
A Cooperative Game Theoretic Approach for
Data Replication in Mobile Ad-Hoc Networks

Dan Hirsch
Department of Computer Science

Missouri S&T
Rolla, MO 65409, USA

Email: daniel.hirsch@mst.edu

Sanjay Madria
Department of Computer Science

Missouri S&T
Rolla, MO 65409, USA
Email: madrias@mst.edu

Abstract—The mobile computing environment provides many
benefits such as ubiquitous access to computing but include
constraints on resources such as: available bandwidth and battery
life. Replication is a widely recognized method for balancing
the demands of storage space with bandwidth and battery life.
We propose a novel scheme that seeks to strategically balance
these constrained resources through a cooperative game-theoretic
approach for replication in a mobile environment. Our replication
strategy relies on the cooperation of the nodes within the network
to make replica caching decisions which are spatiotemporally
local-optimal for the network from an energy and bandwidth
conservation standpoint. In cooperative altruistic data replica-
tion, CADR, each node calculates the net global benefit, NGB,
for caching a replica of the requested data, as the result data
is returned from the responding node to the requesting node,
where it is then determines the spatiotemporally local-optimal
node for replicating the data item. Performance results from our
research indicate that our scheme, CADR, improves the query
response time by 25% and 45%, mean hop count is improved by
26% and 46%, query error is reduced by 30% and 48%, while
energy utilization is reduced 30% and 57% when compared with
both another game theoretic replication approach and standard
cooperative caching respectively.

Index Terms—mobile, replication, game-theoretic

I. INTRODUCTION

The key to overcoming mobile constraints is to increase the
utility of the mobile computing device and network through the
efficient management of these resources. A mobile device is
unable to store every point of data it might require; therefore a
caching mechanism is needed to distribute the storage burden,
cooperatively, in the mobile ad-hoc network. However, with a
distributed storage mechanism, such as caching, an increase
in bandwidth utilization becomes an issue. If a mobile device
doesn’t hold a needed data item locally, in cache, it must
fetch the data from another device in the network; increasing
the communication burden significantly. In a mobile device,
wireless communication is the single largest consumer of
energy [3]. It follows that an increase in communication causes
an increase in the consumption of energy and corresponding
decrease in the lifespan of the device.

Replication is a widely recognized method for balancing
the demands of storage space with bandwidth and battery life.
Replication distributes additional copies of primary data items
into the network in order to increase accessibility and decrease

communication costs. While the goals of various approaches
to replication are similar, there are significant differences in
both implementation and result. In this paper, we propose
a novel scheme that seeks to strategically balance energy,
bandwidth, and storage space through a cooperative game-
theoretic approach for replication in a mobile environment.

Our replication strategy relies on the collaboration of the
nodes within the network to make replica caching decisions
which are spatiotemporally local-optimal for the network
from an energy and bandwidth conservation standpoint. This
strategy takes on the nature of reciprocal altruism and is
very similar to the Volunteer’s Dilemma [8][13][1] in game
theory. Though our methods do not conform to the stan-
dard definition of game theory, they do represent a game-
theoretical methodology through a dependence upon a utility
function which has the goal of mutual optimization. Reciprocal
altruism, in the context of replication, is best defined as a
node making a caching decision that will temporarily reduce
its own resource availability, through a decrease in storage
space, while increasing the overall viability and lifespan of
the network, as a result of the conservation of both energy
and bandwidth, while expecting that the other nodes will make
similar decisions in the future. The expectation for reciprocity
is the motivating factor that overcomes the cost of the sacrifice.
In game theory, the Volunteer’s Dilemma is a game where each
player makes a decision that will benefit the whole by making
a small sacrifice, similar to the principal of reciprocal altruism.
Given the similarities, we have named our replication strategy
Cooperative Altruistic Data Replication.

The game, therefore, in Volunteers Dilemma is one of
mutual benefit. In the end, the game, contrary to traditional
selfish games, is to make caching decisions which mutually
benefit the others. This back-and-forth altruistic nature, is at its
core a collaboration game with the result being node survival
and data availability long term. While the cooperative behavior
of nodes in our replication strategy are strikingly different from
the selfish behavior found in other implementations, such as
[7], there are many applications where a cooperative/altruistic
caching strategy does have an advantage. Close-system imple-
mentations for such fields as military, search and rescue, as
well as mobile collaborative environments, where there isn’t
the opportunity for selfish caching behavior would exemplify



applications of cooperative caching, where nodes collaborate
towards a common goal. The goal of such systems is to evenly
distribute the energy, bandwidth, and storage burden in an
effort to keep as many nodes available, for the health and
viability of the network as a whole.

In cooperative altruistic data replication, CADR, each node
calculates the net global benefit, NGB, for caching a replica
of the requested data, as the result data is returned from
the responding node to the requesting node. As the response
passes through each node of the return path, the historical
request information for that data item is evaluated and the
global savings is calculated along with a global cost and used
to derive the NGB.

The global savings, GS, is defined as the global energy
resources that would be conserved in the network, through
a reduction in retransmission of data, if that node is chosen to
host a replica of the given data item. The global cost, GC, is
defined as the total cost to the network, in additional resource
utilization, to update the data item plus the additional overhead
cost if an existing replica is removed in order to make room
for the new. After both the GS and GC are determined, the
node calculates the net global benefit by subtracting the GC
from GS, NGB = GS −GC.

After these calculations, the NGB for caching the data item
at that particular node is added to the NGB matrix, which is
contained in the response header holding the requested data.
Each node in the return path adds its own NGB. The requesting
node then compares its own NGB with that of the other nodes,
and decides if its NGB is spatiotemporally near-optimal. If it
is, the node caches a replica of the data item. If it is not,
it reverses the return path, and sends a message, along with
the data item and NGB matrix, towards the near-optimal NGB
node. The NGB optimal node then caches the replica.

Some parallels with our replication scheme, CADR, can
be found in existing research [11][7][15][5]. Our work differs
significantly from that found in those papers as we fully
consider: 1) Finding the optimal NGB for caching a replica
at a given mobile node, 2) The global cost for updating/cache
coherency, 3) The deallocation of replicas when their utility
has expired, 4) The continuity of read/write access to a primary
data item through proper safe leader election of a new control
node when the legacy control node is either turned off, loses
connectivity to the network, or simply runs out of energy.

The performance results from our simulations indicate that
our scheme, CADR, when compared with standard cooperative
caching [10], improves the query response time by 45%, the
mean hop count by 46%, the query error rate is reduced by
45%, and energy utilization is reduced by 57%. When the
simulation results from CADR are compared with another
game theoretic replication scheme, Data Replication Game
[7], CADR improves query response by 25%, mean hop count
by 26%, and query error is reduced by 30%.

The remainder of this paper is organized in this fashion:
Section II will review some of the related work. In Section
III, we formulate and define the problem and supporting algo-
rithms. The full algorithm for our replication scheme, CADR,

is detailed in section IV. Section V provides an overview
of the implementation of our simulation and corresponding
environment. Our results are reported in VI. In section VII we
conclude the paper.

II. RELATED RESEARCH

There has been substantial research effort in the area of
data replication in a mobile environment. Some work, such as
in [2][4][12], pay particular attention to considering groups
of nodes for replica placement, while others, such as in
[15][5][11], take more of an access frequency approach in an
effort to conserve energy and improve response time overall.
Further, work such as in [7] take a strict game-theoretic
approach for replica placement.

In [2], the authors approach the problem by forming Zones
that consist of a node and its one-hop neighbors. The Zone then
makes caching decisions based upon the access frequency of
data items by members of their Zone. The work in [4], par-
ticularly the DAFN, and DCG schemes, use access frequency
as a means to make replication decisions, but utilize a group
of nearest neighbors or stable groups respectively. In, [12],
groups are considered those which are one-hop neighbors.
When a node wants to make a replication decision, it first
queries the others in its group to see if the data is present.

Other approaches utilize the access frequency for data items,
but not groups or zones. In [15], a replica of a data item
is cached at a particular node when: 1) It is believed to
be popular, and 2) The request pattern is multi-sourced, or
coming from more than one particular node or branch in their
delivery path. The work in, [11] proposes a few different
implementation schemes some of which give more weight by
considering energy availability or hop distance to other nodes.
The work in [5] seeks to distribute replicas based on access
frequency of the data item at the primary cache site. They
consider data items which have a sustained request frequency
that is statistically more significant than other data items at the
same node, as candidates for replication. After a candidate
has been identified, the replica is sent down what is called
a dominant request path in order to settle into an optimum
location of equalibrium in demand.

Lastly, game-theoretic schemes for replication in a mobile
environment have not been significantly studied. The work in
[7], named Data Replication Game DRG, makes replication
decisions based upon a bidding process. Each node submits
a bid, which is a calculation using how far they are from the
nearest copy of the data item minus how far they are from
the master node holding the data item. After evaluation of all
bids, the organizer awards the ability to cache a replica to the
winning node. In this scheme, a system of payments is utilized
for compensating the node for taking on a replica.

The primary difference between the group and access fre-
quency approaches and the work presented in this paper can be
found in the scope of consideration the algorithms use to make
replication decisions. These schemes take a very localized
view in order to function. They do not generally consider the
wellfare of the network nor do they seek to find balance in



the number of replicas in the system. Further, the scope of
the algorithms found in this work does not focus on placing
replicas in spatiotemporally near-optimal configurations. Many
of these schemes also do not consider the consistency of
cached items when an update is made. Lastly, the primary
differences between the work in this paper and [7] lay in the
different approaches to game theory and what information
is used for optimization. [7] only considers distance from
the nearest node holding a replica, and the distance to the
node holding the master copy. It does not consider access
frequencies, or any cache replacement strategies, as in our
work. Further the work in [7] expects a selfish behavior
from the member nodes, whereas our work focuses on closed
systems that will collaborate for caching.

The biggest difference between all schemes reviewed and
the work in this paper can be summarized by the fact that
they do not consider the temporal nature of access frequencies
resulting in the loss of utility of a replica over time. Many
algorithms cache a replica, and that replica is on the node for-
ever, while others use an arbitrary cache invalidation scheme
to remove some after a set time, which may or may not be
appropriate. In this paper, we utilize both access frequency
and update cost to make replication decisions using a game-
theoretic approach for optimization.

III. PROBLEM FORMULATION AND SUPPORTING
ALGORITHMS

Within the scope of this research we consider a network
comprised of mobile nodes. These mobile nodes operate inde-
pendently and network together via wireless radio, with broad-
cast radius r, in an ad-hoc fashion. This network organization
is known as a mobile ad-hoc network, or MANET. A specific
node, denoted Mk where k is the kth mobile node. A node Mi,
is said to be in the set of one-hop neighbors of node k, Nk, if,
for coordinates x and y,

√
(xk − xi)2 + (yk − yi)2 < r. The

mobile nodes in the network coordinate in the caching of data
items which are evenly distributed to each node in order to
collectively share the storage burden. When an specific node,
Mk, needs a specific data item Dj , it first looks first to its local
cache, denoted Ck, which is the set of data items cached at
mobile node k. If Dj ∈ Ck, it is said to be a local cache-hit.
If Dj 6∈ Ck, it is said to be a local cache-miss. In the case
of a cache-miss, Mk will request Dj from the network. The
items in Ck can be further classified as in either the set of
replicas held at k, Rk, or in the set of primary/original data
items held at k, P k. For each node k, Ck = Rk ∪ P k. Each
primary data item, Dj is assigned to a specific mobile node as
its Authoritative Control Node ACN, defined as Aj . The ACN
is the node responsible for writes to the primary data item.

A. Transitory Window of Interest

When considering information specific to a node within a
MANET, we feel it is important to realize the scope of what in-
formation is useful. Given the dynamic topology of a MANET,
node specific information has only temporal relevance and
should be time boxed into a Transitory Window of Interest.

TABLE I
SYMBOL DEFINITIONS

Symbol Description
Mk The kth mobile node
Dj The jth data item

Nk The nearest neighbors of mobile node k
Ck The cache of mobile node k
Rk Replicas in cache at mobile node k

Rk
j Replica of data item j at mobile node k

τRk
j

Age of replica j at mobile node k

Pk Primary data items in cache at mobile node k
Aj Authoritative control node for data item j

λ̄k Transitory window of interest

Hk Log of historical requests

Hk
j Historical requests for data item j at node k

This window defines how far back, in the life of a node,
that information is considered useful. We propose a correlary
relationship exists between the average time that mobile nodes
are in Nk to the time span of which historical information at
Mk is considered relevant.

Proposition III.1. A correlary relationship exists between the
average time that mobile nodes are in Nk to the time span of
which historical information at Mk is considered relevant.

To begin to derive a calculation that represents the transitory
window of interest for mobile node Mk, we start with the
average time that one-hop neighbors remain within one-hop
of the given node. We define this average time as ¯τNk . Since
after ¯τNk time, a moving node is still likely to be within two
hops of a former neighbor, we define the transitory window of
interest as λ̄k, where λ̄k = 2 ¯τNk . It is important to note that
λ̄k time is relative to the node in question and that each node in
the network can potentially have different λ̄k times. We utilize
the transitory window of interest, or λ̄k time, throughout both
the replication algorithm as well as supporting algorithms.

B. Adaptive Replica Deallocation

In order to increase data storage availability at each node,
replicas will be deallocated after a certain amount of time. We
proposed in Subsection III-A that node specific information
has only temporal relevance due to the dynamic topology of a
MANET. This led to the derivation of a transitory window of
interest, or λ̄k time. We would further propose that decisions
made by use of λ̄k time are also transitory, and should be
considered temporally relevant.

Proposition III.2. Decisions made through the use of a
transitory window of interest, λ̄k time, following Proposition
III.1, are also transitory, and should be considered temporally
relevant.

Each mobile node, Mk, has a windowed history of responses
to data requests that have either delivered directly to, or
have been relayed through Mk. This historical set of request
responses, denoted Hk, is limited by the transitory window



of interest, λ̄k time. So only relevant historical information is
considered. The subset of historical requests for data item j,
Dj , is defined as Hk

j . Further, let τRk
j

denote the age, in time,
of a replica of data item j at mobile node k.

Replication decisions, the process of which is forthcoming,
are partially made through the evaluation of historical request
information, Hk

j . Given Proposition III.1, these replication
decisions are considered temporally relevant as well, indicating
a decrease in the potential utility of a replica over time.
Because of the spacial skew of requests for certain data items
from certain geographic regions zipf [9][15][5], and consid-
ering node travel and the dynamic topology of a MANET,
what may have been spatiotemporally near-optimal for replica
placement at one point, may not be relevant placement at a
later time. Given that we consider request history, Hk, to
remain relevant for λ̄k time, we propose that replicas should
also have a base time to live, TTL, of λ̄k. The TTL of a given
replica is the age at which it is deallocated.

However, we realize that the relevance of a replica at Mk

increases with its utilization. Because of this, the utilization of
a replica should correspondingly increase its TTL. Instead of
setting a strict TTL = λ̄k, it is prudent to consider both λ̄k time
as well as the relative utility of a replica of j held at a node k,
Rkj , which adds an adaptive element to extend the base TTL
if the utilization of a particular data item is relatively high.
In our previous work [5], we developed a means by which to
extend the TTL adaptively based on utility.

In order to set the stage for the adaptive TTL we first need
to define a utilization ratio, Uratio which will be used to help
determine the adaptive portion. This Uratio is defined in Eq.
1, where nkj is the number of requests for Dj in Hk

j .

Uratio =
nkj
τRk

j

(1)

We then take the product of the utilization ratio, Uratio in
Eq. 1 and the λ̄k time, and add the standard TTL, λ̄k, to derive
an adaptive time to live, aTTL, as defined in Eq. 2.

aTTL =

(
nkj
τRk

j

∗ λ̄k

)
+ λ̄k (2)

If we define the aTTL of Rkj as aTTL(j, k), Uratio = 0.75,
and λ̄k = 120, we get aTTL(j, k) = 210, which when 210−
τRk

j
= 0, we deallocate Rkj from Ck.

When a mobile node, Mk, is ready to deallocate a replica
j, Rkj , it first pings the authority control node, Aj , for data
item k. If no acknowledgement is recieved from Aj within λ̄k
time, the safe leader election, detailed below, is initiated. If an
acknolwedgement is recieved, the replica is deallocated. This
is done to insure that data is not lost due to the authority
control node holding the primary replica of the data item,
going offline, running out of energy, or simply going off grid
for an extended period of time.

C. Data Consistancy for Replicas

Every request to update a primary cache item, must be made
at the authoritative node, Aj , for the Dj . Upon receiving an
update request, the Aj node will process the request, and make
a decision whether or not to schedule the transaction. If the
transaction is scheduled, the Aj sends a cache invalidation
request to the network holding a replica of data item Dj , ∀Mk

where Dj ∈ Rk, with instructions to stop serving the data
item from cache until a replacement is sent. After the write
transaction has executed, the Aj will send out a replica update
request with the new data.

D. Safe Leader Election - ACN Continuity

Safe leader election, or Authoritative Control Node Aj
continuity, is a fundamental scheme that assures a successor
to Aj should it disconnect, go off network, or die. Every λ̄k/2
time, each Mk where Dj ∈ Rkj would send a message with a
set of metrics, to Aj indicative of the health of the replicating
node, how much it has been serving up Rkj , remaining battery
life, and the frequency of complete disconnection from the
network. The Aj , upon receiving all of the metrics from all
replicating nodes, would compute the list and pick an order list
of best candidates to take over as the authoritative node should
it go offline. The authoritative node would then broadcast out
its successor list to the replicating nodes. In the event that
the authoritative node should go offline, the replicating nodes
would ping the successor list in order and the top one that
responds would be the new authoritative node.

IV. COOPERATIVE ALTRUISTIC DATA REPLICATION

Our replication scheme, CADR, is based upon the Volun-
teer’s Dilemma problem in game theory, [8][13][1]. The Vol-
unteer’s Dilemma is a game in which a player make decisions
that will benefit all, while taking on a small sacrifice with
the expectation that other players will make similar decisions
in the future. In our algorithm, mobile nodes found to be the
globally optimum placement for a replica, become the ”player”
that takes the small sacrifice of decreased storage capacity in
order to benefit the other mobile nodes through a reductionin
both bandwidth and energy utilization. The CADR algorithm
uses the following steps to help decide replica placement:
calculation of a net global benefit, NGB, for each node in the
return path, the determination of global optima by the recipient
node, and the decision of what to do with a displaced replica
in the event that the new replica has a greater NGB than an
existing replica at the data item.

The calculation of NGB is a multi-step process. Net global
benefit is derived by subtracting the global cost incurred from
the global savings realized through the placement of a replica
at the specified node. Global cost, GC is a metric comprised
of both the network cost to update the replica and the network
cost incurred from either displacing or deallocating an existing
replica to make room for the new one. Global savings, GS,
as mentioned earlier, is the total network savings that will be
realized from replicating at that node, through the reduction
in the retransmission of data items from the sourcing node to



the node under consideration for replica placement. Along the
delivery return path of a requested data item from source node
to requesting node, the global cost, GC and global savings,
GS is calculated, and a net global benefit is determined for
each node. That net NGB, along with the remaining global
benefit of the other replicated items on the node, are added to
the message being sent back to the requesting node.

Each node, Mk maintains a windowed history, λ̄k, of
requests for data item j, Hk

j , either originating from or relayed
through themselves. This transitory window of interest, λ̄k, is
disucussed in detail within Subsection III-A. Within the CADR
scheme, this window is used both as a base metric for replica
deallocation and to keep the historical request data relevant.

The global savings, GS, is determined by first evaluating
the request response history records. For each record in the
history, Hk, for the given data item under consideration, Hk

j ,
the hop count from the data source to the node evaluating the
history, Mk, is determined. The hop count for all records in
the history for that node are summed and multiplied by the
size of the data item. This gives an indication of how much
total savings in energy and bandwidth will be realized from
caching the data item at that particular node.

Given j and k, ∀Hk
j , let the global savings, GS, of repli-

cating Dj at Mk, be defined as:

GSkj =
∑

HC(Hk
j ,Mk) ∗ Sj (3)

, where HC() is a function returning the hop count from the
response node in Hk

j to Mk.

A

B

C

D

E

F

G

H

I
J

K

L

M

N

O

2

3

1

3

2

9

4

1

15

18

GS j
G=900Kb

=1.5Mb
=1.35Mb

=600Kb
j
HGS

j
LGS

j
OGS

Fig. 1. MANET with Demand and Global Savings

Consider the mobile ad-hoc network pictured in Figure 1.
In this network, mobile node O requested a specific data item.
For this demonstration, assume the data item in question, Dj ,
has a size, Sj of 50Kb. Data item Dj was found at MC .
MC responded back with a response message containing the
data item. When the message gets to MG, it calculates a
global savings of 900Kb, which is the aggregate of all requests
coming into the node, 15, plus 3 that originated at itself, times
the size of Dj . Since the total requests coming through or from
MG is 18, the global savings is 900Kb. Likewise, when MH

receives the response message containing the data item, and
MG’s NGB contribution, MH calculates its savings at 1.5Mb,
which is the aggregate of the 13 requests that mobile node H
relay’s through itself, plus the two that originate from mobile
node H, times two hops to the source, since MH is two hops
from the source of the data, then multiplied by the size of Dj .
The savings for each of mobile nodes L and O are calculated
in similar fashion. The preliminary global optima for caching
a replica is at mobile node H, followed by mobile node L.

The global cost, GC, is derived by first calculating how
much it will cost the network to keep that data item updated
when the authority node makes a change to the primary data
item. This is determined by finding the hop count distance
from the authority node to the node in question. That hop
count is then multiplied by the size of the data item. Next,
the network cost for the displacement or deallocation of
an existing replica, on that mobile node, is calculated. To
determine this cost metric, each replica is evaluated by looking
at their stored NGB. The stored NGB is multiplied by a ratio
which represents the amount of life left for that replica.

Let each replica of Dj have an update frequency ωj in t
time. Given Dj and Mk, let the global cost GCjk of replicating
Dj at Mk be defined as:

GCkj = HC(Aj ,Mk) ∗ Sj ∗ d
λ̄k
ωj
e+RGBki (4)

Where HC() is a function returning the hop count from the
Aj of Dj to Mk, d λ̄k

ωj
e gives the relative update occurances

of Dj over the course of the base expected life TTL, or λ̄k
time, of the replica. RGBki gives the remaining NGBki for the
replica of data item i at note k, Rki , which must be removed to
make room for the replica of data item Dj , multiplied by the
fraction representing the remaining aTTL for Rki . Let RGBki
be defined in 5

RGBki = GBki ∗ (1− Rki τ

aTTL(i, k)
) (5)

Given the global savings, GSkj , and global cost, GCkj , let
the net global benefit, NGBkj , for replicating Dj at Mk be
defined as:

NGBkj = GSkj −GCkj (6)

For a positive caching decision, GSkj > GCkj must hold. If
there is room in the cache of Mk for Dj then RGB = 0. If
there is no room in the cache of Mk for Dj , then Sj ≤ Si
must hold true.

Consider the example used earlier with Figure 1 and the
demonstration of the global savings, GSkj . The GSHj for
replicating Dj at MH was 1.5Mb. Let us suppose that a
candidate for replacement, RHi has an aTTL of 120, with a
size, Si, of 30Kb, and has an age, τRH

i
of 100. Lets also

assume that this particular candidate for replacement would
have a remaining life ratio of 1−(100/120) = 1−0.83 = 0.17.
If the Net Global Benefit, NGB, value that was stored at
the time of a caching decision for RHi at MH was 600KB,
but the remaining life ratio is 0.17, then the RGB for the
existing replica is 102Kb. Consider the cost for updating the
new replica of Dj at MH is 4 ∗ 2 ∗ 50 = 400Kb, because the
data item gets updated twice every 60 time units with the aTTL
of 120, two hops from MC to MH where MC = Ai, times Sj .
So the total global cost would be 400Kb+ 102Kb = 502Kb.
Since GC ≈ 0.5Mb which is < 1.5Mb, the caching of the
new replica would have a1500Kb− 502Kb ≈ 1.0Mb NGB.



Algorithm 1 Calculate NGB at each mobile node along the
query return path. Make replication decision at request node.
{QFM = Query Found Message}
{QRP = Query Return Path}
if Dj ∈ Ck then

while QRP > 1 do
i = QRP [0]
GSij =

∑
HC(Hi

j ,Mi) ∗ Sj
GCij = HC(Aj ,Mi) ∗ Sj ∗ d λ̄i

ωj
e

NGBij = GSij −GCij
if NGBij > 0 then
QFM.NGBMatrix[i]← NGBij

end if
QRP − i
QRP [0]← QFM

end while
{C = Candidate}
{CNGB = Candidate NGB}
for all Mk ∈ QFM.NGBMatrix do

if QFM.NGBMatrix[Mk] > CNGB then
C = Mk

end if
end for
if C 6= ∅ then
C ← ReplicationRequest(Dj)

end if
end if

V. SIMULATION ENVIRONMENT/PARAMETERS

For our experiment, the simulation tool developed in [5]
was extended to this work. This environment implements
a Dynamic Source Routing[6], DSR, protocol. Normal DSR
routing is a two-phased process where a path search message
goes out; returning the most efficient path, then the search
request follows the path returned. However, our path discovery
message contains the actual search request as a way to cut
down on our message handling.

Some of the environmental variables which can be selected
within the simulation tool include: query time, number of
nodes, number of data items, size of cache, and run time. The
simulator world space is set to either 1200m x 320m rectangle,
as in [11] and [5], or 1200m x 640m. The space is also divided
up into a grid of ten equal spaces which are utilized by the
mobility and query algorithms.

A. Query Model

A Zipf data access pattern, similar to that found in
[9][15][5], is used to build the query model. The Zipf calcu-
lation was implemented using the ten grids spaces mentioned
above. Each grid space has been given a slightly different
access pattern from that of its neighbor grid spaces, but a
significantly different access pattern from a grid space on the
other side of the world.

As in [15][5][9], the Zipf distribution has been skewed in or-
der to create a more profound deliniation of the access pattern
between grid spaces. By skewing the Zipf data access patterns,
the access patterns produce a stronger likelihood of selecting
certain data types for one grid space compared to another.
Whichever grid space the mobile node is in, determines which
access pattern they use when making a query. This simulates
real-world situations where certain data demand is spatially
skewed, while other data is equally queried.

B. Mobility Models
We utilized the same simulator framework as our work

in [5]. In that work a modified random waypoint mobility
model was developed which significantly reduced the central
tendency of the traditional random waypoint scheme. Please
see our work in [5] for details on our modified random
waypoint mobility model.

C. Test Variables
For the purposes of the test, certain simulator variables were

fixed and used repeatedly. The world size was fixed at 1200
by 320 meters or 1200 by 640 meters. The mobile node count
was fixed at 100 with 300 data items available for primary
caching. The wireless range, or r of the mobile devices was
set to 100 meters. The total available cache size to hold data,
Sj , was given a static 500KB Kilobytes. It is important to
note that the total available cache size, Sj is not the total
available data storage for the node, but simply the portion set
aside for caching. The query time, or time between queries,
was made random in selection from a set range around the
selected query time for the test. The available query times
used in the simulator include: 4, 6, and 8 seconds. The average
data item size was varied for different tests and was selectable
according to the relative size of the data item to the total
available cache size. The relative size ratio’s were: 10%, 15%,
and 20%. Lastly, node failure was simuluated with settings of
0%, 5%, 10% and 20%. The bandwith of the mobile devices
is fixed at 2Mbps and the total run time of each iteration of
the experiment was 60 minutes; as listed in Table II.

TABLE II
TEST ENVIRONMENT VARIABLES

Variable Value(s)

World Size 1200 x 320 meters, 1200 x 640 meters
Mobile Nodes 100
Wireless Range R 100 meters
Cache Size Sj 500KB
Data Items 300
Query Time Interval 4, 6, or 8
Bandwidth 2Mbps
Data Item Size Ratio 10%, 15%, 20%
Node Failure 0%, 5%, 10%, 20%
Run Time 60 minutes

VI. EXPERIMENTAL RESULTS

A. Test Scenarios
Standard Cooperative Caching, CoopCache [10], Tidal

Replication, TR [5], and Data Replication Game, DRG [7]



make up the comparison algorithms tested and compared
alongside our proposed algorithm, Cooperative Altruistic Data
Replication, CADR. These four algorithms were put through
72 different, independent test scenarios. Each test scenario
represented a unique permutation of options for the four
variable environmental settings: Query Time, Data Item Size
Ratio, Node Error Rate, and World Size. The options for these
settings are defined in Table II. Each scenario was executed
ten times, for 60 minutes, for all four algorithms, resulting
in 2,880 unique tests of 60 minutes, or 172,800 hours, with
each testing algorithm seeing 43,200 hours of testing. Node
placement, data item assignment, node movement, and query
selection were random for each test, but consistant parameters
were used for each test scenario.

B. Measurements

The primary goals of replication are to both reduce ac-
cess time, increase data availability, and decrease the en-
ergy burden. Given those goals, query hop count was the
primary consideration when evaluating the performance of
each algorithm. Both energy savings and access time were
also considered, but these measures can be, and were, derived
directly from the hop count metric. Query error rate was
also measured and evaluated along with a metric defining the
percentage of queries answered with a replica to evaluate the
data availability. The result summary is found in Table III

Mean Hop Count H̄C: This is a metric which measures the
mean number of nodes through which a requested data item
must be retransmitted in order to reach the requesting node
from the response node. This is one of our primary methods
to determine the efficacy and performance of our algorithm
versus the comparison algorithms.

Median Hop Count H̃C: Similar to H̄C, except another
indicator of the average hop count without the noise from
larger outliers.

Hop Count Standard Deviation σH̄C : This metric is an
indicator of the strength of the H̄C statistic by showing how
tightly the population fits around the mean.

Confidence Interval for Mean Hop Count CH̄C : Metric
showing the bounds for the mean hop count at 95% confidence
interval.

Mean Local Hit Ratio ¯LHR: This is a metric which gives an
indication of how many queries were answered from a nodes
local cache versus the node having the request the data from
another node. Given the Zipf[11] query model utilized in the
simulator, this is a strong indication of how effective replica
placement was executed.

Mean Query Access Time ¯QAT : This ia a measure of the
average (mean) time a query takes to arrive from source node
to requesting node.

Mean Replica Utilization Ratio ¯RUR: This metric repre-
sents the ratio between the number of queries answered from
a replicating node over the number of queries answered from
a primary node.

Mean Query Error Ratio ¯QER: This metric gives insight
into the effective placement of replicas through the showing

and comparison of the reduction in query error for each tested
algorithm versus the base cooperative caching algorithm.

TABLE III
SUMMARY TEST RESULTS

Metric CoopCache TR DRG CADR

H̄C 6.20 4.14 3.74 2.78
H̃C 6.00 3.00 3.00 2.00
σH̄C 3.69 3.50 3.29 2.47
CH̄C± 0.02 0.01 0.01 0.01

¯LHR 0.01 0.08 0.06 0.08
¯QAT 0.21 0.20 0.16 0.14
¯RUR 0.0 0.62 0.56 0.78
¯QER 0.25 0.18 0.17 0.12

C. Access Time
Access time is closely correlated to the hop count of

the query response. To evaluate access time, we considered
the mean/median hop count metrics from the various tests
performed. Different variables such as data item size ratio,
query time, and world size, were tested and evaluated for
their effect on the performance of the algorithms. Though
many permutations of different variable settings were tested,
the primary settings used in most of our comparisons is: 4
second query time, 1200m x 640m world size, and 0.15 data
item size ratio.

For our query response time metric, we derived the response
time for each algorithm based off of the hop count for each
answered query. To facilitate this derivation, we utilized the
equation listed in Eq. 7, where H is the hop count for the
query, S̄k is the size of the data item (76KB avg), and B is
the total available bandwidth of the mobile node: 2MB.

¯QRT = (H ∗ 0.03) + (H ∗ S̄k/B) (7)

When considering response time, CADR realized a 44%
improvement in mean response time over CoopCache, 30%
improvement over TR, and 25% improvement over the primary
comparison algorithm DRG. The running median response
time, over time, is shown in Figure 2

Fig. 2. Running Median Query Response Time. Settings: 1200x640 world
size and .15 Data Item Size Ratio

When mean hop count was evaluated, CADR saw a 45%
improvement over Cooperative Cache, 33% over TR, and



26% over DRG. While CADR performed very well against
all comparison algorithms in the area of mean hop count,
evaluation of the standard deviation of the mean hop count
revealed the CADR algorithm to be even stronger. The mean
hop count standard deviation’s of Cooperative Cache, TR, and
DRG were 3.69, 3.50, and 3.29 respectively, while the standard
deviation for CADR measured at 2.47. We believe that this
shows the performance of the replication strategy in CADR
to be much stronger than the primary comparison algorithms,
as it indicates a tighter pattern of query hop count results.
The mean hop count measurements, along with the standard
deviation metrics, for all tested algorithms, are illustrated in
Figure 3.

Fig. 3. Mean Hop Count w/Standard Deviation. Settings: 1200x640 world
size and .15 Data Item Size Ratio

Next, the query results were evaluated considering the
number of queries being answered from either a primary
data source, or a replicating data source. By measuring the
percentage of queries answered by either a primary source
or replicating source, one can further reveal the strength of
the replicating strategy as the more effective the replication
strategy, the fewer queries are answered by a primary data
item. The TR algorithm answered 38% of its queries from
a primary source and 62% from a replicating source. DRG
answered 45% and 55% from a primary and replicating
source respectively. Finally, the CADR algorithm answered
only 22% of its queries from a primary source and 78% from
a replicating source. The primary/replica source statistics are
illustrated in Figure 4.

An ineffective replication strategy will tend to place replicas
more haphazardly in the network. An effective replication
strategy, on the other hand, will place replicas where they
will make the biggest impact, a spaciotemporally near-optimal
placement. Given the nature of the geo-skewed query ac-
cess pattern used in our simulator, found in the real world
[15][9][5]: how hard the primary data sources must work in
comparison with the replicating sources, is a huge indicator
of the strategic strength of the replication algorithm.

The next indicator we considered was that of the average
hop count for both a primary and replicating data source in
comparison with the average hop count of all sources together.
We believe these metrics further show the strength of the
replica placement strategies that were tested. For this metric,
we considered the median hop count. We used the median

Fig. 4. Percent of Successful Queries from Primary or Replica Data Item.
Settings: 1200x640 world size and .15 Data Item Size Ratio

hop count, as opposed to mean, as a way to eliminate the
outlier noise and take a look at the averages from a different
perspective. The most interesting outcome of this evaluation
was in the fact that all three replicating algorithms had the
exact same median hop count, 2, when it came to the replica
data sources, yet the median combined hop counts of both TR
and DRG measured at 3 and the median combined hop count
for CADR measured at 2. The metric that seemingly made
the difference was the median hop count measurements for
the primary data sources. Both TR and DRG had a median
primary source hop count of 5, while CADR measured at 3.
We believe this is due to the fact that the CADR algorithm
placed the replicas in a more balanced and globally optimal
way.

Fig. 5. Median Hop Count for 1) Primary Data Items, 2) Replica Data Items,
and 3) Combined. Settings: 1200x640 world size and .15 Data Item Size Ratio

While the difference between the primary and replicating
data source median hop counts of both TR and DRG were
both 3, the difference between the primary and replicating
data source averages for CADR was only 1. The median
average hop count metrics for primary and replicating sources
are shown in Figure 5. While evaluating this measurement,
considering the previously mentioned primary/replica query
count and standard metrics mentioned above, we believe the
combined view shows that CADR places replicas in a consid-
erably more optimal way than the comparison algorithms from
a hop count/access time perspective.

In consideration of access time and hop count, the last set
of metrics evaluated were the impact of both the data item
size ratio as well as the node failure rate. Both were evaluated
through all permutations of our tests. It was discovered that



while increasing the data item size ratio and/or the node failure
rate does impact the performance of the algorithms, it does
not signicantly alter their performance in relationship to each
other. In other words, neither the data item size ratio nor the
node failure rate exposed any inherent flaws or weaknesses in
any of the algorithms such that it would cause one to be more
performant than the other in certain circumstances.

D. Data Availability

The second major consideration when evaluating the effi-
ciency of replication algorithms is that of data availability.
Because of the transient nature of node relationships in a mo-
bile network, as well as the tendency for the mobile network
to become disjoint, data availability becomes an issue which
replication can help mitigate. By optimally placing replicas
closer to the areas of high demand, availability increases. The
lower the query error rate, greater data availability is realized
in the network. Greater data availability decreases overall
realized access time and decreases the energy utilization as
a result of fewer retries of failed queries.

Fig. 6. Mean Query Error Rate by World Size

As shown in Figure 6, in a 1200m x 640m world space,
Cooperative Cache had a high 25% query error rate, compared
with a low 4% in a 1200m x 320m world space. TR had a query
error rate of 3.5% in the smaller and 18% in the larger world
space. DRG realized a 3.5% error rate in the smaller and 17%
in the larger while CADR measured a 2.5% query error rate
in the smaller world space and only 12% in the larger. The
overall increase of query error rate in the bigger world space,
1200m x 640m, can be attributed to the greater tendency for
the network to be disjoint, creating higher proportion of failed
queries. Further, the more inefficient the replication strategy,
the higher energy burden is produced, resulting in a greater
node failure and higher query error rate.

E. Energy Efficiency

Lastly, energy efficiency, or gains thereof, is an important
metric when considering the effectiveness of a replication
algorithm. In Figure 7, the energy savings rate for each tested
algorithm, in comparison with standard cooperative caching
CoopCache, is shown for each of the three data item size
ratio’s used in the tests. This particular metric is another
primary indicator of the efficacy of the replication strategy
for the given algorithm. Higher energy savings translates into

longer network up time due to the increased longetivity of each
node. The more nodes that are alive and in the network, the
lower the query error. Similarly, the lower the query error, the
lower the access time. As you can see in Figure 7, CADR
performed the best in all categories. The main data item
size ratio used in our evaluation was 0.15. With a 0.15 data
item size ratio, CADR saved an additional 16% more energy
than DRG, with a total energy savings of 56%. This directly
translates into a 16%, at minimum, increase in average node
longevity.

Fig. 7. Energy Savings by Data Item Size Ratio and Algorithm Settings:
1200x640 world size

The calculation used to determine energy efficiency is
illustrated in Eq. (8) and derived from [14]. The ∆hopcnt

is calculated based on the mean hop count from traditional
cooperative caching, CoopCache, and the mean hop count
from the simulated algorithm. The result of the calculation
in Eq. (8) is converted to mWh in order to derive the mean
mWh used per query response. The mean mWh is the
multiplied by the number of queries for each simulation, then
compared with the energy used for [10] to arrive at an energy
savings ratio.

En =
(
(5.27 ∗ 10−6 ∗ 15000) + 266 ∗ 10−6

)
∗∆hopcnt (8)

Looking towards energy efficiency as a measure of network
reliability and longevity, we ran a seperate set of tests which
measured the number of active nodes every twenty minutes for
a run length of 6 hours. Each node was given one gigabyte
of broadcast capability. As each nodes battery level was
depleted, the node went offline. The results of this metric can
be seen in Figure 8. In the chart, you will see that CARD
lasted approximately 40 additional minutes than DRG and 90
additional minutes over standard CoopCache.

F. Scalability

A second set of tests were conducted in order to measure the
scalability of CADR with different numbers of node counts.
Both DRG and TR were tested along with CADR with 25,
100, and 250 nodes as well as both world sizes of 1200m
x 320m and 1200m x 640m. It was discovered that CADR
does scale well with different node population. However, it
was found that while CADR outperformed DRG and TR, the
delta hop count metrics between DRG and CADR decreases



Fig. 8. Mobile Node Lifespan by Algorithm - Each node started with enough
energy to broadcast 1GB of data. Settings: 1200x640 world size and .15 Data
Item Size Ratio

significantly the more dense the network becomes relative to
the world space. This can be attributed to a situation where
the more dense a network is, the higher edge count, one-hop
neighbors, per node, which results in a greater likelihood of
queried data being closer. However, CADR did out perform,
albeit on a smaller interval, all other tested algorithms despite
changes to the network density. Due to space constraint, we
have not further analyzed the results of our scalability study.

G. Result Summary

In summary, CADR performed extremely well under all test
permutations and all comparison algorithms. DRG was the
main algorithm our schemes were tested against, as it was
also a game theoretic model. CADR saw a 25% decrease in
response time, a 26% improvement in mean hop count and
energy efficiency, and a 30% reduction in query error over
DRG, all of which indicates a greater measure in the strate-
gic placement of replicas. When compared with cooperative
caching, CADR realized a 45% decrease in response time, a
46% improvement in mean hop count, a 56ı̂ncreased energy
efficiency, and a 48% reduction in query error.

VII. CONCLUSION

In this paper, we proposed a novel scheme for data repli-
cation in order to help mitigate the drawbacks inherent in
a mobile environment such as high energy utilization, high
access times, and low data availability. A game theoretic
approach was detailed as a solution to decrease both the
energy usage and access time, and increase data availability.
Our cooperative game theoretic scheme took a volunteer’s
dilemma/reciprocal altruism approach that we have called
Cooperative Altruistic Data Replication or CADR.

Our approach seeks to find the spatiotemporally local-
optimal placement of replicas through the evaluation of the
demand at nodes along the query response path. Nodes then
make an altruistic decision to increase their own storage
burden for the good of the network. As stated before, though
our methods do not conform to the standard definition of game
theory, they do represent a game-theoretical methodology
through a dependence upon a utility function which has the
goal of mutual optimization. In future work, we will take
a more pessimistic/selfish approach towards the replication

algorithms, outlined in this paper, through the introduction of
an incentive model.

Our algorithms were thoroughly tested against three other
similar replication algorithms under a wide variety of simu-
lation parameters including: world size, data item size, query
time, node count, and node failure ratios. Over all, CADR was
found superior in energy conservation and data availability.

Our future work in this area will go two directions. One
direction will look towards reducing the quantity of replicas
created while increasing the usefulness of existing replicas
through the application of our redistribution algorithm Mag-
netic Distribution found in [5]. The second direction will look
towards adding an incentive model in an effort to move our
scheme towards a more pessimistic/selfish game theory.

REFERENCES

[1] M Archetti. Cooperation as a volunteer’s delimma and the strategy of
conflict in public. The Journal of Evolutionary Biology, 22(11):2192,
2009.

[2] N Chand, R.C. Joshi, and J Misra. Efficient cooperative caching in
ad hoc networks. Comsware 2006. First International Conference on
Communication System Software and Middleware, pages 1–8, 2006.

[3] Selim Gurun, Priya Nagpurkar, and Ben Y. Zhao. Energy consump-
tion and conservation in mobile peer-to-peer systems. In MobiShare
’06: Proceedings of the 1st International Workshop on Decentralized
Resource Sharing in Mobile Computing and Networking, pages 18–23,
New York, NY, USA, 2006. ACM.

[4] T. Hara and S.K. Madria. Data replication for improving data acces-
sibility in ad hoc networks. IEEE Transactions on Mobile Computing,
5(11):1515–1532, 2006.

[5] D. Hirsch and S. Madria. A resource-efficient adaptive caching scheme
for mobile ad hoc networks. In Reliable Distributed Systems, 2010.
SRDS 2010. 29th IEEE Symposium on, pages 64 –71, Oct-Nov 2010.

[6] D Johnson and D Maltz. Dynamic source routing in ad hoc wireless
networks. Mobile Computing, pages 153–181, 1996.

[7] S.U. Khan, A.A. Maciejewski, H.J. Siegel, and I. Ahmad. A game
theoretical data replication technique for mobile ad hoc networks. In
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on, pages 1 –12, april 2008.

[8] Seungjoon Lee, Dave Levin, Vijay Gopalakrishnan, and Bobby Bhat-
tacharjee. Backbone construction in selfish wireless networks. In
Proceedings of the 2007 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, SIGMETRICS ’07,
pages 121–132, New York, NY, USA, 2007. ACM.

[9] Christoph Lindemann and Oliver P. Waldhorst. Modeling epidemic
information dissemination on mobile devices with finite buffers. In
SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems,
pages 121–132, New York, NY, USA, 2005. ACM.

[10] Francoise Sailhan and Valerie Issarny. Cooperative caching in ad
hoc networks. In MDM 2003: Proceedings of the 4th International
Conference on Mobile Data Management, 2003, pages 13–28, 2003.

[11] Hara T. Shinohara, M. and S. Nishio. Data replication considering
power consumption in ad hoc networks. In MDM 2007: Proceedings of
the 2007 International Conference on Mobile Data Management, pages
118–125, Washington, DC, USA, 2007. IEEE Computer Society.

[12] Yi-Wei Ting and Yeim-Kuan Chang. A novel cooperative caching
scheme for wireless ad hoc networks: Groupcaching. In NAS ’07: Pro-
ceedings of the International Conference on Networking, Architecture,
and Storage, 2007, pages 62–68, 2007.

[13] Jeroen Weesie. Cost sharing in a volunteer’s dilemma. The Journal of
Conflict Resolution, 42(5):600, 1998.

[14] O. Wolfson, Bo Xu, and R.M. Tanner. Mobile peer-to-peer data
dissemination with resource constraints. In MDM 2007: Proceedings of
the 8th International Conference on Mobile Data Management, 2007,
pages 16 –23, May 2007.

[15] L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks.
IEEE Transactions on Mobile Computing, 5(1):77–89, 2006.


