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Abstract—The KAD network is one of the largest distributed
hash tables utilized by the popular P2P file-sharing systems:
aMule and eMule. However, its lookup performance is recognized
as inefficient. In this work, based on the fact that peers publish
and retrieve information with the help of their routing tables
and publishing tables, we evaluate this inefficiency problem
via a series of real world tests. Our measurements show that
even though the maintenance policy of routing tables is well
designed, the current refresh scheme of the publishing table
and the selfishness of publishing peers cause the poor lookup
performance. To mitigate this problem, we propose there different
modifications and analyze their advantages and weaknesses.

Index Terms—P2P, KAD, DHT, PlanetLab, Measurement

I. INTRODUCTION

Peer-to-Peer (P2P) file-sharing systems still generate a large
amount of the traffic payload on the current Internet [1].
To publishing and retrieving content efficiently, structured
methods based on a distributed hash table (DHT) technology
are proposed [2], [3], [4], [5]. In reality, there is one DHT-
based network being widely deployed in P2P file-sharing
systems aMule/eMule [6], [7] – the KAD network. According
to the work of Steiner et al. [8], the size of the KAD network
is over one million online users. In the KAD network, content
publishing and retrieving need the help of publishing peers
and published peers. Publishing peers are the peers with
shareable content who publish the content information onto
other peers, and published peers are those peers in charge of
maintaining the published information. Each Publishing peer
uses its routing table to discover the corresponding published
peers, and then inserts the content location information into
the publishing tables of these published peers. Each user can
also use its routing table to discover published peers, and then
retrieve needed information from their publishing tables.

Our previous measurement study [9] showed that the lookup
efficiency of the KAD network was low. In contrast to other
searching mechanisms (e.g., the Source-Exchange method and
the Passive-Exchange method) employed in eMule/aMule,
little useful content location information can be retrieved from
the KAD network. Kang et al. [10] also discovered the poor
lookup performance in the KAD network. However, their
thinking about high similarity among routing tables causing
the poor lookup performance is inconvincible.

In this work, we determine the reasons for the low lookup
performance by running multiple measurement tests. Previous
measurement studies [11], [12], [13], [14] usually tested the

KAD network from perspective of a single client. Due to
the huge size of the KAD network, they usually measured
a specific aspect of the whole KAD network. In contrast,
we develop a distributed measurement framework employing
multiple test nodes running on the PlanetLab testbed [15].
The entire ID space of the KAD network are uniformly
separated into multiple parts, each of which are measured
by an individual PlanetLab test node. Therefore, different
from previous works, our measurements provide a picture
of the entire KAD network. During the measurements, the
routing tables of more than ten thousand peers have been
crawled and analyzed. more than three million source-location
information from the publishing tables of multiple peers have
been retrieved and contacted . Based on these measurements,
we have the following contributions.

1) We show that the maintenance policy of routing table
is well designed. The availability of the routing table
is high. That is, more than 80% of the entries in this
table are connectable. Furthermore, the entries of routing
tables among peers which are logically close with each
other are different, which means these routing tables
have low similarity or large diversity.

2) We discover that the maintenance policy for the resource
location information publishing table is not well de-
signed. The availability of the publishing table is low.
On average, more than 75% entries in this table are stale
and cannot be connected.

3) We also observe that more than 75% peers leave the sys-
tem within one hour after publishing their downloaded
content into the KAD network.

4) By exploring the implementation of the KAD network,
we conclude that both the current maintenance schedule
for the publishing tables and the selfishness of the
publishing peer eventually results in the low availability
of the publishing tables, and accordingly cause poor
lookup performance of the KAD network.

5) To deal with these issues, we proposed three possi-
ble solutions to address all of these issues: the self-
maintenance scheme with short period renewal interval,
the chunk-based publishing/retrieval scheme, and the
fairness scheme. The strengths and weaknesses of these
solutions are also discussed.

To improve the performance of KAD network, previous works
[13], [16] mainly focused on how to deal with published peers
more efficiently. However, to our knowledge, the impact of the
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publishing peers on the lookup performance have not been
analyzed until this work.

The remainder of the paper is organized as follows. In
section 2, the background of KAD networks such as content
publishing and retrieving mechanisms is reviewed. In section
3, a group of measurement studies in the performance of
the KAD network are presented, including analyses of the
results. The proposed solutions to mitigate the current issues
are discussed in section 4. In section 5 and section 6, the
related work and conclusion are presented.

II. BACKGROUND

In the KAD network, each object (e.g., peers, published con-
tent information, keywords) has a unique 128-bit long identity
called the KID. The KID of each peer is generated when it
first joins the system. Using the Kademlia algorithm [4], the
logical distances among peers can be calculated by bitwise
XOR operation. For example, if peer A, B and C’s KIDs are
1010, 0101, and 1100 respectively, the distances between A
and B is 1111 and between A and C is 0110. Consequently,
C is recognized closer to A than B. The distances also decide
where the publishing items will be published and then be
retrieved. In the KAD network, a publishing item with the
KID k will be published onto other online peers. These peers
together form a tolerance zone of k in the KAD network,
where each of them have enough prefix-matching bits with k.
Furthermore, this publishing scheme also simplifies the KAD
lookup process. That is, to retrieve a needed information with
the KID k, users just need to find the peers who belong to the
tolerance zone of k.

In the KAD network, each peer individually maintains a
routing table for its knowledge of other peers. The entries
in the table are the connecting information of its known
peers, such as peers’ KIDs, the corresponding IP addresses,
UDP ports, TCP ports, etc. A peer can obtain more peers’
information either when it directly receives requests from new
peers or it requires its known peers to send back more peers’
information. On the other hand, a stale peer’s information can
also be removed from the routing table by periodically online
verification.

The logical structure of a peer’s routing table is represented
by a binary tree as shown in Figure 1. Each level of the tree
corresponds to one bit of the KID. Theoretically, the tree’s
height can be extended to 128 levels corresponding to the total
length of the KID. Peers connecting information is collected
into the tree’s leaf nodes named buckets. The KIDs of peers
belonging to a bucket at a specific level will have the same
prefix bits until that level. A bucket may hold at most 10
entries, beyond which the bucket must be split into the next
level for holding more information. In reality, each peer in the
KAD network is only required to maintain information from
more peers with a closer match to it and maintain fewer peers
whose KIDs are farther away. There are no buckets in the
levels 0 to 3. The left-hand branch of the whole tree shown
in Figure 1(a) always stops at level 4, where a total of 8
buckets hold the information of at most 80 peers. These 8
buckets cannot be split into the next level. For the right-hand

branch shown in Figure 1(b), there are 3 buckets in level 4.
Beginning from level 5, the 5 left-most buckets cannot be split
anymore, while each of the other 5 right-most buckets can be
split into the next level if more than 10 peers in its range
are known. Consequently, the structure of each peer’s routing
table becomes an unbalanced binary tree . Our measurements
show on average each routing table holds the information
of less than 600 peers. On the other hand, with the help of
this special structure, A peer’s connecting information can be
easily located. For instance, if peer A wants to connect to
another peer B for which B’s KID is known but its connecting
information are unknown, A can search for peers from its
specific bucket that has the longest prefix-matching bits with
B, and send the requests to them. These peers will then run the
same process to find much closer peers to answer the request of
peer A. Recursively, A can obtain the connecting information
of B.

To publish and retrieve content from the KAD network, each
peer needs to search information not only from the routing
table but also from the publishing table. The publishing table
holds the information of how to find the real content location.
When a peer publishes its sharable content with KID k, as the
dot lines shown in Figure 2, it looks up several published peers
in its routing table or recursively from other peers’ routing
tables whose KIDs belong to the tolerance zone of k (step
1). After that, it inserts its location information (e.g., its own
IP address, transmission ports, etc.) into the publishing tables
of the published peers (step 2). Equivalently when a user
wants to retrieve the same content, it also first looks up its
own routing table or recursively requests other peers to find
the corresponding peers within the same tolerance zone of k
(step 3), and then send requests to these corresponding peers
(step 4). These peers will search their local publishing tables,
retrieve the content location information, and reply back to the
requester (step 5). With the received location information, the
user can finally connect to the publishing peers and conduct
a downloading process (step 6).

Publishing TableFinger Table

Finger Table

Sharing Content

Publishing 
Peer

Published 
Peer

KAD User

1

2

3

4

5

6

Publish Process:
Retrieve Process:

Fig. 2: Publishing and Retrieval Processes.
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Fig. 1: logical structure of the routing table

III. MEASUREMENT-BASED ANALYSIS

In this section, we first review our previous work that
measured the lookup performance of the KAD network from
user’s perspective. Then, we show our measurements for the
maintenance of the routing table and the publishing table by
using multiple nodes on the PlanetLab testbed.

A. Lookup performance of the KAD network

To explore the lookup performance of the KAD network,
in our previous work we first conducted a client-based
measurement in the real world. We chose a popular client
application–eMule v0.49c for our client-based measurement.
This application has been installed on a typical PC with
a 100Mb Internet connection. The downloaded content is
selected from a large scope of popular but non-copywrite types
like audio, video, Linux ISO-distributions, etc., and the size of
the content also varies from several MB to thousands of MB.
This measurement took place over more than two months.
The client application downloaded over 100GB of content.
During the test, we recorded the number of useful sources
from different source-searching methods (For more details of
the measurement, please reference our previous work [9]).

As shown in Figure 3, the fully distributed DHT-based KAD
network provides much less sources information in contrast
with other two methods: the Source-Exchange method and
the Passive-Exchange method used in aMule/eMule. Thus, it
is natural to ask what the reasons are for the lower lookup
performance of the KAD network. Considering the key roles
of the routing table and the publishing table on the lookup

Average Number of Sources from Different Source 

Discovery Methods for Each Test

Passive

132 (50% )
SourceExchange

121 (45% )

KAD
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ED2K 
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Fig. 3: Received sources information from different source-
lookup methods.

processes of the KAD network, we are motivated to explore
their performance.

B. The routing table measurement

One of the possible reasons for the poor lookup performance
may come from a poorly maintained routing table. If the rout-
ing table is full of stable entries, which means its availability
is low, peers may not get enough available information to
locate other useful peers for either publishing or retrieving.
Or, like Kang’s work [10] mentioned, another reason is that
peers within a tolerance zone may have a large amount of
the same entries among their routing tables, in here we call
the routing tables of these peers have high similarity. Thus,
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these peers can only publish information on the same peers
that they know. However, when users try to retrieve their
published information from other peers who belong to the
same zone but are not the published peers (this can be possible,
since peers may not know all the members belonging to the
same zone), they cannot obtain this published information and
consequently the lookup performance becomes inefficient.

1) Measurement Metrics: To verify these potential causes,
we conduct two experiments by measuring the availability
Fa(t) and the similarity Fs(t) of the routing table separately.
If nf and nl represent the total number of entries and the total
number of the living nodes in a routing table respectively, the
availability Fa of a routing table at a specific measurement
time equals

Fa =
nl

nf
. (1)

As a result, a high value of Fa usually represents a well
maintained routing table.

To measure the similarity Fs among m peers belonging to
a specific tolerance zone at a particular measurement time, we
denote nf (i) as the total number of entries in peer i’s routing
table and ns as the total number of the same items among
all routing tables in all m peers. Therefore, the similarity Fs

of a group of m peers can be defined as the total number of
the same entries in their routing tables divided by the average
number of all entries in their routing tables.

Fs =
ns

m∑
i=1

nf (i)/m
. (2)

Consequently, the smaller the value of Fs, the better the
routing table has been maintained.

2) Measurement Methodology: We build a distributed mea-
surement framework and deploy it onto multiple nodes using
the PlanetLab testbed. Two applications are developed for
measurement: KADmon and RoutingTCrawl. KADmon is a
customized KAD client by modifying a popular aMule client
application – aMule v2.26. It as our monitors is installed on
16 different PlanetLab nodes. We uniformly separate the entire
KID name space into 16 parts. To assign each PlanetLab
node to measure each part, the most significant four bits
among the total 128-bit long KID of each node are uniquely
assigned from 0, 1, 2...... E, F, while the 124 remaining bits are
randomly generated. During the measurement, each PlanetLab
node joins the KAD network and maintains its routing table
accordingly. It also records its routing table into a log file.
To reduce the impact of the test on the real system, these
PlanetLab monitors neither download content from any other
peers nor share content to them. On the other hand, another
measurement application RoutingTCrawl is also run on each
PlanetLab node to measure Fa and Fs. RoutingTCrawl verifies
the online status of each entry from the routing table of the
monitor via Ping-Pong requests. If the corresponding peer is
online, its whole routing table is crawled and the online status
of each entry in its routing table is tested.

Algorithm 1 Crawling routing Table
Data:

list: requestList=generated requests packets
list: targetList=peers retrieved from a routing table
list: livingList=verified online peers
hash(128): kid=peer’s kid
timestamp: t=timeout
int: retrycount=# of retry when timeout
int: parallelcount=# of requests in parallel

Initialization:
/*according to the crawled peer’s kid*/
targetList=generateTargetKids( )
/*according to the targetkidList*/
requestList=generateRequests( )

Test:
for each entry in requestList, do in parallel

send request to the target peer
if received response, then

add to the livingList
else if no response and timeout then

if retrycount>0 then
retrycount-1
send request again
wait for response

else
mark the peer offline

/*livingList/targetList*/
calculate availability Fa

Algorithm 1 presents our routing table crawling method in
detail, which is minimally discussed in previous works [10],
[8], [17]. In the KAD network, by carefully choosing KID
k, one single Kademlia-Request packet can retrieve a whole
bucket of any peer. Furthermore, according to the maintenance
algorithm of routing table and the current population of the
KAD network (there are about one million peers (220) uni-
formly distributed in the KAD network within the 128-bit long
space [8]), each peer’s routing table includes the information
of less than 1000 peers ((11+5×15+10)×10 = 960, here 11
represents the total buckets in the first to 4th levels. There are
5 buckets in each of the following 5th to 19th levels, and the
last 20th level has 10 buckets). Therefore, by sending less than
100 carefully created Kadmelia-Request packets in parallel, we
can retrieve the whole routing table of any peer within one
minute. Since KAD messages use UDP for transmission, we
introduce the retransmission mechanism for preventing packet
lost situation. Moreover, the multi-threading method is also
adopted for testing peers’ online status quickly.

3) Routing table availability measurement: We run our
PlanetLab monitors KADmon to collect peers information.
To obtain a unified perspective of the KAD network, this
initial process was both performed and terminated at the
same time. After that, the RoutingTCrawl application at each
monitor node was called immediately, and around six thousand
peers distributed among the entire KID name space have been
crawled, which means that every entry of the routing table of
each crawled peer has been retrieved and tested. Table I shows
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Fig. 4: (a) average value of Fa measured in different aspects of the KAD name space; (b) Histogram of the peers availability
Fa of the routing table; (c) CDF of the peers availability Fa of the routing table

the measured data. Figure 4(a) shows the average values of
availability Fa for each of these 16 different aspects of the KID
name space. As the measurement results shown in Figure 4(b)
and 4(c), there are around 80% of living peers in the routing
table. This high availability of the routing table benefits from
the current maintaining schedule of the routing table, which
refreshes each bucket every minute. With this high availability,
users can find their needed online peers from the routing tables
for their publication/retrieval. Therefore, the availability of the
routing table is not an issue for the lookup performance.

TABLE I: Measurement Data for Routing Table Availability

Data Value
Total number of Crawled Peers 5985

Average Number of Entries 549
Average Availability Fa 0.819

Standard Deviation of Fa 0.050

4) Routing Table Similarity Measurement: Kang et al. [10]
measured the routing tables between two peers within a
specific tolerance zone and indicated that they on average has
a high similarity of 70%. However, only testing the similarity
between two peers is not enough. This is because to publish
or retrieve information in the KAD network, users each time
have to conduct at least three peers in the same zone, and
obtain information from their routing tables. Steiner et al. Our
work also measured the similarity among more than two peers.
[16] also indicated that increasing this value can improve the
KAD performance.

Our work measured the similarity among more than two
peers within the same tolerance zone. Like Kang’s work
did, the 16-bit tolerance zone was selected for measurement.
Within this zone, the KIDs of all peers have at least the 16-
bit prefix-matching. By using our measurement components
KADmon and RoutingTCrawl, we retrieved peers from the
routing tables of the Planetlab monitors and crawled their
routing tables. From the obtained routing tables, the peers
belonging to the same 16-bit tolerance zone were selected
and their routing tables were crawled. To obtain more peers
for comparison, we continuously retrieved new appropriate
peers from the routing tables of previously crawled peers,
and crawled the routing tables of them. During the test, the

routing tables of a total number of more than 13 thousand
peers belonging to five thousand different tolerant zones have
been crawled and compared. their results is in contrast to our
observations.
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Fig. 5: CDFs of similarity for different number of compared
nodes

The measurement results are shown in Table II and Figure
5, where the average value of the similarity Fs, the standard
deviation of Fs, and the CDF of Fs among 2, 3, 4 and 5
peers within a specific tolerance zone have been presented.
Our measurement reveals that the similarity Fs within two
individual peers is only less than 20%, which is in contrast
to Kang’s work. Further than that, the similarity significantly
reduces to less than 10% when comparing to more than two
individual peers within a same tolerance zone. Therefore, The
routing tables of the peers within a 16-bit tolerance zone
have a small similarity or large diversity. The reason can
be explained as follows. Under an open KAD environment,
individual peers have its own individual behaviors: they may
both arrive and leave the system at different times; they
may meet different peers when sharing or requesting different
content. Consequently, their perspective to the KAD network
become differentiated. Moreover, the design of the KAD
network may also deliberately exacerbate the high diversified
viewpoint among each peer. That is, to fill out its routing
table, each peer are designed to randomly search for more
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TABLE II: Measurement Data for Routing Table Similarity

# of compared
routing tables

# of tested tolerance
zones

# of tested peers average value of Fs Standard Deviation
of Fs

2 4120 8240 0.171 0.050
3 1018 3054 0.093 0.043
4 329 1316 0.069 0.029
5 102 510 0.060 0.022

Summary 5569 13120

new peers instead of explicitly synchronizing the routing tables
among its close peers. On the other hand, we believe the low
similarity of routing tables does not degrade but improve the
lookup performance in the KAD network. This is because
a low similarity can keep publishing peers having a much
broader perspective to the whole KAD network. As a result,
more peers belonging to the same tolerance zone can be found
and chosen for the publication, and this also causes users to
retire the published information more easily. In contrast, if the
routing tables of the peers within a zone have a high similarity,
the information will be published onto a limited number of
peers. When these peers leave the system, no information
can be retrieved by users. In summary, high similarity is not
the critical issue for the poor lookup performance, since it
is not detected. Since Kang et al. [10] didn’t present their
measurement setup in detail, the accuracy of their test cannot
be evaluated.

C. The publishing table measurement

Poorly maintaining publishing tables will also affect the
lookup performance. This is because after the appropriate pub-
lished peers have been located from routing tables, resource
information have to be eventually published into/retrieved
from publishing tables of these peers. In the KAD network,
two kinds of publishing tables are used to maintain publishing
information: the resource-location-information (RLI) publish-
ing tables and the keyword-information (KI) publishing tables.
The content location information will be inserted into RLI
publishing tables of published peers. The related keywords for
the publishing content will be inserted into the KI publishing
tables. The importance of the RLI publishing table is due to it
containing the actual locations of content, while the KI table
conveniently helps users look for desirable content by Meta
data, like file name or wild cards characters. In the following,
we conduct real world measurements to verify the availability
of the RLI publishing table. Then, we use the obtained results
to evaluate the maintenance of the KI table, because the KI
table are also maintained by the same schedule of the RLI
table.

Using the same measurement method in section 3.2, we
test the publishing tables of multiple nodes that are uniformly
distributed on the entire KID name space. This time all 16
monitors from the PlanetLab testbed are acting as published
peers. They accept the relevant publishing information, and
build their own publishing tables accordingly. Every half hour,
the entire RLI publishing table of each monitor is recorded into
a log file. At the same time, a developed crawler component
called PublishTCrawl is triggered. PublishTCrawl employs the
same technique used by the RoutingTCrawl component in

section 3.2. It reads this log file and sends the KAD ping
request to test the online status of each entry in the RLI
publishing table. Similar to the routing table measurement
metric Fa, a measurement metric Pa are also defined to
measure the availability of the RLI publishing table. For a
single RLI publishing table, Pa is equal to the total number
of living peers’ information divided by the total number of the
recorded peers’ information.

The test was run on 16 PlanetLab-based monitors for 25
hours. In each trial, on average the online status of four thou-
sand peers were tested. We totally conducted 800 measurement
trials, and a total number of more than three million peers have
been connected.

The measurement results shown in Figure 6 explicitly reveal
that the RLI publishing table is not well maintained, which is
the main reason for the poor lookup performance in the KAD
network. On average, only less than 25% of peers recorded in
the publishing table are actually online. Consequently, when
users request information from these RLI tables, more than
75% of the entries from the corresponding reply are useless.
Moreover, Figure 6(a) indicates that this trend is consistent
within the entire KAD name space.

By exploring the KAD maintenance algorithm for the RLI
publishing table, we have discovered some serious design
issues. The KAD protocol requires each publishing peer is
responsible for maintaining its publishing information. In
detail, when resource location information has been inserted
into publishing tables of published peers for the first time, a
living-time period of five hours has also been attached. After
five hours, If the publishing peers are still online, they will
renew those information; if the publishing peers are offline,
their publishing information will be automatically removed
from the publishing tables after 30 minutes. This method has
no problem when the publishing peers keep staying online.
However, if publishing peers leave the system within 5 hours
after its publication, both the published location information
and the published keywords information become useless for
the users subsequently searching for the rest time period. The
KI publishing table is also maintained by the same scheme,
except that the living-time period for each publishing entries
has been extended to 24 hours. Thus, it also suffers from the
weakness of this maintenance scheme.

If peers really leave the system within 5 hours of publica-
tion, This will be the main issue that causes the low availability
of publishing tables and consequently the critical reason for
the inefficient lookup performance. To verify this, we examine
publishing peers behavior by checking their online status every
30 minutes. Our measurement shown in Figure 7 verifies
that the majority of the publishing peers (more than 75% of
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Fig. 6: (a) average value of Pa measured in different aspects of the KAD space; (b) histogram of the source-location-information
publishing table; (c) CDF of the availability Pa of the source-location-information publishing table

them) leave the system within one hour after they publish
their content. Since the publishing mechanism in aMule/eMule
forces completed downloading content be immediately pub-
lished onto the KAD network. our measurement discovers that
the majority of peers are selfish and they will leave the system
quickly after they finish their downloading tasks.

In summary, the reasons for the low availability of the
publishing tables and the poor lookup performance of the KAD
network can be summarized as follows:

• the selfishness of the publishing peers;
• the publishing tables of published peers are maintained

by the publishing peers;
• the poorly designed 5/24 hours maintaining schedule for

both the RLI publish tables and the KI publishing table.
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Fig. 7: CDF of the percentage of selfish peers leaving the
system within one hour after publishing content to the KAD
network

We noticed that previous works[16], [13], [10] mainly focus
on improving the performance at the published peers side.
However, with the selfish departure of the publishing peers, the
publishing information become meaningless. Therefore, we
argue that strictly controlling peers behavior should become
a necessary consideration for the KAD design. Actually,
protocols should be designed to deal with the high level of
the selfishness.

IV. DISCUSSION OF POSSIBLE SOLUTIONS

To solve the low lookup performance issue of the KAD
network , we discuss three possible schemes in this section
and show their advantages and weaknesses respectively.

A. Self-maintenance Scheme
One possible scheme is to assign the task of maintaining

publishing tables back to the local peers (published peers)
themselves. The published peers can verify the online status
of entries in their publishing tables within a short time period
(e.g., 10 minutes), or they may directly synchronize peers’
information from their well-maintained routing tables. With
this modification, the stale records in the publishing tables can
be significantly reduced, and the retrieved information can be
more useful. Furthermore, this method does not change any
fundamental structure of the current system, and it unifies the
maintenance pattern of the routing table and the publishing ta-
bles. This scheme may also be simply implemented. However,
because of the peers’ selfish behavior, this scheme improves
the availability of the publishing tables just based on reduc-
ing the number of useless records. It cannot fundamentally
improve the performance of the KAD network, because the
amount of more useful information to users was not increased.
Finally, since it needs to renew publishing tables frequently, it
may also introduce much more table maintaining traffic into
the system.

B. Chunk-based Publish/Retrieval Scheme
We can use a chunk-based publishing/retrieval scheme to

replace the current file-based publishing/retrieval scheme. In
aMule/eMule, the chunk-based downloading and uploading
scheme has already been employed to speed up the content
sharing process. Under the chunk-based scheme, a file is
usually separated into several chunks and each chunk can be
downloaded from different peers and uploaded to others simul-
taneously. However, instead of publishing the information of
obtained chunk immediately, a peer in aMule/eMule publishes
the information of an entire file into the KAD network. That
is, under the current publish/retrieval scheme, the file will not
be published into the KAD network until it has been fully
obtained.
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TABLE III: Comparison of Different Schemes

Methods improve Pa improve the amount of
useful information

reduce selfish
behavior

change current
structure

introduce more
traffic

current scheme No No No No No
self-maintenance Yes No No No Yes

chunk-based Yes Yes No Yes Yes
fairness policy Yes Yes Yes Yes Yes

In a typical P2P file-sharing environment, a peer usually
runs both the uploading and the downloading processes con-
currently, and it will not leave the system before it completes
its download tasks. Thus according to the chunk-based pub-
lish/retrieval scheme, if the information of peers possessing
some chunks of the whole file can also be published, the
availability of the publishing table will be significantly im-
proved. This modification can increase the amount of useful
information to users. However, it requires a redesign of the
publishing/retrieving scheme. Moreover, it will also compli-
cate the maintenance of the publishing tables and introduce
more traffic into the system.

C. Strict Fairness Scheme

The third solution is to adapt some fairness policy to miti-
gate the selfish behavior of peers. Currently, aMule/eMule has
already deployed a local credit system to reward the sharing
behavior. However, this policy is neither efficient nor fair [9].
It also has not been used in the KAD network. Since peers’
selfish behavior will lead to the low lookup performance of the
KAD network, some strict fairness modification such as both
rewarding generous peers and publishing selfish ones have to
be introduced to the KAD network. Another benefit for adopt-
ing the fairness-based modification is due to its ability to keep
the publishing/retrieving scheme unchanged. Consequently, it
may make the implementation relatively easy. On one side,
the modification based on fairness design will fundamentally
reduce the peers’ selfish behavior and accordingly improve the
lookup performance of the KAD network. On the other side,
the introduction of a strict fairness policy will still increase
the complexity of the P2P file-sharing system .

We have summarized the comparison of these modifications
in Table III. It looks that no modification is perfect. We believe
that the combination of these possible modifications will be
the most valid scheme to deal with the lookup performance
issue of the KAD network.

V. RELATED WORK

The KAD network is one of the largest deployed DHT
networks integrated into the aMule/eMule P2P file-sharing
system [6], [7] with millions of users [8]. Its implementation
is based on the Kademlia algorithm [4], which uses the binary
tree as its logic structure of the routing table and uses the XOR
operation to calculate the logic distance among peers. Due
to its large deployment, the research community has shown
great interest in the KAD network. For instance, Brunner [18]
analyzed the implementation of the KAD network in detail.
Memon et al. [19] developed a measurement tool that can
accurately monitor the KAD traffic. Varvello et al. [20] created

a social virtual network on top of the KAD network. Steiner
et al. [21] mentioned that misusing the KAD network will
easily conduct a DDOS attack. Steiner et al. [22] also pointed
out several characteristics of peers in the KAD network such
as geographical distribution of peers, daily usage, and peers’
lifetimes by their measurement study.

In aMule/eMule, the KAD network is used to implement
the content information publication/lookup function. Stutzbach
et al. [13] measured the accuracy of the routing table, and
proposed to improve the performance by using a parallel
lookup and increasing the number of published peers. Steiner
et al. [16] modeled the lookup process, and propose a strategy
to reduce the lookup latency. Kang et al. [10] discovered the
lookup issue that users can only find few published peers.
They believed the reason is due to the high similarity of the
routing tables. All the studies measured the KAD network
through a modified client viewpoint or only measured a
specific aspect of the entire KAD name space. On the other
hand, to improve the performance of KAD network, previous
work focused mainly on how to deal with published peers
more efficiently, such as by increasing the number of parallel
requests to different published peers [13], or by publishing
content on more published peers [16]. However, the impact
of the publishing peers on system performance has not been
addressed until this work.

Comparing to previous measurement studies, we believe that
our work measure the whole KAD network by adapting a
distributed measurement framework via the PlanetLab testbed
in the first time. We are also the first to analyze the publishing
tables in the KAD network, and to reveal the key factor that
affects the KAD lookup performance: the publishing peers’
selfish behavior.

VI. CONCLUSION

This work focuses on investigating the reasons for the
poor lookup performance of the KAD network. We conduct
several large-scale measurements to analyze the maintenance
of both routing and publishing tables which are the key
components in the publishing/retrieving process. By deploying
our measurement framework on the PlanetLab testbed, we first
test the availability and the similarity of peers’ routing tables.
Our results show that on average more than 80% of nodes in
the routing table are online and less than 25% of records are
the same among different routing tables of peers belonging
to a tolerance zone. This means that the routing table is well
maintained and a peer can use it to find the desirable peers
easily. After that, we measure the RLI publishing table and
found that on average only around 25% of items in this table
are online. Furthermore, our measurement reveals that over
75% of peers leave the system within one hour after publishing
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content. By analyzing the KAD protocol, we discover that both
the current maintenance method for the publishing tables and
the selfishness of the publishing peer are the reasons for the
low availability of the publishing tables and accordingly cause
the poor lookup performance of the KAD network.

Future work can consider the implementation of these
modifications and the comparison of their impact on the KAD
performance through simulation and real world experiments.
It should also consider the design of a brand-new publishing
mechanism by combining the publishing-control scheme and
the published-control scheme.
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