
A Fast and Transparent Communication Protocol     
for Co-Resident Virtual Machines 

Yi Ren1, Ling Liu2, Xiaojian Liu1, Jinzhu Kong1, Huadong Dai1, Qingbo Wu1, Yuan Li1 
1College of Computer Science 

National University of Defense Technology 
Changsha, P. R. China, 410073 

1renyi@nudt.edu.cn 

2College of Computing 
Georgia Institute of Technology 
Atlanta, Georgia 30332–0250 

2lingliu@cc.gatech.edu
 

Abstract—Network I/O workloads are dominating in most of the 
Cloud data centers today. One way to improve inter-VM 
communication efficiency is to support co-resident VM 
communication using a faster communication protocol than the 
traditional TCP/IP commonly used for inter-VM communications 
regardless whether VMs are located on the same physical host or 
different physical hosts. Although several co-resident VM 
communication mechanisms are proposed to reduce the 
unnecessary long path through the TCP/IP network stack, to avoid 
communication via Dom0, and to reduce invocation of multiple 
hypercalls when co-resident inter-VM communication is concerned. 
Most state of the art shared memory based approaches focus on 
performance, with programming transparency and live migration 
support considered. However, few of them provides performance, 
live migration support, user-kernel-hypervisor transparency at the 
same time. In this paper, we argue that all three above aspects are 
fundamental requirements for providing fast and highly 
transparent co-resident VM communication. We classify existing 
methods into three categories by their implementation layer in 
software stack: 1) user libraries and system calls layer, 2) below 
socket layer and above transport layer, 3) below IP layer. We argue 
that the choice of implementation layer has significant impact on 
both transparency and performance, even for live migration 
support. We present our design and implementation of XenVMC, a 
fast and transparent residency-aware inter-VM communication 
protocol with VM live migration support. XenVMC is implemented 
in layer 2. It supports live migration via automatic co-resident VM 
detection and transparent system call interception mechanisms, 
with multilevel transparency guaranteed. Our initial experimental 
evaluation shows that compared with virtualized TCP/IP method, 
XenVMC improves co-resident VM communication throughput by 
up to  a factor of 9 and reduces corresponding latency by up to a 
factor of 6. 

Keywords—inter-VM communication; shared memory; high 
performance; programming transparency; kernel transparency; 
live migration support 

I.  INTRODUCTION 
Virtual machine monitor (VMM or hypervisor) technology 

enables hosting multiple guest virtual machines (VMs) on a 
single physical machine, while allowing each of the VMs 
running its own operating system. VMM is the software entity 
that runs at the highest system privilege level and coordinates 
with a trusted VM, called Domain 0 (Dom0), to enforce 
isolation across VMs residing on a single physical machine, 
while enabling each VM running under a guest domain 
((DomU) with its own operating system. VMM technology 

offers significant benefits in terms of functional and 
performance isolation, live migration based load balance, fault 
tolerant, portability of applications, higher resources utilization, 
lower ownership costs, to name a few. To date, VMM based 
solutions have been widely adopted in data centers, industry 
computing platforms and academic research and education 
infrastructures, including high performance computing (HPC) 
community [1-3]. 

It is well known that the VMM technology benefits from 
two orthogonal and yet complimentary design choices. First, 
VMM technology by design enables VMs residing on the same 
physical host to share resources through time slicing and space 
slicing. Second, VMM technology introduces host-neutral 
abstraction by design, which treats all VMs as independent 
computing nodes regardless of where these VMs are located.  

Although both design choices have gained some advantages, 
they also carry some performance penalties. First, VMM offers 
significant advantages over native machines when VMs co-
located on the same physical host are non-competing in terms 
of computing and communication resources. But the 
performance of these VMs is significantly degraded compared 
to the performance of native machine when co-located VMs 
are competing for resources under high workload demands due 
to high overheads of switches and events in Dom0 and VMM 
[4]. Second, the communication overhead between VMs co-
located on a single physical machine can be as high as the 
communication cost between VMs located on separate physical 
machines. This is because the abstraction of VMs supported by 
VMM technology does not differentiate whether the data 
request is coming from the VMs residing on the same physical 
host or from the VMs located on a different physical host. 
Several research projects [5-9] have demonstrated that. Linux 
guest domain shows lower network performance than native 
Linux [10], when an application running on a VM 
communicates with another VM. [6] showed that with copying 
mode in Xen 3.1, the inter-VM communication performance is 
enhanced to 1606Mbps but still significantly lagging behind 
compared to the performance on native Linux, especially for 
VMs residing on the same physical host. We observe from our 
experimental observation on Xen that long path through the 
TCP/IP network stack, inter-VM communication via Dom0, 
invocation of multiple hypercalls all contribute to the 
performance degradation of inter-VM communication. First, 
TCP/IP based network communication is not necessary when 
co-resident VMs communicate with one another, since TCP/IP 
was originally designed for inter physical machine 

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250405



communication via LAN/Internet. For instance, on Xen 
hypervisor enabled platforms, when the sender VM transfers 
data to the receiver VM residing on the same physical host, the 
packets have to unnecessarily go through the entire TCP/IP 
network stack. Furthermore, all the transmissions are redirected 
via Dom0, which invokes the page flipping mechanism through 
multiple hypercalls.  

In order to improve the performance of network intensive 
applications running in virtualized computing environments, 
such as Web based systems, online transaction processing, 
distributed and parallel computing systems, we need to explore 
two levels of optimization opportunities. At lower level we 
need a fast and yet transparent communication protocol for co-
resident VMs, and at the higher level, we need efficient co-
location of applications running on co-resident VMs based on 
their resource consumption patterns to alleviate the resource 
competition among co-resident VMs. In this paper, we focus 
on techniques for the first type of performance optimization. 
Most of existing inter-VM communication optimization 
techniques argue that TCP/IP based network communication is 
not necessary when co-resident VMs communicate with each 
other and they differ from one another in at least two aspects 
[5-9]: First, different methods are proposed for implementing 
an alternative communication mechanism for co-resident VMs 
instead of TCP/IP to minimize the network latency. Second, 
different proposals make different degree of guarantee in terms 
of keeping the features of existing hypervisor, such as live 
migration support and the transparency of the proposed 
mechanism over existing software layers [11].  

In this paper, we argue that the design of inter-VM 
communication mechanism for co-resident VMs to replace 
TCP/IP based network virtualization should be completely 
transparent to applications running on VMs in terms of both 
performance and operational interface. Concretely, a high 
performance and high transparency communication protocol 
for co-resident VMs should support the following three 
essential functional requirements: First, the co-resident 
communication protocol should be capable of distinguishing 
co-resident VMs from VMs located on separate physical hosts 
such that the communication path between co-resident VMs 
can be shortened to reduce or minimize the unnecessary 
communication overhead. Second, the co-resident VM 
communication protocol should provide seamless support of 
automatic switch between co-resident inter-VM 
communication (or local mode) and remote inter-VM 
communication (or remote mode) where sender VM and 
receiver VM are residing on different physical machines. This 
ensures that the important features of system virtualization, 
such as VM live migration, are retained. Third but not the least, 
the co-resident VM communication protocol should also 
maintain the same uniform VM interface for applications by 
keeping the transparency of the proposed communication 
mechanism over programming languages, OS kernel and 
VMM, such that legacy applications are supported in a 
seamless fashion and there is no need to make code 
modifications, recompilation, or re-linking.  

Existing methods based on Xen platform for reducing the 
performance overhead of co-resident VMs introduced by 
TCP/IP network stack are done primarily by shortening the 
long communication path through shared memory facilities [5-
9]. Most of them demonstrate their optimization techniques by 
exploiting the generic facilities of grant tables and event 

channels provided by Xen hypervisor to show the throughput 
improvement of co-resident VM communications. We classify 
these approaches into three categories based on the different 
layers of the software stack where the implementation is 
exercised.  

The first category of approaches implements the co-resident 
VM communication in the user library and system calls level. 
The most representative approach is IVC [7], which was 
specially designed for parallel high performance computing 
(HPC) protocols. IVC supports VM live migration. But it 
introduced a VM-aware MPI library, which is not 
programming transparent to application developers.  

The second category of methods implements the co-
resident VM communication in the software stack below socket 
layer and above transport layer, represented by XenSocket [5] 
and XWAY [6]. XenSocket proposed a new socket protocol 
such that the applications have to be rewritten to run on 
XenSocket, though it is more efficient for co-resident VM 
communication. XWAY is programming transparent. But its 
components are scattered across different parts of the operating 
system kernel. The guest operating system code needs to be 
modified, recompiled and re-linked, and thus XWAY offers 
better application transparency but less kernel transparency.   

The third category of approaches is represented by MMNet 
[9] and XenLoop [8] and is implemented below the IP layer. 
These methods are implemented as self-contained kernel 
modules and are both application programming and operating 
system kernel transparent. Concretely, MMNet maps the kernel 
address space of one VM into the address space of its peer VM 
and relaxes memory isolation between VMs. XenLoop uses 
netfilter [12] hooks to intercept outgoing network packets 
below IP layer and supports fully transparent VM migration. 
Although implementing co-resident VMs at below IP layer 
could also facilitate the goal of achieving user-level, kernel-
level and hypervisor-level transparency, it suffers from 
processing overhead at lower protocol layer [8].   

In summary, for mechanisms implemented in layer 1, it is 
difficult to ensure its user level transparency since libraries and 
programming interfaces are usually modified. For below IP 
layer implementation, user level transparency is maintained, 
but the performance is potentially suffered due to lower 
protocol processing overheads experienced in each network I/O. 
To achieve both high transparency and high performance, layer 
2 (below socket layer and above transport layer) is preferred. 
However, existing methods proposed in this layer either fails to 
provide user-level programming transparency or suffers from 
kernel level transparency by requiring modifying guest OS 
code, recompiling and re-linking guest OSs. 

In this paper, we argue that residency-aware inter-VM 
communication mechanism should provide high performance 
and good user-kernel-hypervisor transparency at the same time. 
We first analyze and compare all three categories of existing 
shared memory based co-resident VM communication 
approaches and discuss key issues to be considered for 
designing a high performance and high user-kernel-hypervisor 
transparency solution for co-resident VM communication. 
Then we present our design of a transparent residency-aware 
fast inter-VM communication mechanism through XenVMC, 
the prototype implementation of our current solution. XenVMC 
is implemented below socket layer and above transport layer. It 
achieves transparency in VMM, operating system kernel and 



user programming level and fully supports VM live migration. 
Our initial experimental results show that our co-resident 
communication protocol achieves better throughput and less 
latency than TCP/IP based mechanisms. Furthermore, it offers 
better peak performance over existing solutions. 

The rest of this paper is organized as follows. Section II 
introduces relevant background and terminology of VMM and 
its shared memory structures. Section III discusses several key 
issues for design and implementation of shared memory based 
co-resident VM communication mechanisms. Section IV 
presents our approach XenVMC, including design philosophy, 
implementation and evaluation. Section V concludes the paper. 

II. XEN NETWORK ARCHITECTURE AND INTERFACES 
This section gives a brief description of Xen network I/O 

architecture and its VM communication mechanism. 

A. Network I/O architecture 
Xen is a popular open-source x86/x64 hypervisor 

coordinates the low-level interaction between VMs and 
physical hardware [13]. It supports both full-virtualization and 
para-virtualization. The para-virtualization mode provides a 
more efficient and lower overhead mode of virtualizations. In 
para-virtualization mode, Dom0, a privileged domain, 
performs the tasks to create, terminate, and migrate guest 
VMs (DomU). It is also allowed to access the control 
interfaces of the hypervisor. 

Xen exports virtualized network devices instead of real 
physical network cards to each DomU. The native network 
driver is expected to run in the Isolated Device Domain (IDD), 
which typically is Dom0 or is a driver specific VM. The IDD 
hosts a backend network driver. And unprivileged VM uses 
its frontend driver to access interfaces of the backend daemon. 
Figure 1 illustrates the network I/O architecture and interfaces. 
The frontend and the corresponding backend exchange data 
by sharing memory pages, either in copying mode or in page 
flipping mode. The sharing is enabled by Xen grant table 
mechanism that we will introduce later in this section. The 
bridge in IDD handles the packets from the network interface 
card (NIC) and performs the software-based routine in the 
receiver VM.  

 

Figure 1.  Xen network I/O architecture and interfaces 

B. Communication mechanisms among domains 
As shown in Figure 1, the shared I/O Ring buffers between 

the frontend and the backend are built upon grant table and 
event channel mechanisms provided by Xen. Grant table 
works as a generic mechanism to share pages of data between 
domains, which support both page mapping mode and page 
transfer mode. Event channel is an asynchronous signal 
mechanism for domains on Xen. It supports inter/intra VM 
notification and can be bound to physical/virtual interrupt 
requests (IRQs). XenStore is used by some of the existing 
projects as a basic mechanism to facilitate the tracing of 
dynamic membership changing of co-residency VMs. It is a 
configuration and status information storage space shared 
between domains. The information is organized hierarchically. 
Each domain gets its own path in the store. Dom0 can access 
the entire path, while each DomUs can access only its owned 
directories. 

III. CO-RESIDENT VM COMMUNICATION: DESIGN CHOICES 

A. Why shared memory based approaches 
It is observed that with TCP/IP based network, the data will 

have to go through along the TCP/IP protocol stack. With Xen 
hypervisor involved, multiple switches between VM and VMM 
are incurred during the transfer. All these can lead to 
performance degradation. By bypassing TCP/IP and 
introducing shared memory based approaches for co-resident 
VM communication, we can reduce the number of data copies 
and avoid unnecessary switches between VM and VMM. 
Another advantage of using shared memory is the reduced 
dependency to VMM as the shared memory based 
communication among co-resident VMs bypasses the default 
TCP/IP network path, thus less hypercalls are used and is less 
dependent on Dom0, which is originally a potential 
performance bottle neck with TCP/IP network. Shared memory 
also makes data writes visible immediately. In short, shared 
memory based approaches have the potential to achieve higher 
communication efficiency for co-resident VMs. 

B. Design Guidelines and Classification  
As mentioned in the Introduction section, there are three 

criteria for designing an efficient shared memory based 
residency-aware inter-VM communication mechanism. They 
are high performance of virtualized network, seamless agility 
for supporting VM live migration, multilevel transparency 
(user-kernel-hypervisor). We will discuss why these criteria 
should be met and the possible approaches to achieve these 
objectives. Given that Xen and KVM (or other similar VMM) 
differ to some extent in their concrete virtualization 
architecture design, we below mainly discuss the approaches 
and related work that are conducted based on Xen platforms.  

The ultimate goal of incorporating a fast co-resident VM 
communication mechanism into the TCP/IP based inter-VM 
communication protocol is two folds. First, when the sender 
VM and the receiver VM are co-resident on the same host, the 
data will bypass the long path of TCP/IP network stack and be 
transmitted via the shared memory (local mode); otherwise the 
data will be transferred through traditional TCP/IP network 
(remote mode). To achieve this capability, we need to be able 
to intercept every outgoing data requests, examine and detect 
whether the receiver VM is co-located with the sender VM on 



the same host, and if so, redirect the outgoing data request to a 
co-resident VM communication protocol instead. The 
switching between local and remote modes of inter-VM 
communications should be carried out automatically and 
transparently. 

Existing approaches differ from one another in their choice 
of which layer in the software stack they propose to implement 
the above interception, detection and switching mechanisms.  
Thus we classify the existing work into three categories based 
on their implementation layer in the software stack: (i) user 
libraries and system calls layer (or layer 1), (ii) below socket 
layer and above transport layer (or layer 2), and (iii) below IP 
layer (or layer 3). Implementation in different layers may bring 
different impacts on programming transparency, kernel-
hypervisor level transparency, seamless agility and 
performance overhead.  

a) User libraries and system calls layer 
One way to implement interception, detection and 

redirection tasks is to modify the standard user and 
programming interfaces in the user libraries and system calls 
layer [7]. This category of approaches is often used in the HPC 
environment where MPI (Message Passing Interface) based 
communication dominates. Although this approach is simple 
and straightforward, it fails to maintain the programming 
transparency.  

b) Below socket layer and above transport layer 
An alternative approach to implementing an efficient co-

resident VM communication is to perform interception, 
detection and redirection tasks below the socket layer and 
above the transport layer [5-6]. There are several reasons of 
why this alternative layer 2 solution may be more attractive. 
Due to hierarchical structure of TCP/IP network stack, when 
data is sent through the stack, it has to be encapsulated with 
additional headers layer by layer in the sender node. 
Furthermore, when the encapsulated data reaches the receiver 
node, the headers will be removed layer by layer. However, if 
the data is intercepted and redirected in a higher layer, such as 
below socket layer and above transport layer, it will lead to two 
desirable results: smaller data size and shorter processing path 
(less processing time on data encapsulation and the reverse 
process). This observation makes us believing that 
implementation in upper layer of TCP/IP network stack can 
potentially lead to lower latency and higher throughput of 
network I/O workloads.  

c) Below IP layer 
In addition to Layer 1 and Layer 2 approaches, another 

alternative method is to implement the interception, detection 
and redirection tasks below the IP layer [8-9]. MMNet and 
XenLoop are both implemented below IP layer. MMNet maps 
entire kernel space of the sender VM to that of the receiver VM 
in a read only manner to avoid unnecessary data copies and to 
ensure security. It achieves better performance in the cost of 
relaxed memory isolation between VMs. Evaluations 
demonstrate that XenLoop reduces the inter-VM round trip 
latency by up to a factor of 5 and increases bandwidth by up to 
a factor of 6. XenLoop not only improves the performance, but 
also satisfies both the transparency and live migration support 
criteria. To intercept outgoing data, hooks in the data process 
chain are needed. XenLoop was implemented on top of 

netfilter, a third party tool, which already exports such hooks 
and provides development interface below IP layer.  

In summary, implementing interception, examination and 
redirection data in higher layer of the protocol stack could 
potentially provide much better inter-VM communication 
performance due to low protocol processing overheads [8].  

C. Seamless Agility for VM live migration support 
Seamless agility is another important design criterion in 

addition to high performance. By seamless agility, we mean 
that both the detection of co-resident VMs and the switch 
between local and remote mode of inter-VM communication 
should be done in an automatic and adaptive fashion, in the 
presence of both VM live migration and on-demand addition or 
reduction of co-resident VMs.  

a) Automatic co-resident VM detection 
When inter-VM channels are to be set up, VMs need to 

identify whether the other peer is on the same physical host. 
Similarly, when the channels are to be torn down, VMs also 
need to know if the other peer is still there.  

There are two methods to maintain VM co-residency 
information. One is static method, which is primarily used 
when the membership of co-resident VMs is preconfigured or 
collected by the administrator and is not supposed to change 
during network operations afterwards [6-7]. The second 
method is a dynamic one, which is usually implemented as 
automatic co-resident VM detection mechanisms. In the 
absence of dynamic method, VM live migration cannot be 
supported, since co-residency information is unpredictable 
because of the existence of VM live migration. 

Automatic co-resident VM detection mechanism is 
expected to gather and update co-resident information in an 
efficient and precise way. There are two alternative approaches 
according to who initiates the process: (i) Dom0 periodically 
gather co-residency information and transmit it to VMs on the 
same host, (ii) VM peers advertize its presence/absence upon 
significant events, such as VM creation, migration in/out, 
destruction, etc. The two approaches have their advantages and 
disadvantages which we will discuss in Section IV. 

b) Transparent switch between local and remote mode 
To support automatic switch between local and remote 

mode, there are two issues to be considered: 

• To identify whether the communication VMs are 
residing on the same physical machine or not.  

• To find the proper point where and when to identify 
those information.  

For the first issue, the unique identity of every VM and the 
co-resident information are needed. [Dom ID, IP/Mac address] 
pairs can be used to identify unique domains. Maintaining co-
resident VMs within one list makes the identification easier. 
The co-resident membership information is dynamically 
updated by automatic co-resident VM detection mechanism.  

As for the second issue, the approach is to intercept the 
requests before the setup and tear down of connections or 
before the transfer of outgoing data. Linux provides netfilter, 
a hook mechanism inside the Linux kernel. XenLoop uses 
netfilter to intercept every outgoing network packet below IP 



layer and inspect its header to determine the next hop node. 
Since netfilter resides below IP layer, its interception 
mechanism involves packet headers and longer path 
compared with alternative approaches below socket layer and 
above transport layer.  

We argue that even though so far, there is no available third 
party tool below socket layer and above transport layer that 
provides similar mechanisms as netfilter does. Thus in order 
to support VM live migration, it is expected one needs to 
implement an interception mechanism from scratch. And the 
implementations are is expected to be transparent to user 
applications and without modification of OS kernel and VMM.  

D. Multilevel transparency 
In this section, we introduce the concept of multilevel 

transparency to further illustrate the requirements for 
developing efficient and scalable inter-VM communication 
mechanisms. By multilevel transparency, we refer to three 
levels of transparency: user level transparency, OS kernel 
transparency and VMM transparency.  

User level transparency. With user level transparency, 
legacy network applications using standard TCP/IP interfaces 
do not need to be modified in order to use shared memory 
based optimized communication channel. User level 
transparency is usually one of the preferable end goals for 
software development, since it makes program development 
and management easier and simpler.  

OS kernel transparency. OS kernel transparency means 
that there are no modification to either Host OS kernel or guest 
OS kernel, and no kernel recompilation and re-linking. With 
this feature, no customized OS kernel and kernel patches, and 
so forth., need to be introduced, which indicates a more general 
and ready to deploy solution.  

VMM transparency. Modifying VMM is relatively more 
difficult and error prone than modifying OS kernel. To keep 
the stability of VMM and to maintain the independence 
between VMM and above OS instances, it is desirable to only 
use interfaces exported by Xen, such as grant table, event 
channel and XenStore, with Xen hypervisor codes unmodified. 
We refer to this feature as VMM/hypervisor transparency. 

To achieve better performance, multilevel transparency 
feature is often sacrificed [5-7]. To obtain the feature of OS 
kernel transparency, one feasible approach is to try to 
implement proposed inter-VM communication mechanism 
with non-intrusive and self-contained kernel modules.  

IV. OUR APPROACH - XENVMC 
In this section, we describe the design and implementation 

of XenVMC, a shared memory based fast inter-VM 
communication protocol, implemented below the socket layer 
and above the transport layer. Our design goal for XenVMC is 
three folds: high performance, high transparency and high 
agility. In this section we present the design principles, 
implementation details and the evaluation of XenVMC. 

A. Design principles 
We present the design principles of XenVMC in terms of 

functional and non-functional requirements.  

The essential functional requirements for XenVMC design 
are two folds: First, we should support both local and remote 
inter-VM communication. The local mode of inter-VM 
communication is provided through a fast co-resident VM 
communication channel based on shared memory structures, 
while the TCP/IP protocol is used for the remote inter-VM 
communication. The second functionality of XenVMC is to 
support transparent switch between local model and remote 
mode of inter-VM communications.  

To satisfy the first functional requirement, we need the 
mechanisms to fulfill a series of basic tasks, such as connection 
setup and tear down, data send and receive, event and message 
notification between any pair of VMs, no matter the VMs 
reside on the same physical machine or not. To meet the 
second functional requirement, we need to implement 
additional tasks, such as system calls analysis and interception, 
co-resident VM state information detection and update, live 
migration support. Both basic and additional tasks form the 
core components of the XenVMC solution. 

The non-functional requirements of XenVMC design are 
three folds: high performance, high transparency and high 
agility. By high performance we aim at improving the 
throughput of inter-VM communication for co-resident VMs. 
By high transparency, we aim at ensuring multilevel 
transparency at user, OS kernel and hypervisor level. Namely, 
no modification to either user libraries or OS kernel and the 
hypervisor, and all basic as well as additional tasks are 
implemented as non-intrusive self-contained kernel modules. 
By high agility, we support dynamic addition or reduction of 
co-resident VMs. 

B. Implementation Considerations 
We have implemented XenVMC on Xen 3.4.2 with Linux 

kernel 2.6.18.8 in C. Excluding comment lines, the overall size 
of XenVMC code is about 2400 lines. XenVMC is compiled 
into a self-contained kernel module and makes no changes to 
both user libraries/interfaces and Linux kernel or Xen 
hypervisor. Figure 2 gives an overview of XenVMC system 
architecture. For presentation clarity, we only show one Guest 
OS to avoid redundancy. Multiple guest OSes can be deployed 
into the system and they have the same structure for inter-VM 
communication. Each guest OS hosts a non-intrusive self-
contained XenVMC kernel module, which is inserted as a thin 
layer below the socket layer and above the transport layer.  

 

Figure 2.  XenVMC architecture 



In the subsequent sections we will describe in detail the sub 
modules of XenVMC kernel module, the automatic collection 
and update of co-resident VM information, the transparent 
system call interception, the setting up and tearing down of 
shared memory connections, the data transmission, as well as 
the VM live migration support in XenVMC. 

1) Sub modules of XenVMC kernel module 
XenVMC kernel module contains six sub modules as 

shown in Figure 2. They are Connection Manager, Data 
Transfer Manager, Event and Message Manager, System Call 
Analyzer, VM State Publisher, and Live Migration Assistant. 

Connection Manager is responsible for establishing or 
tearing down shared memory based connections between two 
VM peers. And it enables seeking local channels with socketfd 
or with <IP/DomID, port> pair. Data Transfer Manager is 
responsible for data sending and receiving. It supports both 
blocking and non-blocking mode via FIFO buffer. Event and 
Message Manager provides two types of communication 
mechanism for VMs. The event mechanism is based on Xen 
event channel. It handles data transmission related notifications 
between the sender and the receiver. While the message 
mechanism is implemented to enable notifications among VMs 
across the boundary of physical machines. 

System Call Analyzer enables transparent system call 
interception. It intercepts related system calls and analyzes 
them. If co-resident VMs are identified, it bypasses traditional 
TCP/IP paths. VM State Publisher is responsible for 
announcement of VM co-residency membership modification 
to related guest VMs upon VM creation, VM migration in/out, 
VM destruction, XenVMC module unloading/exit, etc. Live 
Migration Assistant maintains vms[], which will be illustrated 
later. It supports transparent switch between local and remote 
mode communication together with other sub modules. For 
example, it asks Data Transfer Manager to deal with pending 
data during the switch and sends requests to Connection 
Manager to establish/close local/remote connections. 

2) Automatic VM co-residency information collection and 
update 

To identify whether or not a pair of communicating VMs 
resides on the same physical machine and to support VM live 
migration, it is necessary to collect and update VM co-
residency information automatically and on demand, without 
administrative intervention.  

As mentioned in Section III, there are two alternative 
approaches for automatic co-resident VM detection. The first 
approach needs centralized management by Dom0. It is 
relatively easier to implement since co-residency information is 
scattered in a top-down fashion and the information is 
supposed to be sent to VMs residing on the same host 
consistently. However, the period between two periodical 
probing operations needs to be configured properly. If the 
period is longer than needed, it would bring delayed co-
residency information. However, if it is too short, it might lead 
to unnecessary probing and thus consumes undesirable CPU 
cycles. XenLoop employs the first approach. The second 
approach is event-driven. When a VM migrates out/in, the VM 
is expected to notify related VMs and update the co-residency 
information. Without the need to decide how long the probing 
period should be, the second approach is more precise, since 
co-residency information updates are immediate when 

corresponding events occur. But with the second approach, 
update results are not immediately visible before all the co-
resident VMs are reached due to the advertizing/broadcasting 
latency. Moreover, since it is possible that the co-resident 
information of VMs on a single host changes concurrently, the 
consistency of the information should be maintained. We adopt 
the second approach based on the following observations: 

• Events such as VM creation, VM migration in/out, VM 
destruction, XenVMC module unloading/exit do not 
happen frequently. 

• The number of co-resident VMs is usually not large 
according to existing hardware constraints. 

Based on these observations, we conjecture that the 
response time of the event driven approach is expected to be 
more precise and the update on the co-residency information is 
immediate, without consuming undesirable amount of time for 
periodical event probing. Given that the total number of co-
resident VMs is usually not so large (0-100), the disadvantage 
of the event-driven approach, such as delayed visibility of 
update results due to advertising and broadcast latency, can be 
neglected.  

Before illustrating how to gather and update VM co-
residency information automatically with the second approach, 
we first introduce vms[], an array maintained by every guest 
VM. vms[] stores not only co-residency information, but also 
data of local channels. As shown in Figure 3, every item in 
vms[] represents one of the co-resident VM on the physical 
host (excluding the guest VM itself) uniquely identified by its 
<Dom ID, IP> pair and points to a hash table. This hash table 
stores all the communication VM peers of the specific co-
resident VM, with each item in the hash table indicates one of 
such communication VM peers and points to a one-way linked 
list of local channels between the two peer VMs. Every 
connection in XenVMC system is represented by struct conn_t, 
which consists of a list of fields, including lport (local port), 
rport (remote port), sender_t, recver_t, etc. the struct sender_t 
contains mainly a pointer to the sender VM, a wait queue of 
processes waiting to write data, a pointer to allocated shared 
virtual memory, the offset for data writing, etc. recver_t is 
similar to sender_t in struct. All these parameters are defined as 
atomic_t to allow parallel accesses from multi users. 

 

 
Figure 3.  vms[] maintained by every guest VM 

Co-resident VMs and their related local channels 
information are well organized in vms[]. When one guest OS is 
created or migrated in a new host, vms[] of this guest OS will 
be initialized. When events such as creation, migration in/out 
or destruction of other co-resident VM occur, vm[] will be 



updated. When a guest VM is about to migrant out of current 
physical machine, vms[] of this VM will be deleted. And the 
events and corresponding actions are handled in an atomic 
fashion. When one of above events occurs, all the other VMs 
on the same physical machine will be notified so that vms[] can 
be correctly updated. vms[] is maintained by every guest OS 
instead of Dom0. The reason is that co-residency and local 
channel information are frequently accessed data and inter-
domain access indicates more latency.  

3) transparent system call interception 
To support transparent switch between local and remote 

mode, what is most important is to find hook point and how to 
hook into the communication path. As discussed in section III, 
for the sake of efficiency, it is desirable to implement the 
mechanism between socket layer and transport layer in stead of 
below IP layer. However, Linux does not seem to provide a 
transparent netfilter-like hook to intercept messages above IP 
layer. So the problem turns to be how to implement similar 
hooks based on existing system mechanisms. Since system 
calls mechanism itself provides a universal entry into kernel for 
all the requests, it is feasible to transparently intercept every 
network related system call and analyze it from the context 
whether the VM peers are on the same physical machine, then 
bypass TCP/IP path if they are co-resident VMs. We design 
and implement the interception mechanism on software 
interrupt based system call mechanism.  

The basic design objectives behind the kernel transparent 
system call interception mechanism are: (i) to intercept 
network related system calls and (ii) be able to judge local from 
remote mode and switch between them without user 
intervention (iii) no modification, no re-compilation and re-
linking of kernel codes. And the basic ideas behind the design 
are: (i) to hook into software interrupt based system call 
processing path, (ii) to replace existed corresponding system 
call handlers with self defined system call handlers, (iii) to 
implement in self-contained XenVMC kernel module. 

We set hooks into system by introducing self defined 
system call handlers, replacing existing handler addresses with 
those of self defined handlers, and recovering the address when 
XenVMC module is unloaded from guest OS or when it is 
identified that its communication VM peer is remote. In order 
to replace system call handlers with self defined ones, the 
entries in system call table is to be modified transparently to 
OS kernel. However, for security reasons, the memory pages in 
which the system call table is residing are read only. Therefore, 
we modify the 17th bit in register cr0 to 0 (writable) before the 
replacement, and recover it when self defined system call 
handler returns or the communication VMs are located on 
separate physical machines.  

The replacement is done in an action-on-event pattern. As a 
kernel module, there are three significant “events” for 
XenVMC: being loaded, initialized or exits (unloaded). The 
entry of system calls is passed into XenVMC as a parameter 
when the event “XenVMC is loaded” occurs. And the 
addresses of the original handlers are saved and replaced with 
user defined ones in XenVMC_init(). The addresses of original 
handlers are recovered in XenVMC_exit(). User defined 
system call handlers are responsible to identify from the 
context whether current communication is local or not. If it is 
local, shared memory based approach is activated. Otherwise, 
it recovers the addresses of original handlers.  

All the above functionalities are implemented in XenVMC 
module. There is no modification to either OS kernel or VMM 
code. And either the switch between original system call 
handler and user defined handler or that between local and 
remote mode is transparent to users. 

4) Setting up and tearing down share memory based  
connection 

When one of the guest VMs detects the first network traffic 
to a co-resident VM, it initiates the procedures of local 
connection set up as the sender. First, it initializes struct conn_t, 
assigns memory pages as data buffer and writes data into it. 
Then the receiver initiates itself by initializing recver_t and 
asks the sender to establish the connection, with dom ID 
attached. Accordingly, the sender initializes sender_t in a 
similar way. Then the function gnttab_grant_foreign_access 
provided by Xen grant table is activated to share assigned 
memory pages with the receiver. And the sender calls 
HYPERVISOR_event_channel_op to create event channel. 
And dom ID of the sender, evtchn_port and references of 
shared memory pages are sent to the receiver by Event and 
Message Manager. After receiving these parameters, the 
receiver binds to the event port of the sender and maps the 
shared memory pages to its address space and reads data from 
the shared memory. Then it notifies the sender the connection 
set up procedure is finished. Figure 4 illustrates the process.  

 

Figure 4.  Setting up a shared memory based connection 

Whenever one guest VM migrates out, suspends, shuts 
down, destructs, or unloads the XenVMC kernel module, all of 
its shared memory based connections are expected to be torn 
down. Additionally, VM State Publisher of its co-resident VMs 
needs to update co-residency information by refreshing the 
vms[]. As shown in Figure 5, in order to tear down a 
connection, if the initiator is the sender, first it needs to stop 
data sending and notify the receiver to begin the process. Then 
the receiver stops data receiving. This is guaranteed by 
obtaining access lock to struct recver_t, which indicates that all 
the receiver threads have stopped getting data. And the 
connection is switched to traditional TCP/IP mode if necessary 
by recovering the addresses of corresponding system call 
handlers. After that, shared memory pages are unmapped and 
event channel is closed. Then struct recver_t is freed. After that, 
the sender is notified. Then the connection is switched to 
TCP/IP mode if necessary. If there are any unsent data, then 
transfer the remained data. Finally, event channel is closed by 
the sender, share memory pages and therefore struct sender_t 
are freed. After the connection is torn down, struct conn_t is 
freed and vms[] are updated. 



 

Figure 5.  Tearing down a shared memory based connection 

5) Data transmission 
Once the connection is established, it is possible for VM 

peers to exchange network traffic. In this section, we first 
describe the structure of FIFO buffer. Then we introduce steps 
of VM co-residency identification and local channel lookup. 
Based on these mechanisms, we illustrate how to handle data 
sending and receiving in XenVMC system. 

a) FIFO buffer 
The buffer between sender VM and receiver VM for local 

data transfer is structured as a FIFO circular queue, as 
illustrated in Figure 6. It is built based on Xen grant table 
mechanism. Given any guest VM, its sending FIFO buffer 
and receiving one are separated since the VM can be either 
the data producer or the consumer. The producer writes data 
into the buffer and the consumer reads data from it in an 
asynchronous way. Xen event channel is used for them to 
notify each other when data is ready or the buffer is empty, 
etc. The transferred data is allowed to vary in size from time 
to time. The exact length is specified in the head attached 
before the data. The thread safety is guaranteed by spinlock 
facilities on struct sender_t and recver_t.  

 
Figure 6.  FIFO buffer 

b) Co-residency identification and local channel lookup 
Before data is transferred, if the sender and the receiver are 

on the same physical machine, it is necessary to look up local 
connection info via variable vms[] to determine if a new local 
connection needs to be set up. For example, when a new VM is 
added to the current host machine, the local channel needs to 
be established. This is done in two steps. First, Data Transfer 
Manager obtains <IP, port> pairs of the pair of communicating 
VMs from input parameters. Then it tries to find the VM peer 
in local vms[] via the IP address of the other VM. If there is no 
match, then it switches to TCP/IP mode since the two 
communicating VMs are not on the same physical machine. 
Otherwise, there is a matched VM, which indicates the two 
VMs are on the same host. With IP addresses, it is easy to 
locate the information of a VM in the specific hash table and to 
find out if the local connection between a pair of VMs has been 
established via lport and rport. Note that upon addition of a 

new VM to a physical host machine, this VM will finally be 
added to vms[] of all the other co-resident VMs. 

c) Data sending and receiving 
When system call for sending or receiving data is 

intercepted by the XenVMC module, the original handler is 
replaced with XenVMX self defined system call handler. 
Whether it is data sending or receiving, the first few steps in 
self defined system call handler is similar. First, it identifies if 
the two VMs are on the same physical machine by looking up 
the matching VM in vms[]. If the two VMs are not co-resident, 
then it recovers the original system call handler and switches to 
traditional TCP/IP communication. Otherwise, it determines if 
local channel, implemented as the shared memory based 
connection between the two VMs, already exists. The 
remaining processing steps are different for data sending and 
receiving. 

Data sending. For data sending, if no corresponding local 
channel exists in vms[], then Data Transfer Manager calls 
Connection Manager to initialize struct conn_t and insert it into 
vms[]. If unused space in FIFO buffer is enough for data to be 
sent, then it copies the data into FIFO buffer and notifies the 
receiver via event channel. Otherwise, for blocking I/O mode, 
the sender waits for the receiver to copy data from the buffer 
until the receiver notifies the sender. Struct sender_t is updated 
to mark the available space in FIFO buffer. If one of two 
locally connected VMs is about to migrate during data sending, 
the communication will be switched to TCP/IP mode. 

Data receiving. For data receiving, if no corresponding 
local channel exists in vms[], then if there are any pending data 
remained from previous TCP/IP network traffic, the receiver 
receives those data via TCP/IP network. After finishing 
pending data handling, struct conn_t is initialized and inserted 
into vms[]. Then the receiver identifies if there is enough data 
ready in FIFO buffer for reading. If yes, it copies data from the 
buffer and notifies the sender that data has been received. 
Otherwise, for blocking I/O mode, the receiver waits for the 
sender to copy data into the buffer before reading; for non-
blocking I/O mode, it copies data from the buffer. Struct 
recver_t is updated to record data received. When VM live 
migration is about to happen, the communication mode will be 
switched to remote mode. 

6) Live migration support 
XenVMC kernel module receives a callback from the Xen 

hypervisor when one of the two co-resident VM peers is going 
to migrate. By design, XenVMC handles the live migration 
transparently. If two VM peers originally are co-resident, then 
Live Migration Assistant stops them from data sending and 
receiving via FIFO buffer, saves the pending data, and tears 
down the current local channel. Meanwhile, the original system 
call handler is reinstalled so that TCP/IP mode of inter-VM 
communication will be used after the migration. Also the VM 
about to migrate out will delete its own vms[] and send 
broadcasts to its co-resident VMs, who will update co-
residency and local channel information by modifying the 
value of their own vms[]. Once the VM is migrated out, 
TCP/IP network is used to send pending data and traffic 
afterwards. If two VMs originally are on separate physical 
machines and become co-resident after the migration, then the 
automatic co-resident VM detection mechanism on the 
destination host will discover the newly added VM , and this 
new VM addition will be broadcasted and local channel is 



established. vms[] of this VM and vms[] of its co-resident VMs 
are reconstructed or updated. The entire process of live 
migration is transparent to user applications, without modifying 
Linux kernel and Xen hypervisor.  

C. Evaluation 
XenVMC improves the performance of traditional TCP/IP 

based frontend-backend mode of inter-VM communication for 
co-resident VMs. A typical TCP/IP communication goes 
through long processing path, triggers more switches between 
Xen hypervisor and guest OSes, and more data copy operations. 
With XenVMC, the performance of inter-VM communication 
is improved by enabling co-resident VMs to communicate via 
fast shared memory channels, which use shorter 
communication path, require less context switches and data 
copy operations. In this section, we present some initial 
experimental results for evaluating the performance of 
XenVMC approach and comparing it with the traditional 
TCP/IP network based frontend-backend approach. 

All experiments were conducted on a machine with Intel(R) 
Core(TM) i5 750 @ 2.67GHz processor and 4GB memory. All 
the data reported was run on Xen 3.4.2 and Linux 2.6.18.8. We 
run each test for 7 times and report the average, with the 
highest and the lowest values removed before computing the 
average. We configured two CentOS 5.5 guest VMs on the 
above test machine with one vCPU and 512M memory 
assigned for each VM. We use Netperf 2.4.5 as performance 
benchmark. The comparison is primarily done over the 
following two scenarios: 

• XenVMC: Inter Guest VM communication via 
mechanisms provided by XenVMC kernel module. 

• TCP frontend-backend: Inter Guest VM 
communication via traditional virtualized frontend-
backend network data path. 

We have compared and analyzed the experimental results 
of above two approaches in terms of both network throughput 
and network latency.  

1) Network throughput 
We use Netperf TCP_STREAM test to evaluate the 

throughput of XenVMC and TCP frontend-backend 
respectively. When a connection is established between a 
netserver and a netperf client, the netperf client begins to send 
data of specified size to the netserver continuously in 10 
seconds duration. Figure 7 shows the throughput measurement 
with varying size of messages.  

0
1000
2000
3000
4000
5000
6000
7000
8000

6 7 8 9 10 11 12 13 14

Th
ro
ug
hp

ut
 (M

bp
s)

Message Size (log2(bytes))

XenVMC TCP frontend‐backend

 

Figure 7.  Throuput comparison of XenVMC vs. TCP frontend-backend 

The experiments show that XenVMC achieves better 
network throughput over TCP frontend-backend when message 
size exceeds 512 bytes. Compared to TCP frontend-backend 
approach, XenVMC improves inter-VM communication 
throughput by up to a factor of 9 when the message size is 
larger than 512 bytes. This is because when the same size of 
data is being transferred, larger message size indicates less 
control information exchanged between sender VM and 
receiver VM, and less switches between user space and kernel 
space.  

2) Network latency 
We use Netperf TCP_RR test to evaluate network latency 

of XenVMC and compare the results with that of the TCP 
frontend-backend approach. Upon establishing the connection 
between a netserver and a netperf client, the netperf client 
begins to send requests to the netserver, which sends 
RESPONSEs back after receiving REQUESTs. Such round trip 
of communication performs in a repeated manner.  Figure 8 
shows the measurement of the network latency with varying 
message sizes. 

0

50

100

150

200

250

300

6 7 8 9 10 11 12 13 14

La
te
nc
y 
(μ
s)

Message Size (log2(bytes))

XenVMC TCP frontend‐backend

 

Figure 8.  Latency comparison of XenVMC vs. TCP frontend-backend 

As shown in Figure 8, XenVMC is more efficient than TCP 
frontend-backend for all message sizes, and its latency is only 
16%-40% of the latency of TCP frontend-backend. 
Furthermore, when the message size is less than 1024 bytes, 
the results of both approaches remain relatively stable and the 
lantecy of TCP frontend-backend is 2.5-3 times of the latency 
of XenVMC. When the message size exceeds 512 bytes 
(log2(10)), the latency of TCP frontend-backend increases 
obviously, while the latency of XenVMC increases slightly. 
This set of experimental results show that XenVMC improves 
the network latency by up to a factor of 6 for varying message 
sizes. 

The initial experimental evaluation shows that XenVMC 
achieves higher throughput and lower latency as expected, 
compared with traditional TCP frontend-backend approach. 
This is because XenVMC spends less time across the network 
protocol stacks for co-resident VM communication with 
throughput improvement by up to a factor of 9 and latency 
reduction by up to a factor of 6.  

In contrast to XenLoop [8], which is implemented below IP 
layer by utilizing netfilter, XenVMC is implemented below 
socket layer and above transport layer. Thus we conjecture that 
XenVMC can deliver higher throughput and much improved 
latency compared with the improvement shown in XenLoop. 
One of our ongoing efforts is to conduct experimental 
comparison of XenVMC and XenLoop to better understand the 



performance impact of implementing shared memory based 
solution in different software stack through quantitative 
measures.  

V. CONCLUSION 
Traditional TCP/IP frontend-backend virtualization 

introduces unnecessary overhead for inter-VM communication 
due to long path through the protocol stack and Dom0-
centralized communication mode. One way to address this 
problem is to use shared memory based approaches to optimize 
the performance when the VMs are co-resident on the same 
physical machine. However, implementing the shared memory 
based inter-VM communication channel at different layer in 
the software stack may lead to different quality and quantity of 
performance gains in terms of throughput/latency, user-kernel-
hypervisor multilevel transparency and seamless agility. 

In this paper, we give an overview of the state of art shared 
memory based techniques for inter-VM communication on Xen 
platform. We have also discussed key issues for designing and 
implementing an efficient residency-aware inter-VM 
communication mechanism. Based on the analysis, we classify 
existing shared memory based mechanisms into three 
categories according to their implementation layer in the 
software stack. We argue that the implementation layer may 
have critical impact on transparency, performance, as well as 
seamless agility in the context of VM additions and live 
migration support. We present XenVMC, a fast and transparent 
residency-aware inter-VM communication protocol, 
implemented below socket layer and above transport layer. We 
argue that to ensure user level transparency and to avoid 
unnecessary overhead introduced by lower level protocol 
processing, it is best to implement co-resident VM 
communication channel below the socket layer and above the 
transport layer. This ensures seamless VM live migration via 
automatic co-resident VM detection, transparent system call 
interception, and multilevel transparency. Our initial 
experiment results show that XenVMC improves co-resident 
inter-VM communication throughput by up to a factor of 9 and 
reduces the inter-VM communication latency by up to a factor 
of 6. We have implemented XenVMC to support TCP based 
inter-VM communication.  

Our research continues along several dimensions. For 
example, we are currently working on experimental 
comparison of XenVMC with XenLoop to better understand 
the performance indications when implementing a shared 
memory co-resident inter-VM connection at different layers in 
the software stack, especially comparing XenVMC, 
implemented above IP layer and below socket layer, with 
XenLook implemented below IP layer. In addition, we are 
currently extending XenVMC to support UDP based 
communication as another orthogonal approach to speed up co-
resident inter-VM communications.  

ACKNOWLEDGMENT  
The first author’s research is partially supported by grants 

from National Advanced Technology Research and 

Development Program under grant NO. 2011AA01A203, 
National Science and Technology Support Program under grant 
NO. 2011BAH14B02, National Nature Science Foundation of 
China (NSFC) under grant NO. 60633050, Young Excellent 
Teacher Researching and Training Abroad Program of China 
Scholarship Council (CSC). The second author is partially 
supported by USA NSF CISE NetSE program and 
CrossCutting program, an IBM faculty award and a grant from 
Intel ISTC on Cloud Computing. 

REFERENCES 
[1] M. F. Mergen,  V. Uhlig,  O. Krieger, and J. Xenidis. “Virtualization for 

high-performance computing,” ACM SIGOPS Operating Systems 
Review. ACM, New York, NY, USA. vol. 40, issue 2, April 2006, pp. 8-
11. 

[2] L. Youseff, R. Wolski, B. Gorda, and C. Krintz. “Evaluating the 
performance impact of Xen on MPI and process execution for HPC 
systems,” in VTDC '06 Proceeding of the 2nd International Workshop 
on Virtualization Technology in Distributed Computing, IEEE 
Computer Society Washington, DC, USA, 2006. 

[3] A. Gavrilovska, S. Kumar, H. Raj, K. Schwan, V. Gupta, R. Nathuji, R. 
Niranjan, A. Ranadive, and P. Saraiya. “High performance hypervisor 
architectures: virtualization in HPC systems,” 1st Workshop on System-
level Virtualization for High Performance Computing (HPCVirt), in 
conjunction with EuroSys 2007, Lisbon, Portugal, Mar. 2007, pp. 1–8. 

[4] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao. “Who is 
your neighbor: net I/O performance interference in virtualized clouds,” 
IEEE Transactions on Services Computing. IEEE Computer Society, 
Los Alamitos, CA, USA. Jan, 2012. 

[5] X. Zhang, S. McIntosh,  P. Rohatgi, J. L. Griffin. “XenSocket: A high-
throughput interdomain transport for virtual machines,” in Proceedings 
of the ACM/IFIP/USENIX 2007 International Conference on 
Middleware (Middleware '07). Springer-Verlag New York, Inc. New 
York, NY, USA. pp. 184-203, 2007 

[6] K. Kim, C. Kim, S. Jung, H. Shin, and J. Kim. “Inter-domain socket 
communications supporting high performance and full binary 
compatibility on Xen,” in proceedings of the fourth ACM 
SIGPLAN/SIGOPS international conference on virtual execution 
environments (VEE '08). ACM New York, NY, USA. pp. 11-20, 2008. 

[7] W. Huang, M. Koop, Q. Gao, and D.K. Panda. “Virtual machine aware 
communication libraries for high performance computing,” in SC '07 
Proceedings of the 2007 ACM/IEEE conference on Supercomputing. 
ACM New York, NY, USA. Article No. 9. 2007. 

[8] J. Wang, K. Wright, and K. Gopalan. “XenLoop: A transparent high 
performance inter-VM network loopback,” inn Proceedings of the 17th 
International Symposium on High Performance Distributed Computing 
(HPDC '08). ACM New York, NY, USA. pp. 109-118, 2008. 

[9] P. Radhakrishnan, and K. Srinivasan. “MMNet: an efficient inter-vm 
communication mechanism,”  in Proceedings of Xen Summit, Boston, 
June 2008. 

[10] A. Menon, A. L. Cox, and W. Zwaenepoel. “Optimizing network 
virtualization in Xen,” in ATEC '06 Proceedings of the annual 
conference on USENIX '06 annual technical conference. USENIX 
Association Berkeley, CA, USA, 2006. pp. 15-28 

[11] J. Wang. “Survey of state-of-the-art in inter-VM communication 
mechanisms,” Research Proficiency Report, available at 
http://www.cs.binghamton.edu/~jianwang/papers/proficiency.pdf, Sept 
2009. 

[12] Netfilter. http://www.netfilter.org/. 
[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. 

Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of 
virtualization,” in SOSP '03 Proceedings of the nineteenth ACM 
symposium on Operating systems principles,December 2003. ACM New 
York, NY, USA. pp. 164-177. 

 


