
Data Management Support via Spectrum
Perturbation-based Subspace Classification in

Collaborative Environments
Chao Chen and Mei-Ling Shyu

Department of Electrical and Computer Engineering
University of Miami

Coral Gables, FL, USA
Email: c.chen15@umiami.edu, shyu@miami.edu

Shu-Ching Chen
School of Computing and Information Sciences

Florida International University
Miami, FL, USA

Email: chens@cs.fiu.edu

Abstract—Data management support to enable effective and
efficient information sharing in collaborative environments is
critical, especially in semantics based search and retrieval. In this
paper, a novel spectrum perturbation-based subspace classifica-
tion is proposed to mine semantics and other useful information
from a large-scale dataset by utilizing a lower-dimensional
subspace to discriminate different classes of the dataset. Among
the existing subspace-based approaches, the principal component
(PC) subspace is the most prevailing one and has been well
studied. After investigating previous work related to PC subspace,
we found that none of them had considered the perturbation on
spectrum when building the subspace learning models. However,
such perturbation is of certain importance and is able to provide
discriminant information that helps improve classification perfor-
mance by measuring the closeness of each testing data instance
towards a subspace model by a closeness score based on the
spectrum perturbation. Each testing data instance is assigned
to its closest class by searching the smallest closeness score.
Experiments are conducted to evaluate our proposed subspace
classifier using data sets from three different sources, and the
experimental results show that it achieves promising results and
outperforms comparative subspace classifiers as well as some
other commonly used classifiers.

Index Terms—Collaborative environment, Principal compo-
nent (PC) subspace, spectrum perturbation, classification, close-
ness score.

I. INTRODUCTION

One of the advantages of a collaborative environment, where
people are working closely together towards a common goal,
lies in its efficiency that an individual environment may not be
able to offer. In a large scale collaborative information system,
people may search, gather, analyze, and share information
frequently from text documents, images, and/or videos. Many
issues arise when searching and sharing information from
these data. First, due to people’s subjectivity, the content
is described and represented differently by the end users.
Therefore, the sharing of information stays mainly at the raw
data level, such as text, picture, and video, and it is hard to
share information at a higher level, such as the semantics
information within the images or videos. Second, intensive
human effort is usually required before searching and sharing
the information, e.g., the indexing and annotation of images

and videos. There is a demand to find a way to efficiently
search and retrieve desired information to be shared within a
collaborative environment.

In response to such demands, data mining techniques
including classification, association rule mining, decision
tree, regression, clustering, etc. have shown their potentials
[1][2][3][4][5][6][7][8][9]. The idea of applying data mining
techniques is to automatically discover knowledge from a
large amount of data so as to reduce expensive human efforts.
For example, when indexing a large collection of images or
videos, classification methods are of great help to efficiently
retrieve the interested content. Some data mining techniques
have already been successfully deployed in collaborative en-
vironments [10]. An example is collaborative filtering which
can be regarded as a classification/regression task. In [11],
a classification method was used to recommend products
according to the user’s past purchasing behavior. [4] proposed
a collaborative approach for document clustering. In this
paper, our focus is on developing an effective and efficient
classification framework to support data management within a
collaborative environment.

With the advance and prosperity in the areas of data mining
and machine learning as well as the successful deployment
in practical real-world applications, numerous classification
algorithms have been proposed, including Support Vector
Machine, Neural Network, Decision Tree, Bayes Network, etc.
[12]. Among them, the subspace classification has also been
studied and developed. Although the analysis on subspace
modeling can be traced back to as early as in [13], it is not
until recent decades that more and more subspace classifiers
were developed and utilized in various applications like letter
recognition face recognition, etc. [14][15][16][17].

As far as the subspace classification approach is concerned,
each class is represented and modeled by a subspace. The
subspace of each class may overlap with each other or can
be mutually independent. The dimension of the subspace
is usually much lower than that of the original space. The
commonly adopted classification rule of these subspace clas-
sification algorithms is to assign the label of a class whose

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247202

subspace has the smallest distance to a testing data instance.
Since each class is modeled in a lower-dimensional subspace,
subspace classification suffers less from the so-called “curse of
dimensionality” problem that has been commonly seen when
dealing with high-dimensional datasets.

One of the most prevailing subspaces adopted for modeling
and classification is the principal component (PC) subspace.
The PC subspace has a significant property that the bases of the
PC subspace are orthogonal to each other and the attributes in
the PC subspace are mutually uncorrelated. Moreover, by only
removing zero eigenvalues and corresponding eigenvectors,
the information within the original space will not be lost
while reducing the dimension of the data. Please note that
the eigenvectors and the bases of principal component sub-
space are actually the same. Therefore, principal component
subspace can compactly represent the data instances and thus
a classification algorithm could potentially benefit from such
a compact data representation. However, the eigenvectors are
quite sensitive to the data from which they are derived,
so any outliers can easily change the principal components.
Previous studies mostly focus on the outliers’ negative impacts
on Principal Component Analysis (PCA) [18]. Indeed, the
variance caused by the outliers will significantly change the
eigenvectors and may affect the performance of the subspace
classifiers. Nevertheless, with regard to multi-class classifica-
tion, the diverse extents of sensitivities to outliers that are
inherent in the eigenvectors of different classes may be served
as the key information for the classification purpose.

This motivates us to develop a novel SPectrum peRtUr-
bation based ClassifiEr called SPRUCE in this paper. The
proposed classifier uses the perturbation information on the
spectra of all classes to build the subspace models and perform
the classification task. Experimental results based on cross-
validation evaluation on datasets from three different sources
reveal that SPRUCE outperforms some other comparative clas-
sification algorithms. The effectiveness of SPRUCE enables
efficient search, retrieval, and sharing of semantics information
in a collaborative environment.

The paper is organized as follows. Related work is reviewed
in Section II. The detailed and formal introduction of the
spectrum perturbation-based subspace classifier is presented
in Section III. Section IV shows the experimental results and
analyses. Finally, Section V concludes the paper and discusses
some future work.

II. RELATED WORK

There are a few branches in linear PC subspace classi-
fication. Please note that the nonlinear PC subspace is out
of the scope of this paper. The first branch investigates the
reconstruction error of an input instance in terms of different
subspaces and searches for the class to which the input
instance has the minimum reconstruction error. A typical
representative algorithm of this branch is Class-Dependent
PCA or CD-PCA [19]. Suppose Φ(j) = {Φ(j)

1 , ...,Φ(j)
η } is

the transformation matrix and µ(j) = {µ(j)
1 , ...,µ(j)

ν } is the

center of class j, and the reconstruction error for instance
y = {y1, ...,yν} is defined as shown in Equation (1).

∆(j) = ‖y− y ·Φ(j) ·Φ(j)T ‖. (1)

The classification rule is to assign the label of the class
for which ∆(j) is minimum. To improve the classification
performance, PC selection method can be applied to decrease
the value of η in transformation matrix. Bischof et al. [20]
further proposed a robust version to cope with missing features
and/or outliers in the dataset.

Since PCA is essentially an unsupervised learning algorithm
and is not built for the classification purpose, it is not sur-
prising to notice that the result of classification accuracy is
poor. To overcome such a weakness, some PCA algorithms
[21], such as those that will be mentioned in the second and
third branches, incorporate class information in their learning
models in order to improve the classification performance.

The second branch takes PCA as a preprocessing step to
reduce the dimension of the data instances and later other
learning and classification algorithms are employed to perform
the classification task. Zhao et al. [22] proposed a method
that combines PCA and LDA (Linear Discriminant Analysis)
in the face recognition area. While not using PCA plus
LDA, Park et al. [23] used a two-stage PCA to include the
class label information into the features. After the two-stage
transformation, any classification algorithm, such as Nearest
neighbor classifier and Support Vector machine, can be em-
ployed to perform the classification task. The proposed Class-
Augmented PCA algorithm (CA-PCA) in [23] first applied
PCA on the training data Xoriginal using Equation (2).

X = Xoriginal ·WPCA. (2)

Later, the class information C(X) is augmented into X by
constructing a larger matrix Xa = [X ,C(X)]. Another trans-
formation matrix Wa is derived from Xa and it can be written
as Wa = [Winput ,Wclass]. The composite transformation matrix
is then defined as shown in Equation (3).

WCA−PCA = WPCA ·Winput . (3)

The transformed data X
′

using the composite transforma-
tion matrix, as shown in Equation (4), will resort to some
classification algorithms to predict the class labels.

X
′
= Xoriginal ·WCA−PCA. (4)

The third branch of linear PC subspace classification al-
gorithms rely on Gaussian latent variable models to obtain
a probabilistic formulation of PCA [24]. The representative
algorithm of this branch is supervised probabilistic PCA
(SPPCA) proposed in [25]. In SPPCA, each observed data is
represented by (x,y), where x is a data instance with features
and y ∈ {+1,−1} is the class label. (x,y) is generated from
the latent variable model as follows.

x = Wxz+ µx + εx (5)
y = f (z,Θ)+ εy (6)

where Wx is the transformation matrix, f (z,Θ) is the determin-
istic function with parameter Θ, z∼N (0,I), εx ∼N (0,σ2

x I),
and εy ∼ N (0,σ2

y I). An EM (Expectation-Maximization)
Learning algorithm was proposed for SPPCA model to retrieve
the parameters and latent variables. The projected data in the
PC subspace is then applied some classification algorithms,
just like CA-PCA.

Different from the second and third branches, our proposed
classification algorithm does not treat the class label as one
attribute during model learning. The class label only acts as an
indicator of a class and does not have any numeric or ordinal
meaning. In addition, the proposed algorithm does not depend
on other classification algorithms to perform the classification
task. As will be seen in the next section, it has good scalability
and flexibility when deployed in various cases.

III. SPECTRUM PERTURBATION-BASED
SUBSPACE CLASSIFIER

Our proposed spectrum perturbation-based subspace classi-
fier utilizes perturbation on the spectra to discriminate classes
in a dataset. Some important definitions and useful corollary
are first introduced.

A. Definition and Corollary

Suppose class S has k data instances and m attributes
so that S = {X1, ...,Xk}T . Each data instance Xi is a
vector of m-dimension, Xi={xi1, ...,xim}, i ∈ [1,k]. The
center of class S is denoted by µ={µ1,...,µm}. Let 1
be a column vector full of 1s. Please note that we are
not going to discriminate 1 with different lengths unless
necessary. The eigenvectors, which are related to positive
eigenvalues λ = {λ1, ...,λp|λ1 ≥ λ2 ≥ ...≥ λp > 0, p≤ m} of
(S−1 ·µ)T (S−1 ·µ), are EV = {EV1,...,EVp}.

Definition 1. The spectra of S in terms of EV and µ are
defined as:

SPA(S,µ,EV) = diag{EV T ·(S−1 ·µ)T ·(S−1 ·µ) ·EV} (7)

where diag{.} function returns a row vector of the diagonal
elements of a matrix. It is easy to see that the spectra of S
here are just the same as eigenvalues λ .

Definition 2. If there is a new data instance θ={θ1, ...,θm}
that has the same attributes as S, the spectrum perturbation
of θ on S is defined as :

PT B(θ ,S,µ ,EV) = SPA(S∪{θ},µ ,EV)−SPA(S,µ,EV)
(8)

Usually, class S is quite large, and a direct calculation of
spectrum perturbation using Definition 2 is rather expensive.
Therefore, an efficient way of calculating the perturbation is
proposed in Corollary 1.

Corollary 1. If there is a new data instance θ={θ1, ..., θm}
that has the same attributes as S, the perturbation of θ can
also be rewritten as:

PT B(θ ,S,µ ,EV) = SPA(θ ,µ ,EV). (9)

Proof:
PTB(θ , S, µ , EV)
= diag{EV T · (S ∪ θ − 1 · µ)T · (S ∪ θ − 1 · µ) · EV -
EV T · (S−1 ·µ)T · (S−1 ·µ) ·EV}
= diag{EV T · ((S∪ θ − 1 · µ)T)(S∪ θ − 1 · µ)− (S− 1 · µ)T ·
(S−1 ·µ)) ·EV}

Note that (S∪ θ − 1 · µ) = [S− 1 · µ ,θ − 1 · µ]T , we can get
(S∪θ−1 ·µ)T ·(S∪θ−1 ·µ) = (S−1 ·µ)T ·(S−1 ·µ)+(θ−
µ)T ·(θ−µ). Use this equation, we can get PTB(θ , S, µ , EV)
= diag{EV T · (θ −µ)T · (θ −µ) ·EV}
= SPA(θ , µ , EV).

As can be seen from Corollary 1, S no longer participates
in the calculation of PTB(θ , S, µ , EV). Therefore, PTB(θ , S,
µ , EV) can be rewritten as PTB(θ , µ , EV).

Corollary 2. A new data instance γ={γ1, ...,γm} has the same
attributes as S. Let µ={µ1, ...,µm} be the center of S and EV
is defined in the same way as De f inition 1. If the following
condition is satisfied:

max‖(γ−µ) ·EVj‖ ≤ 1
mκ , j ∈ [1, p],κ > 1 (10)

then even the attribute number m increases to an infinite
dimension, ‖PT B(γ , µ , EV)‖m−>∞ ≤ constant

Proof:
According to Corollary 1, ‖PT B(γ , S, µ , EV)‖m−>∞

= ‖diag{((γ−µ) ·EV)T (γ−µ) ·EV}‖m−>∞

= ‖diag{((γ−µ) · [EV1, ..,EVp])T (γ−µ) · [EV1, ..,EVp]}‖
(11)

By applying condition (10) to (11):

‖PT B(γ , S, µ , EV)‖m−>∞ ≤ ∑ 1
mκ·p |m−>∞,κ>1 = ζ (κ · p).

The last function is a Riemann zeta function evaluated at κ · p.
It converges to a constant since κ · p > 1.

Actually, Corollary 2 gives an upper bound of ‖PT B(γ , µ ,
EV)‖ when m approaches to infinity. In real applications, the
condition in (10) may be too restricted to be satisfied and the
following Corollary 3 is more suitable for practical use.

Corollary 3. Suppose there are ω attributes of γ that do not
satisfy the condition in (10). As long as the following condition
holds:

max‖(γi−µi) ·EVj‖ ≤ T (12)

ω < p−1 (13)

‖PT B(γ , µ , EV)‖m−>∞ still has an upper bound.

Proof:
By applying both conditions (10) and (12) to (11), we can get
‖PT B(γ , S, µ , EV)‖m−>∞
≤ ω ·T + ≤ ∑ 1

mκ·(p−ω) |m−>∞,κ>1

= ω ·T + ζ (κ · (p−ω))|m−>∞,κ>1

It converges to a constant since κ · (p−ω) > 1.

CODE 1: LEARNING (PARALLEL MODE)
1 Input:

(1) A set of training classes {S(1), ...,S(N)} with labels.
(2) A set of validation instances V S with class labels.

2 Output:
(1) Center of each class {µ(1), ...,µ(N)},
(2) Positive eigenvalues of each class {λ (1), ...,λ (N)},
(3) Corresponding eigenvectors {EV (1), ...,EV (N)},
(4) Number of data instances of each class
{|S(1)|, ..., |S(N)|},
(5) βopt .

3 Calculate the center µ(i) of class S(i), i ∈ [1,N].
4 Calculate the eigenvalues λ (i) and corresponding

eigenvectors EV (i) of class S(i), i ∈ [1,N].
5 Calculate the number of data instances |S(i)| of class

S(i), i ∈ [1,N].
6 for each data instance T s ∈V S
7 calculate SPA(T s,µ(i),EV (i)), i ∈ [1,N] in parallel
8 calculate Γ(T s,µ(i),EV (i),λ (i)), i ∈ [1,N] in parallel
9 end

10 for β ← init value to end value with step s
11 for each data instance T s ∈V S
12 calculate Weighted Closeness Score

WSC(i) = |S(i)|β ·Γ(T s,µ(i),EV (i),λ (i))
13 predict class label of T s as c using

class label(T s) = c = argmin
φ
{WSC(φ)},

φ ∈ [1,N]
14 end
15 calculate accuracy ACCβ of classification

according to authentic class label.
16 end
17 Find βopt which corresponds to the maximum value

of ACCβ :
βopt = argmax

β
{ACCβ}, β ∈ [init value,end value]

B. SPRUCE Framework

Two kinds of frameworks that can be deployed in different
situations are proposed. The parallel framework of the pro-
posed subspace classifier is shown in Figure 1 and the sequen-
tial framework is shown in Figure 2. The parallel framework
can be adopted in a parallel computing environment in which

the computation power is sufficient to calculate the Weighted
Closeness Score (WCS) (such as WCS(1) and WCS(2)) for an
input instance with regard to different classes simultaneously.
The sequential framework, on the other hand, considers the
situation when the computational power is limited and only
a proportion of WCS can be calculated at the same time. In
Figure 2, we display the extreme case that only one WSC can
be calculated at one time.

The pseudo codes of learning and classification of SPRUCE
with regard to the parallel mode are shown in Code 1 and Code
2. Within the code, class i is identified by the superscript (i).
The spectrum perturbation of an input data instance T s can be
calculated using Equation (9) according to Corollary 1.

Γ(T s
′
,µ(i),EV (i),λ (i)) (as shown in Equation (14)) is used

as the Closeness Score (CS) in our proposed framework to
measure the closeness that a data instance is to a PC subspace.

Γ(δ ,µ ,EV,τ) = ∑
i

τi · ((δ −µ) ·EVi)
2. (14)

CODE 2: CLASSIFICATION (PARALLEL MODE)
1 Input:

(1) A set of testing data instances T S,
(2) center of each class {µ(1), ...,µ(N)},
(3) positive eigenvalues of each class {λ (1), ...,λ (N)},
(4) Corresponding eigenvectors {EV (1), ...,EV (N)},
(5) Number of data instances of each class {|S(1)|,

..., |S(N)|},
(6) β = βopt from learning process

2 Output: Class labels of T S
3
4 for each data instance T s

′ ∈ T S
5 calculate SPA(T s

′
,µ(i),EV (i)), i ∈ [1,N] in parallel

6 calculate Γ(T s
′
,µ(i),EV (i),λ (i)), i ∈ [1,N] in parallel

7 calculate Weighted Closeness Score
WSC(i) = |S(i)|β ·Γ(T s

′
,µ(i),EV (i),λ (i))

8 predict class label of T s
′

as c
′

using
class label(T s

′
) = c

′
= argmin

φ
{WSC(φ)}, φ ∈ [1,N]

9 end

We believe this closeness score is intuitively reasonable to
estimate the closeness that a given input data instance to the
subspace of a class. According to Equation (14), the closer
a testing instance δ is towards the class center in terms of
µ , the smaller closeness score δ holds. However, there is
one issue related to the comparison between the closeness
of a given input data instance towards different subspaces.
Empirical study shows that a large-size class usually has
more large eigenvalues than a small-size class. Intuitively,
the reason to explain for this phenomenon is that a large-
size class usually has larger variances. Note that Principal
Component Analysis (PCA) does not add but may deduct a
small amount of variance from total variance after converting
data instances from the original space to the PC subspace
because some tiny eigenvalues could be discarded. Therefore,

Fig. 1. The parallel framework of SPRUCE

Fig. 2. The sequential framework of SPRUCE

after sorting eigenvalues in a descending order, the following
equation usually holds:

P(λ (large−size)
i > λ (small−size)

i) > P(λ (small−size)
i > λ (large−size)

i),
(15)

where i is the index of the position in the descending sequence
of λ and P(.) denotes the probability.

CODE 3: LEARNING (SEQUENTIAL MODE)
1 Input:

(1) A set of training classes {S(1), ...,S(N)} with labels.
(2) A set of validation data instances V S with labels.

2 Output:
(1) Center of each class {µ(1), ...,µ(N)},
(2) Positive eigenvalues of each class {λ (1), ...,λ (N)}
(3) Corresponding eigenvectors {EV (1), ...,EV (N)},
(4) Number of data instances of each class {|S(1)|, ...,
|S(N)|},
(5) βopt

3 Calculate the center µ(i) of class S(i), i ∈ [1,N].
4 Calculate the eigenvalues λ (i) and corresponding

eigenvectors EV (i) of class S(i), i ∈ [1,N].
5 Calculate the number of data instances |S(i)| of class

S(i), i ∈ [1,N].
6 for each data instance T s ∈V S
7 for i← 1 to N
8 calculate SPA(T s,µ(i),EV (i)), i ∈ [1,N]
9 calculate Γ(T s,µ(i),EV (i),λ (i)), i ∈ [1,N]

10 end
11 end
12 for β ← init value to end value with step s
13 for each instance T s ∈V S
14 calculate Weighted Closeness Score

WSC(i) = |S(i)|β ·Γ(T s,µ(i),EV (i),λ (i))
15 predict class label of T s as c using

class label(T s) = c = argmin
φ
{WSC(φ)},

φ ∈ [1,N]
16 end
17 calculate accuracy ACCβ of classification

according to authentic class label.
18 end
19 Find βopt which corresponds to the maximum value

of ACCβ :
βopt = argmax

β
{ACCβ},β ∈ [init value,end value]

Then an issue may arise from this phenomenon that the
large-size class will dominate the small-size class since the
eigenvalues of the large-size class is larger and therefore the
CS of the large-size class is smaller. To make a balance
between the large-size class and small-size class, a weight
value |S(i)|β is compensated to SC(i) to get a Weighted
Closeness Score (WSC) for class i, WSC(i). |S(i)| is the number
of data instances of S(i) and β is a scalar factor. In the

learning process, this β is derived by the process to search
the maximum accuracy. In a real situation, cross-validation
could be utilized and β can adopt the mean value βopt with
regard to different folds.

For the sequential mode, the pseudo codes of the learning
and classification steps are shown in Code 3 and Code 4. The
difference from the parallel mode in the learning step only lies
in the part of calculating SPA(T s, µ(i), EV (i)) and Γ(T s, µ(i),
EV (i), λ (i)) because of the insufficiency of computation power.
SPA(T s

′
, µ(i), EV (i)) and Γ(T s

′
, µ(i), EV (i), λ (i)) are only

allowed to be computed one by one. The sequential mode in
the classification step also requires computing SPA(T s

′
, µ(i),

EV (i)) and Γ(T s
′
, µ(i), EV (i), λ (i)) one by one. The newly

generated WSC(i) in each time slot ∆t will be compared with
WSC(min) to decide if the current class label requires updating.

CODE 4: CLASSIFICATION (SEQUENTIAL MODE)
1 Input:

(1) A set of testing data instances T S,
(2) center of each class {µ(1), ...,µ(N)},
(3) positive eigenvalues of each class {λ (1), ...,λ (N)}
(4) Corresponding eigenvectors {EV (1), ...,EV (N)},
(5) Number of data instances of each class {|S(1)|, ...,
|S(N)|},
(6) β = βopt from learning process

2 Output: Class labels of T S
3
4 for each data instance T s

′ ∈ T S
5 for i← 1 to N
6 calculate SPA(T s

′
,µ(i),EV (i)), i ∈ [1,N]

7 calculate Γ(T s
′
,µ(i),EV (i),λ (i)), i ∈ [1,N]

8 calculate Weighted Closeness Score
WSC(i) = |S(i)|β ·Γ(T s

′
,µ(i),EV (i),λ (i))

9 if i equals 1
10 class label(T s

′
) = 1,

11 WSC(min) = WSC(1)

12 else if WSC(i)
< WSC(min)

13 class label(T s
′
) = i,

14 WSC(min) = WSC(i)

15 end
16 end
17 predict class label of T s

′
as c

′
(class label(T s

′
) = c

′
)

where WSC(c
′
) = min{WSC(i)}, i ∈ [1,N]

18 end

IV. EXPERIMENTS AND RESULTS

To show the effectiveness of SPRUCE, comparative experi-
ments with other linear PC subspace classification algorithms
are conducted. The setup of the experiments is introduced in
Section IV-A and the experimental results and analyses are
shown in IV-B.

A. Experiment setup

The datasets used in the experiments are from three different
sources: UCI machine learning dataset repository [26], Statlog
datasets [27], and Trecvid 2008 semantic indexing training set
[28]. Five are from UCI machine learning dataset repository:
Wine, Waveform Database Generator (Version 1), Iris, Haber-
man’s survival, and SPECTF Heart dataset. Two are from
Statlog: Vehicle and Heart. Please note that some datasets
in Statlog, like Vehicle, can also be found at UCI machine
learning repository, and Heart from Statlog and SPECTF
Heart from UCI machine learning repository are completely
two different datasets. Three other datasets are built from
TRECVID 2008 semantic indexing training set: Dog (Concept
ID: 4), Kitchen (Concept ID: 5), and Harbor (Concept ID: 11).
TRECVID 2008 semantic indexing training set only has raw
data, such as videos and keyframes and the distribution of
classes is rather imbalanced. The concept class (CO) versus
non-concept class (NC) are too imbalanced with the average
CO/NC ratio of 1 : 100. Therefore, we extract features from
the raw data and balance the classes by keeping concept class
and subsampling non-concept class so that the CO/NC ratio is
close to 1 : 3. The following step summarizes the process to
build the datasets from TRECVID2008:

PROCESS TO BUILD DATASETS FROM TRECVID2008
1 Extract audio visual features from videos.
2 Extract visual features from keyframes.
3 Merge features from previous two steps.
4 Apply feature selection to remove trivial features.
5 Subsample the non-concept class about 3 times the size

of concept class.
6 Merge non-concept class with concept class to form a

new dataset.

The performance of different classification algorithms is
evaluated in terms of accuracy. Each data set is evaluated
using 10 times 3-fold cross validation. CD-PCA applies
the exhausted PC selection method in principal component
subspace to reach the best classification accuracy. All the
other algorithms in the experiments simply discard the trivial
principal components which correspond to zero eigenvalues
to reduce the dimension. CA-PCA and SPPCA are evaluated
using the settings in their original papers. Furthermore, since
SPPCA applies multi-class classification class by class and
its performance is evaluated in a different way from the
evaluation method adopted in this paper. We choose the
maximum accuracy among these classes as the final accuracy
shown in the experimental results so as to make it possible for
comparison. The parameter β involved in SPRUCE adopts the
mean value of optimal β value of different folds through cross-
validation. Suppose the training data applies 3-fold cross-
validation. Therefore, each fold produces one βopt . The mean
value of the three βopt values will be adopted as the parameter
β in classification.

The mean and standard deviation of the accuracy values
from 10 times 3-fold cross validation further go through the

significant test using Equation (16) to see how significantly
SPRUCE outperforms those comparative linear PC subspace
classification algorithms (CD-PCA, CA-PCA, and SPPCA) as
well as some other types of classification algorithms (such as
Decision Tree (DTree), Nearest Neighbor(NN), and K-Nearest
Neighbor(K-NN)).

t =
ACCSPRUCE −ACCtarget√

ST D2
SPRUCE

DFSPRUCE
+

ST D2
target

DFtarget

. (16)

Here, ACCSPRUCE is the mean accuracy of SPRUCE, and
ACCtarget is the maximum value of mean accuracy of all com-
parative algorithms. ST DSPRUCE and ST Dtarget are the standard
deviation values of SPRUCE and the selected comparative
algorithms, respectively. DFSPRUCE is the degree of freedom
of SPRUCE while DFtarget is the degree of freedom of the
selected comparative algorithms. In the experiments, 10 times
3-fold cross validation is adopted. Therefore, DFSPRUCE =
DFtarget = 9. The algorithms of CD-PCA, CA-PCA and SP-
PCA are implemented by ourselves according to the original
papers; while the implementations of DTree, NN and K-NN
available in Weka [29] are used.

B. Experimental results and analyses

The experimental results of classification accuracy against
subspace classification methods and the corresponding result
of significant test are shown in Table 1 and Table 3, respec-
tively. As can be seen from Table 1, SPRUCE outperforms the
other comparative classification algorithms on all data sets.
Table 3 further reveals that SPRUCE can beat other com-
parative subspace classification algorithms significantly for 11
out of 12 datasets. It is easy to notice that CD-PCA renders
the best classification accuracy among all three comparative
classification algorithms for 7 datasets. However, this is due to
the deployment of the exhausted PC selection method on CD-
PCA and this deployment will definitely increase the accuracy
though it is rather expensive to apply this deployment in prac-
tical use. For the datasets built from TRECVID2008 training
set, the performance of SPRUCE is close to CA-PCA and
SPPCA. This may be due to the fact that the concept class and
non-concept class in the three TRECVID2008 datasets have a
larger intra-class variance and/or smaller inter-class variance
than those of the other datasets. Therefore, it increases the
difficulty in building a robust spectrum perturbation subspace
model for each class. Finally, it needs to be mentioned here
that CA-PCA, SPPCA, and SPRUCE can benefit from the
sophisticated PC selection process to increase the accuracy
of the classification.

The effectiveness of SPRUCE against some other commonly
used classification algorithms can be seen from Table 2 and
Table 4, respectively. As can be seen from the two tables,
SPRUCE can render better classification accuracy, though K-
NN seems to be a strong competitor. Compare Table 1 with Ta-
ble 2, it is noticeable that the 3 comparative subspace methods
did not render stable performance against the other selected
classification algorithms in Table 2. For example, SPPCA

TABLE I
ACCURACY COMPARISON AGAINST SUBSPACE METHODS ON DATASETS WITH STANDARD DEVIATION

Data source Date set CD-PCA CA-PCA SPPCA SPRUCE
UCI Wine 89.01 ± 1.10 96.18 ± 1.21 78.52 ± 5.05 98.99 ± 0.69
UCI Waveform 81.23 ± 0.18 67.30 ± 0.84 78.92 ± 0.74 84.82 ± 0.18
UCI Iris 95.39 ± 0.75 92.53 ± 1.83 79.76 ± 5.79 97.39 ± 0.52
UCI Haberman’s survival 71.60 ± 1.29 67.29 ± 2.74 73.99 ± 1.07 74.12 ± 0.51
UCI SPECTF Heart 77.87 ± 2.54 73.33 ± 2.20 79.40 ± 0.00 81.84 ± 2.19

Statlog Vehicle 77.64 ± 0.83 74.98 ± 0.83 67.02 ± 0.66 83.50 ± 0.96
Statlog Heart 79.56 ± 0.74 74.89 ± 1.30 58.63 ± 4.73 80.67 ± 0.92

TRECVID 2008 dog 71.10 ± 0.71 70.68 ± 0.70 75.34 ± 0.44 75.99 ± 0.12
TRECVID 2008 kitchen 66.95 ± 0.80 70.21 ± 1.00 73.78 ± 0.29 74.91 ± 0.04
TRECVID 2008 harbor 67.30 ± 1.12 70.62 ± 0.52 73.66 ± 0.42 75.00 ± 0.04

TABLE II
ACCURACY COMPARISON AGAINST OTHER SELECTED CLASSIFICATION METHODS ON DATASETS WITH STANDARD DEVIATION

Data source Date set DTree NN K-NN SPRUCE
UCI Wine 90.63 ± 1.89 95.45 ± 0.72 96.19 ± 0.83 98.99 ± 0.69
UCI Waveform 76.20 ± 0.40 77.46 ± 0.35 82.97 ± 0.30 84.82 ± 0.18
UCI Iris 93.90 ± 1.41 95.54 ± 0.85 95.58 ± 0.89 97.39 ± 0.52
UCI Haberman’s survival 71.70 ± 1.06 67.19 ± 2.66 71.93 ± 1.24 74.12 ± 0.51
UCI SPECTF Heart 80.19 ± 1.44 76.74 ± 1.72 80.60 ± 1.10 81.84 ± 2.19

Statlog Vehicle 70.99 ± 0.78 68.89 ± 0.77 70.01 ± 0.90 83.50 ± 0.96
Statlog Heart 77.74 ± 2.38 76.11 ± 2.09 79.19 ± 1.13 80.67 ± 0.92

TRECVID 2008 dog 71.25 ± 1.93 67.35 ± 0.68 74.19 ± 0.61 75.99 ± 0.12
TRECVID 2008 kitchen 72.05 ± 1.25 70.66 ± 0.67 74.49 ± 0.73 74.91 ± 0.04
TRECVID 2008 harbor 72.86 ± 1.68 69.45 ± 0.72 74.37 ± 0.50 75.00 ± 0.04

TABLE III
SIGNIFICANCE TEST AGAINST SUBSPACE METHODS ON ALL DATASETS

Data source Date set Comparative Algorithm Comparative Accuracy SPRUCE p-value
UCI Wine CA-PCA 96.18 ± 1.21 98.99 ± 0.69 0.00
UCI Waveform CD-PCA 81.23 ± 0.18 84.82 ± 0.18 0.00
UCI Iris CD-PCA 95.39 ± 0.75 97.39 ± 0.52 0.00
UCI Haberman’s survival SPPCA 73.99 ± 1.07 74.12 ± 0.51 0.37
UCI SPECTF Heart SPPCA 79.40 ± 0.00 81.84 ± 2.19 0.00

Statlog Vehicle CD-PCA 77.64 ± 0.83 83.50 ± 0.96 0.00
Statlog Heart CD-PCA 79.56 ± 0.74 80.67 ± 0.92 0.01

TRECVID 2008 dog SPPCA 75.34 ± 0.44 75.99 ± 0.12 0.00
TRECVID 2008 kitchen SPPCA 73.78 ± 0.29 74.91 ± 0.04 0.00
TRECVID 2008 harbor SPPCA 73.66 ± 0.42 75.00 ± 0.04 0.00

TABLE IV
SIGNIFICANCE TEST AGAINST OTHER SELECTED CLASSIFICATION METHODS ON ALL DATASETS

Data source Date set Comparative Algorithm Comparative Accuracy SPRUCE p-value
UCI Wine K-NN 96.19 ± 0.83 98.99 ± 0.69 0.00
UCI Waveform K-NN 82.97 ± 0.30 84.82 ± 0.18 0.00
UCI Iris K-NN 95.58 ± 0.89 97.39 ± 0.52 0.00
UCI Haberman’s survival K-NN 71.93 ± 1.24 74.12 ± 0.51 0.00
UCI SPECTF Heart K-NN 80.60 ± 1.10 81.84 ± 2.19 0.08

Statlog Vehicle DTree 70.99 ± 0.78 83.50 ± 0.96 0.00
Statlog Heart K-NN 79.19 ± 1.13 80.67 ± 0.92 0.01

TRECVID 2008 dog K-NN 74.19 ± 0.44 75.99 ± 0.12 0.00
TRECVID 2008 kitchen K-NN 74.49 ± 0.29 74.91 ± 0.04 0.00
TRECVID 2008 harbor K-NN 74.37 ± 0.42 75.00 ± 0.04 0.00

could beat K-NN on datasets dog and Haberman’s survival but
it is worse than K-NN for the rest of the datasets. However, the
proposed SPRUCE is able to provide a more stable behavior
that always outperforms K-NN for the selected datasets. There
are two reasons to explain this behavior. First, it utilizes a
supervised learning process to build the subspace and therefore
the subspace reflects the characteristics of each class, which
makes it easy to differentiate instances belonging to different
classifiers. Second, the proposed supervised subspace method
does not rely on any assumption, such as normal distribution
of data and label patters. It does not rely on the other classifier
to do the classification jobs. Therefore, it can be adapted to
different situations.

V. CONCLUSION AND FUTURE WORK

In this paper, a new spectrum perturbation-based sub-
space classification algorithm called SPRUCE is introduced.
SPRUCE takes into consideration the spectrum perturbation
of each class when building subspace learning model and
utilizes the perturbation on the spectra of classes to measure
the closeness of an input instance towards those classes.
Experimental results reveal that it outperforms comparative
linear PC subspace classification algorithms and some other
commonly used classifiers in terms of classification accuracy.
The promising results demonstrate that SPRUCE can effec-
tively and efficiently enable data management support for
semantics-level information search, retrieval, and sharing in
a collaborative environment.

Nevertheless, there are still a few issues that need to be
discussed in the future, for example, how to
• handle the curse of dimensionality problem for large

dimensional datasets; and
• extend SPRUCE to nonlinear domains.
For the first issue, we will explore the development of a

fast algorithm to derive eigenvectors of the covariance matrix,
which enables the deployment of SPRUCE in applications
involving large datasets. For the second issue, we plan to
investigate the possibility of applying kernel trick on SPRUCE
to extend it to nonlinear domain, which may make it capable
of handling nonlinear cases.

ACKNOWLEDGMENT

For Shu-Ching Chen, this work is supported in part by the
U.S. Department of Homeland Security under grant Award
Number 2010-ST-062-000039, the U.S. Department of Home-
land Security’s VACCINE Center under Award Number 2009-
ST-061-CI0001, and NSF HRD-0833093.

REFERENCES

[1] A. Ceglar and J. F. Roddick, “Association mining,” ACM Computing
Surveys (CSUR), vol. 38, no. 2, pp. 5–es, July 2006.

[2] S.-C. Chen, M.-L. Shyu, C. Zhang, and M. Chen, “A multimodal data
mining framework for soccer goal detection based on decision tree
logic,” International Journal of Computer Applications in Technology,
Special Issue on Data Mining Applications, vol. 27, no. 4, pp. 312–323,
2006.

[3] S.-C. Chen, M.-L. Shyu, M. Chen, and C. Zhang, “A decision tree-
based multimodal data mimimg framework for soccer goal detection,”
in IEEE International Conference on Multimedia and Expo (ICME04),
June 2004, pp. 265–268.

[4] K. Hammouda and M. Kamel, “Collaborative document clustering,” in
SIAM Conference on Data Mining, April 2006, pp. 453–463.

[5] L. Lin, C. Chen, M.-L. Shyu, and S.-C. Chen, “Weighted subspace
filtering and ranking algorithms for video concept retrieval,” IEEE
Multimedia, vol. 18, no. 3, pp. 32–43, 2011.

[6] K.-H. Liu, M.-F. Weng, C.-Y. Tseng, Y.-Y. Chuang, and M.-S. Chen,
“Association and temporal rule mining for post-filtering of semantic
concept detection in video,” IEEE Transactions on Multimedia, vol. 10,
no. 2, pp. 240–251, February 2008.

[7] M.-L. Shyu, C. Chen, and S.-C. Chen, “Multi-class classification via
subspace modeling,” International Journal of Semantic Computing,
vol. 5, no. 1, pp. 55–78, 2011.

[8] F. Thabtah, “Challenges and interesting research directions in associa-
tive classification,” in IEEE International Conference on Data Mining
Workshops (ICDMW06), December 2006, pp. 785–792.

[9] D. Zhou and C. J. C. Burges, “Spectral clustering and transductive
learning with multiple views,” in ACM International Conference on
Machine Learning (ICML07), January 2007, pp. 1159–1166.

[10] X. Su and T. Khoshgoftaar, “A survey of collaborative filtering tech-
niques,” Advances in Artificial Intelligence, vol. 2009, no. 4, pp. 4:2–4:2
(19 pages), January 2009.

[11] J.-S. Lee, C. Jun, J. Lee, and S. Kim, “Classification-based collaborative
filtering using market basket data,” Expert Systems with Applications,
vol. 29, no. 3, pp. 700–704, 2005.

[12] S. B. Kotsiantis, “Supervised machine learning: A review of classifi-
cation techniques,” in Proceeding of the 2007 conference on Emerging
Artificial Intelligence Applications in Computer Engineering: Real Word
AI Systems with Applications in eHealth, HCI, Information Retrieval and
Pervasive Technologies, May 2007, pp. 3–24.

[13] H. Hotelling, “Analysis of a complex of statistical variable into principal
components,” Journal of Educational Psychology, vol. 24, no. 7, pp.
498–520, October 1933.

[14] J. Laaksonen, “Subspace classifiers in recognition of handwritten digits,”
Department of Computer Science and Engineering, May 1997.

[15] R. Cappelli, D. Maio, and D. Maltoni, “Subspace classification for face
recognition,” in Proceedings of the International ECCV 2002 Workshop
on Biometric Authentication, June 2002, pp. 133–142.

[16] H. Murata and T. Onoda, “Applying kernel based subspace classification
to a non-intrusive monitoring for household electric appliances,” in Pro-
ceedings of the International Conference on Artificial Neural Networks,
ser. ICANN ’01. London, UK: Springer-Verlag, August 2001, pp. 692–
698.

[17] D. Zhora, “Financial forecasting using random subspace classifier,” in
Proceedings of 2004 IEEE International Joint Conference on Neural
Networks, July 2004, pp. 2735–2740.

[18] I. T. Jolliffe, Principal Component Analysis. Springer-Verlag, 2002.
[19] A. Sharma, K. Paliwal, and G. Onwubolu, “Class-dependent PCA, MDC

and LDA: A combined classifier for pattern classification,” Pattern
Recognition, vol. 39, no. 7, pp. 1215–1229, 2006.

[20] H. Bischof, A. Leonardis, and F. Pezzei, “A robust subspace classi-
fier,” in Proceedings of Fourteenth International Conference on Pattern
Recognition, August 1998, pp. 114–116.

[21] R. Santiago-Mozos, J. M. Leiva-Murillo, F. Perez-Cruz, and A. Artes-
Rodriguez, “Supervised-PCA and SVM classifiers for object detection in
infrared images,” in Proceedings. IEEE Conference on Advanced Video
and Signal Based Surveillance, July 2003, pp. 122–127.

[22] W. Zhao, R. Chellappa, and A. Krishnaswamy, “Discriminant analysis
of principal components for face recognition,” in Proceedings of the 3rd.
International Conference on Face and Gesture, April 1998, pp. 336–341.

[23] M. Park and J. Choi, “Theoretical analysis on feature extraction capa-
bility of class-augmented PCA,” Pattern Recognition, vol. 42, no. 11,
pp. 2353–2362, 2009.

[24] M. E. Tipping and C. M. Bishop, “Probabilistic principal component
analysis,” Journal of the Royal Statistical Society, Series B, vol. 61, pp.
611–622, 1999.

[25] S. Yu, K. Yu, V. Tresp, H. Kriegel, and M. Wu, “Supervised probabilistic
principal component analysis,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining,
August 2006, pp. 464–473.

[26] A. Asuncion and D. J. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[27] R. D. King, C. Feng, and A. Sutherland, “Statlog: Comparison of clas-
sification algorithms on large real-world problems,” Applied Artificial
Intelligence, vol. 9, no. 3, pp. 289–333, 1995.

[28] A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns and
TRECVid,” in ACM International Workshop on Multimedia Information
Retrieval (MIR06), October 2006, pp. 321–330.

[29] Weka, WEKA. [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/

