files (technical impact network) is always greater than the
corresponding number of developers (social impact network).

TABLE 1

VALUES OF MEAN AND STANDARD DEVIATION FOR THE
3 TYPES OF CONFLITS

Technical Social
Mean Standard

Deviation Mean Standard
Deviation

Direct conflicts 3,63 3,24 2,17 0,79

Indirect conflicts 5,9 3,13 1,87 0,51

Co-Changes
conflicts 8,63 6,7 2,07 0,94

1 2

 8

C. Discussion
The results presented in the previous section suggest that

RaisAware was able to identify potential conflicts in the
project Megamek during the period of analysis. It is important
to notice that all the graphs do not indicate any kind of conflict
for the first 10 weeks of the project. This result is consistent
with the analysis of Figure 7 that indicates that in these weeks
there was only one developer making changes to the code and
performing commits to the repository: there were not other
developers on the project, so potential conflicts could not be
identified.

Without considering the initial 10 weeks, it is possible to
observe that the remaining weeks have very different values
for each type of conflict when compared. For example,
considering the values for the 39th week of the technical
conflicts chart, the value is equal to 27 for the co-changes
conflicts, 15 to direct conflicts and 6 to indirect conflicts. This
result is interesting per se, since there is not a general
consensus about which method of conflict identification is
better [33]. Despite that, as the RaisAware’s original goal is to
assist software developers in coordinating their work during
conflicts, the developer with his own experience using the tool
would filter what information would be most useful.

An important aspect to be analyzed based on the results is
whether the visualization offered by RaisAware is effective.
Looking at the values from the technical impact network, it is
possible to notice that a lot of potential conflicts are identified
considering all the modified files in each week. Thus, the
graph presentation would not be appropriate, since graphs with
too many elements would not be easy to interpret due to the
overlapping of nodes and edges. This would make the task of
identifying conflicts more complex, possibly requiring user
intervention (moving nodes and edges in the graph) in order to
investigate a particular conflict.

On the other hand, when looking at Figures 10 and 11, we
can see that the average number of files impacted by each file
is not greater than 5 (Figure 10) or 4 (Figure 11). Thus, the
impact network for each file that a user is modifying does not
contain many elements, which suggests that a visualization
based on graphs of impacted files might even be appropriate.
In short, further research is necessary to establish the best
visualization possible. To obtain a definitive answer to this
question, we intend to conduct a controlled experiment [34]
with undergraduate students. Similarly, we can say that the
visualization is appropriate to present the social impact
networks, as the graph in Figure 12 does not have high values:
the maximum value is 9, which occurs only once. This
suggests a small quantity of elements in the graph of the social
impact network and, consequently, it is possible to conclude
that the visualization used in RaisAware is effective for
displaying information about software developers.

Since RaisAware visualizations are somewhat effective, we
can argue that the software developers using our tool are likely
to be able to identify their respective impact networks,
technical or social. From a technical point of view, the
developer, when visualizing the dependencies between files
that are being modified, has the necessary information to
coordinate his activities with other developers to ensure that
the changes in the code of the project will not lead to a

problematic situation. The social impact network allows the
identification of developers who may be impacted by the
developer’s code or whose code might impact him. Thus, it
indicates with whom a given developer needs to coordinate his
activities, something seen as problematic in previous studies
of software developers’ work [15] [18]. RaisAware therefore
facilitates the work of software engineers involved in coding
activities, and can be used as a complement for other
approaches for impact management [12].

VII. FINAL REMARKS

 This article presented RaisAware, a tool to support
collaborative software development that is integrated in the
popular Eclipse IDE. The theory in the literature that
motivated the tool implementation was presented, in addition
to the description of the tool architecture and the techniques
used by RaisAware to identify dependencies.
 The purpose of the tool is to support the impact
management as the framework proposed by de Souza and
Redmiles [12] rather than focusing in support for strategies
that are specific to certain contexts. The tool provides real-
time data on the impacts of activities undertaken by
developers, thus the tool allows the users to be aware of their
impact networks [12], allowing them to adopt strategies that
do not disrupt the work of their colleagues and to prevent
others from affecting their work. RaisAware was evaluated
using an approach based on real data from a free software
project. The results suggest that the views generated by
RaisAware could be effective in a context similar to the
analyzed project. However, further research is still necessary
to confirm that.
 One aspect that needs to be investigated in future studies is
the influence of different

ACKNOWLEDGMENTS

This research was supported by the Brazilian Government
under grants CNPq479206/2006-6, CNPq 473220/2008-3 and
by the Fundação de Amparo à Pesquisa do Estado do Pará
(FAPESPA) through “Edital Universal N.° 003/2008”.

REFERENCES
[1] Schmidt, K. and Simone, C. Coordination mechanisms: Towards a
conceptual foundation of CSCW systems design. Journal of Computer
Supported Cooperative Work, 5 (2-3). 155-200.
[2] McDonald, D.W. and Ackerman, M.S., Just Talk to Me: A Field Study of
Expertise Location. in Conference on Computer Supported Cooperative Work
(CSCW '98), (Seattle, Washington, 1998), 315-324.
[3] Schümmer, T. and Haake, J.M., Supporting Distributed Software
Development by Modes of Collaboration. in Seventh European Conference on
Computer Supported Cooperative Work, (2001), 79-98.
[4] Grinter, R.E., Using a Configuration Management Tool to Coordinate
Software Development. in Conference on Organizational Computing Systems,
(Milpitas, CA, 1995), 168-177.
[5] Halverson, C.A., Ellis, J.B., Danis, C. and Kellogg, W.A. Designing task
visualizations to support the coordination of work in software development
Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work, ACM, Banff, Alberta, Canada, 2006.
[6] Conway, M.E. How Do Committees invent? Datamation, 14 (4). 28-31.

 9

[7] Parnas, D.L. On the Criteria to be Used in Decomposing Systems into
Modules. Communications of the ACM, 15 (12). 1053-1058.
[8] Morelli, M.D., Eppinger, S.D. and Gulati, R.K. Predicting Technical
Communication in Product Development Organizations. IEEE Transactions on
Engineering Management, 42 (3). 215-222.
[9] de Souza, C.R.B., Redmiles, D., Cheng, L.-T., Millen, D. and Patterson, J.,
Sometimes You Need to See Through Walls - A Field Study of Application
Programming Interfaces. in Conference on Computer-Supported Cooperative
Work, (Chicago, IL, USA, 2004), ACM Press, 63-71.
[10] MacCormack, A., Rusnak, J. and Baldwin, C.Y. Exploring the Structure
of Complex Software Designs: An Empirical Study of Open Source and
Proprietary Code Harvard Business School Working Papers, Harvard University,
Cambridge, MA, 2004, 40.
[11] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D. and Carley, K.M.
Identification of Coordination Requirements: implications for the Design of
Collaboration and Awareness Tools 20th Conference on Computer Supported
Cooperative Work, ACM Press, Banff, Alberta, Canada, 2006.
[12] de Souza, C.R.B. and Redmiles, D. An Empirical Study of Software
Developers' Management of Dependencies and Changes. International
Conference on Software Engineering, Leipzig, Germany, 2008, ACM, 241-250.
[13] Lakhotia, A., Constructing call multigraphs using dependence graphs. in
20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, (Charleston, South Carolina, USA, 1993), ACM Press, 273-284.
[14] Zimmermann, T., Weibgerber, P., Diehl, S. and Zeller, A. Mining Version
Histories to Guide Software Changes. IEEE Transactions on Software
Engineering, 31 (6). 429-445, 2003.
[15] Sarma, A., Noroozi, Z. and van der Hoek, A., Palantír: Raising Awareness
among Configuration Management Workspaces. in Twenty-fifth International
Conference on Software Engineering, (Portland, Oregon, 2003), 444-453.
[16] Trainer, E., Quirk, S., de Souza, C.R.B. and Redmiles, D., Bridging the
Gap between Technical and Social Dependencies with Ariadne. in Eclipse
Technology Exchange, (San Diego, CA, 2005).
[17] Grinter, R.E. Recomposition: Coordinating a Web of Software
Dependencies. Journal of Computer Supported Cooperative Work, 12 (3). 297-
327.
[18] de Souza, C.R.B., Redmiles, D.F. and Dourish, P., "Breaking the Code",
Moving between Private and Public Work in Collaborative Software
Development. in International Conference on Supporting Group Work, (Sanibel
Island, Florida, USA, 2003), 105-114.
[19] Perry, D.E., and, H.P.S. and Votta, L.G. Parallel Changes in Large-Scale
Software Development: An Observational Case Study. ACM Transactions on
Software Engineering and Methodology, 10 (3). 308-337, 1998.
[20] Valleto, G., Helander, M., Ehrlich, K., Chulani, S., Wegman, M. and
Williams, C. Using Software Repositories to Investigate Socio-technical
Congruence in Development Projects Workshop on Mining Software
Repositories, ACM Press, Minneapolis, 2007.
[21] Aho, A.V., Sethi, R. and Ullman, J.D. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.
[22] Callahan, D., Carle, A., Hall, M.W. and Kennedy, K. Constructing the
Procedure Call Multigraph. IEEE Transactions on Software Engineering, 16 (4).
483-487.
[23] de Souza, C.R.B., Froehlich, J. and Dourish, P., Seeking the Source:
Software Source Code as a Social and Technical Artifact. in ACM Conference
on Supporting Group Work, (Sanibel Island, FL, USA, 2005), ACM Press, 197-
206.

[24] Grinter, R.E., Recomposition: Putting It All Back Together Again. in
Conference on Computer Supported Cooperative Work (CSCW'98), (Seattle,
WA, USA, 1998), 393-402.
[25] Sosa, M.E., Eppinger, S.D., Pich, M., McKendrick, D.G. and Stout, S.K.
Factors that influence Technical Communication in Distributed Product
Development: An Empirical Study in the Telecommunications Industry. IEEE
Transactions on Engineering Management, 49 (1). 45-58.
[26] Sosa, M.E., Eppinger, S.D. and Rowles, C.M. Identifying Modular and
Integrative Systems and Their Impact on Design Team Interactions. ASME
Journal of Mechanical Design, 125. 240-252.
[27] Sosa, M.E., Eppinger, S.D. and Rowles, C.M. The Misalignment of
Product Architecture and Organizational Structure in Complex Product
Development. Management Science, 50 (12). 1674-1689.
[28] Perry, D.E. and Wolf, A.L. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes, 17 (4). 40-52, 1992.
[29] Bass, M., Mikulovic, V., Bass, L., Herbsleb, J. and Cataldo, M.
Architectural Misalignment: An Experience Report IEEE/IFIP Working
Conference on Software Architecture, 2007.
[30] Fitzpatrick, G., Mansfield, T. and al., e., Augmenting the workaday world
with Elvin. in 6th European Conference on Computer Supported Cooperative
Work, (Copenhagen, Denmark, 1999), Kluwer, 431-450.
[31] Fitzpatrick, G., Marshall, P. and Phillips, A. CVS integration with
notification and chat: lightweight software team collaboration Proceedings of the
2006 20th anniversary conference on Computer supported cooperative work,
ACM, Banff, Alberta, Canada, 2006.
[32] Dourish P. and V. Bellotti. Awareness and Coordination in Shared
Workspaces. Conference on Computer-Supported Cooperative Work (CSCW
'92), Toronto, Ontario, Canada, ACM Press, 1992.
[33] Kagdi, H. and Maletic, J. I. “Combining Single-Version and Evolutionary
Dependencies for Software-Change Prediction”. In Proceedings of the Fourth
international Workshop on Mining Software Repositories. International
Conference on Software Engineering, 2007.
[34] Wohlin, C., P. Runeson, et al. “Experimentation in Software Engineering:
An Introduction”, Kluwer Academic Publishers, 2000.

[35]Biehl, J. T., Czerwinskim M., Smith, G., and Robertson, G. G.
FASTDash: a visual dashboard for fostering awareness in software teams. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2007
[36] Cheng, L. Hupfer, S. Ross, S. and Patterson. “Jazzing up Eclipse with
collaborative tools”. In Proceedings of the 2003 OOPSLA Workshop on
Eclipse Technology Exchange, 2003.
[37] Ren X., Shah, F. Tip, F., Ryder, B. G. and Chesley, O."Chianti: a tool for
change impact analysis of java programs," in OOPSLA '04: Proceedings of
the 19th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, 2004.

[38] Costa, JMR, Santana, Francisco W., de souza, Cleidson R.B.
“Understanding Open Source Developers Evolution Using Transflow”. In:
Collaboration Researchers International Workshop on Groupware, 2009.

[39] Dewan, P. Hegde R.: Semi-Synchronous Conflict Detection and
Resolution in Asynchronous Software Development. In Proceedings of the
European Conference on Computer-Supported Cooperative Work 2007: 159-
178.

 10

Fig. 8. Total number of conflicts from a technical point of view, i.e., regarding the conflicts between files.

Fig. 9. Visualization of commits uring the 39th week

Fig. 12. Total number of conflicts from a social point of view, i.e., the size of the social impact network.

