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Abstract—IT support for distributed and collaborative work-
flows as well as related interactions between business partners
are becoming increasingly important. For modeling such partner
interactions as flow of message exchanges, different top-down
approaches, covered under the term interaction modeling, are
provided. Like for workflow models, correctness constitutes a
fundamental challenge for interaction models; e.g., to ensure
the boundedness and absence of deadlocks and lifelocks. Due
to their distributed execution, in addition, interaction models
should be message-deterministic and realizable, i.e., the same
conversation (i.e. sequence of messages) should always lead to
the same result, and it should be ensured that partners always
have enough information about the messages they must or may
send in a given context. So far, most existing approaches have
addressed correctness of interaction models without explicitly
considering the data exchanged through messages and used
for routing decisions. However, data support is crucial for
collaborative workflows and interaction models respectively. This
paper enriches interaction models with the data perspective.
In particular, it defines the behavior of data-aware interaction
models based on Data-Aware Interaction Nets, which use elements
of both Interaction Petri Nets and Workflow Nets with Data.
Finally, formal correctness criteria for Data-Aware Interaction
Nets are derived, guaranteeing the boundedness and absence of
deadlocks and lifelocks, and ensuring message-determinism as
well as realizability.

I. INTRODUCTION

Workflow management is of utmost importance for com-
panies that want to efficiently handle their workflows as
well as their interactions with partners and customers [1].
Despite the varying issues relevant for the IT support of
distributed and collaborative workflows [2], common aspects
to be considered include the support of appropriate modeling
techniques as well as the definition of a formal execution
semantics, ensuring proper and correct partner interactions
(i.e., message exchanges).

Workflow management methods and techniques tackling
these challenges consider a choreography as a specification
of message exchanges between the partners of a collaborative
workflow. Respective approaches provide a global view on dis-
tributed workflows and support partners in correctly defining
their private processes (partner processes for short). The latter
can be transformed into distributed, executable workflows.
When executing these workflows, their interplay is coordinated
in terms of a conversation (i.e., a sequence of exchanged

messages) that follows the global behavior specified by the
choreography.

Currently, there exist two different paradigms for model-
ing choreographies: interconnection modeling and interaction
modeling. Interconnection modeling uses message exchange
as link between partner processes or public views on them. In
particular, this paradigm does not allow modeling the message
exchange separately from the partner processes. Hence, it is
considered as a bottom-up approach. Approaches enabling in-
terconnection modeling include BPMN Collaboration Diagram
[3], BPEL4Chor [4], and Compositions of Open Nets [5]. By
contrast, interaction modeling provides a top-down approach.
An Interaction Model specifies the flow of message exchanges
without having any knowledge about the partner processes.
Moreover, the models of the partner processes are created
taking the interaction model into account. Nevertheless, com-
mon interaction models use the same patterns as workflow
models (e.g. parallel and conditional branchings), but instead
of tasks they refer to the messages exchanged. Approaches
enabling interaction modeling include iBPMN [6], BPMN
Choreography Diagrams [3], Service Interaction Patterns [7],
and WSCDL [8].

This paper focuses on the correctness of interaction models.
Related issues discussed in the literature include bounded-
ness and absence of deadlocks and lifelocks, as well as the
realizability of interaction models [5], [9]–[11]. Realizability
postulates that partners always can compute which messages
they must or may send in a given execution context. Fig. 1 (1)
outlines a simple example of a non-realizable choreography
with four partners A,B,C, and D, and two messages m1

and m2. This interaction model specifies that after sending
message m1 from A to B, message m2 must be sent from C to
D. Obviously, only A or B knows when C must send message
m2, but C does not have this knowledge. Consequently, this
interaction model is not realizable. A necessary precondition
for realizability is message-deterministic behavior, i.e. the
same conversation (i.e. sequence of messages) should always
lead to the same result. An example of an interaction model,
which is not message-deterministic, is shown in Fig. 1 (2);
this interaction model comprises partners A,B, and C, and
messages m1,m2,m3, and m4. After sending the first message
m1, either the upper or the bottom branch shall be chosen.
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In any case, the next message m2 must be sent from B to
C. Depending on the branch chosen, however, then C either
must send m3 to B or m4 to A. From the perspective of C, it
cannot be determined, which of the two interpretations shall
be applied. By contrast, B knows the chosen branch (e.g., the
upper one). Hence, C might send m4 to A, while B waits for
m3, or vice versa.
A property similar to realizability is clear termination. It
requires that a partner always can compute, whether he will be
sender or receiver of any messages in the sequel. An example
of an interaction model, which is not clearly terminating,
is shown in Fig. 1 (3). This interaction model comprises
partners A,B, and C, and messages m1,m2,m3, and m4.
After sending the first message m1 from A to B, B can either
send message m2 to A or message m4 to C. When choosing
the first option (i.e. B sends m2 to A), A must send m3 to C
afterwards. In turn, when choosing the second option (i.e. B
sends m4 to C), the execution is terminated, although A may
still wait for the arrival of message m2. Note, that from the
perspective of A nothing has changed since m1 was sent.
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Fig. 1. Violating realizability, message-determinism, clear termination [9]

Existing approaches for interaction modeling do not ade-
quately support the data perspective. Either related execution
semantics completely ignore the data perspective or there is
a lack of appropriate correctness criteria, especially if routing
decisions are based on message data.
This paper deals with fundamental correctness issues when
making interaction models data-aware. Section II provides
an example from the healthcare domain to emphasize the
need of data-awareness in interaction models. Section II fur-
ther discusses the challenges to be tackled when considering
the data perspective. Section III then introduces our formal
framework for data-aware interaction modeling. First, an
interaction meta-model is provided in terms of the Data-
Aware Choreography (DAChor). The behavior of a DAChor
is described by a transformation to Data-Aware Interaction
Nets (DAI Nets). These combine Interaction Petri Nets [9]
and Workflow Nets with Data [12]. Based on Data-Aware
Interaction Nets, the set of allowed conversations (i.e., message
exchanges) is derived and used to introduce formal correctness
criteria for DAI Nets and DAChor respectively. These criteria
guarantee for the boundedness and absence of deadlocks
and lifelocks, and ensure message-determinism, realizability,
and clear termination. Section IV discusses related work and
Section V concludes with a summary and outlook.

II. EXAMPLE, CHALLENGES, CONTRIBUTION

This section introduces a simplified real-world scenario,
which we elaborated in the context of case studies conducted
in the healthcare domain. These case studies highlighted the
relevance of the data perspective in interaction models. Thus,
the scenario we select emphasizes the challenges arising from
the support of data-awareness in interaction models. It de-
scribes the transport of a patient to and from a unit performing
a Positron Emission Tomography (PET) scan. A PET scan
is a kind of nuclear medicine imaging not performed by the
respective hospital itself in our scenario. Thus, if a PET scan
is ordered for a patient, patient transportation to the respective
provider is required. In this context, the hospital must inform
the provider of the PET scan about the patient’s status, such
that he can decide on the preparations required. Furthermore,
we require a patient to be examined just before the transport
to exclude potential risks (e.g., the patient being in a critical
condition).

The scenario involves three partners, i.e., the Hospital
responsible for the patient and ordering the PET scan, the
Transportation (Transp.) Provider transporting
the patient, and the PET provider performing the PET
scan. The interaction starts with the Hospital requesting the
PET scan (Request PET). In the context of this request, the
Hospital informs the PET Provider about the status of
the patient. In turn, the PET provider confirms the time for
which the scan is scheduled (Confirm), and then requests the
Transp. Provider to perform the transport (Request
Trans.).

● If the patient is in a critical condition, the Transp.
Provider requests the Hospital to examine him
to check whether he is transportable (Request
Exam.). Based on the Result of this examination,
the Hospital informs the Transp. Provider on
whether to continue or abort the interaction.

● If the interaction is continued or the patient is not in
a critical condition, Transp. Provider informs the
PET provider after picking up the patient and arriving
at the PET unit (Arrival). After the PET scan is per-
formed, the PET provider requests retransport of the
Transp. Provider (Retransport). Finally, the
Transp. Provider informs the Hospital about
the return of the patient (Return).

Obviously, properly modeling the interactions of this scenario
requires support for routing decisions based on the data of the
messages exchanged. More precisely, in the given scenario,
there is a decision referring to data of the first message
exchanged (i.e. whether or not the patient is in a critical
condition). Another decision refers to the message sent by the
hospital and indicating whether the request shall be canceled.
Hence, we use a notation based on BPMN 2.0 [3] and iBPMN
[9], but enrich it with so-called virtual data objects. We denote
this notation as Data-Aware Choreography (DAChor) and use
it to model our scenario in Fig. 2. Virtual data objects have
a data domain and can be used as variables when defining
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Fig. 2. Patient transportation scenario as DAChor

conditions for routing decisions. However, these virtual data
objects are not used for modeling information flow. Thus, the
data assignment relation denotes which data of an interaction
is assigned to any virtual data object. Note that such a
data assignment relation can only lead from an interaction
to a virtual data object, but not vice versa. Furthermore,
an interaction is assigned to a message class denoting the
message type. From the message class, the sender, receivers,
and data domain are inherited (e.g., boolean). Finally, when
executing a choreography, messages of the related message
class correspond to interactions.

Having a closer look at our scenario, one can recog-
nize that it neither ensures realizability nor clear termina-
tion. If the Hospital requests canceling the PET scan,
the PET provider is not informed accordingly and hence
may still wait for the message; i.e., no clear termination is
ensured. However, if Alternative 2 (cf. Fig. 2) is applied,
the PET provider will be informed and clear termination
can be ensured. In turn, realizability is violated for the
given interaction model, since Transp. Provider does
not know whether the patient is in a critical condition.
Thus, Transp. Provider cannot determine whether an
examination must be requested. To ensure realizability, it is
not sufficient to only check whether this information was
directly sent to Transp. Provider. Consider Alternative
1, which ensures realizability by also sending the confirma-
tion to Transp. Provider, if the patient is in a criti-
cal condition. Obviously, implicit knowledge of Transp.
Provider about the value of virtual data object Status
is sufficient to ensure realizability. This makes the definition
of proper correctness criteria for data-aware interaction models
Section III very challenging.

Before defining correctness criteria for DAChors, their be-
havior has to be formalized. In [9], Decker et al. define the
behavior of iBPMN choreographies based on their transfor-

mation to Interaction Petri Nets (IP Nets). However, IP Nets
are unaware of data. This raises the challenge to first enrich
IP Nets as well as their behavior with data, i.e., to design
Data-Aware Interaction Nets (DAI Nets). Following this, an
appropriate transformation is presented.

The main contribution of this paper is to introduce a formal
framework for data-aware interaction models in distributed
and collaborative settings putting emphasis on correctness.
Especially, this framework comprises specific correctness cri-
teria for interaction models (e.g. realizability, clear termi-
nation). Note, that the latter exceed traditional correctness
and soundness criteria that are known from workflows and
interconnection models [5], [13], [14]. Further contributions
include the introduction of DAChors and DAI Nets as well
as the transformation from DAChors to DAI Nets with well
defined behavior.

III. FORMAL FRAMEWORK

This section introduces our formal framework for ensuring
correctness of data-aware interaction models. First, the
scope of an interaction model is described as interaction
domain and in terms of messages (cf. Def. 1 and 2
in Section III-A). Second, Data-Aware Choreographies
(DAChors) are introduced as formal meta-model for data-
aware interaction modeling (cf. Def. 3 in Section III-B).
In Section III-D, the semantics of DAChors is described
based on their transformation to Data-Aware Interaction Nets
(DAI Nets). DAI Nets combine Interaction Petri Nets (IP
Nets) [9] and Workflow Nets with Data (WFD Nets) [12]
(cf. Def. 5 in Section III-C). Their behavior is described in
terms of markings and execution traces (cf. Def. 8–10 in
Section III-E). Def. 12 introduces conversations representing
the observable parts of an execution trace (i.e., exchanged
messages). Finally, partner views are defined (cf. Def. 14).
Based on traces, conversations, and views, we then introduce
correctness criteria for DAI Nets and DAChors respectively
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(cf. Def. 11, 13, and 15). Fig. 3 provides an overview of
the main elements of our formal framework and their relations.

A. Interaction Domains and Messages

This section defines the basic elements of data-aware interac-
tion modeling in terms of an interaction domain. The latter
contains roles to differentiate the partners as well as message
classes and related data domains. Furthermore, the notion of
message (cf. Def. 1 and 2 and Example 1).

Definition 1 (Interaction Domain). An interaction domain is
a tuple I = (R,D,C, domC , sC , rC , ε), with

● R is a set of roles,
● D is a set of data domains; each D ∈ D represents a

finite set of values,
● C is a set of message classes,
● domC ∶ C → D is a function assigning to each message

class a data domain,
● sC ∶ C →R assigns the sender to each message class,
● rC ∶ C → 2R assigns the set of receivers to each message

class,
● ε is the empty value.

Further, we define ΩI ∶= {ε}∪ ⋃
D∈D

D as the set of all values.

Based on Def. 1, Def. 2 introduces the notion of message. A
message constitutes an instance of a message class. Further-
more, we introduce several sets of messages.

Definition 2 (Messages). Let I = (R,D,C, domC , sC , rC , ε)
be an interaction domain. Then: A message in I is a tuple
µ = (c, x) ∈ C ×ΩI , with

● c ∈ C is the corresponding message class, and
● x ∈ domC(c) is the message content transferred.

Furthermore, we define:

● Σc ∶= {(c′, x) ∈ C×ΩI ∣ c′ = c ∧ x∈domC(c′)} as set of
all messages corresponding to message class c ∈ C,

● ΣI ∶= ⋃c∈C Σc as set of all messages corresponding to
interaction domain I,

● ΣR→ ∶= {(c, v) ∈ ΣI ∣sC(c) = R} as set of all messages
sent by role R ∈R,

● Σ→R ∶= {(c, v) ∈ ΣI ∣R ∈ rC(c)} as set of all messages
received by role R,

● ΣR ∶= ΣR→ ∪Σ→R as set of all messages corresponding
to role R, i.e. sent or received by R

B. Data-Aware Choreography

Based on the interaction domain from Def. 1, we define the
notion of data-aware choreography (DAChor). DAChor en-
riches BPMN choreography models with virtual data objects,
a data assignment relation, and guards.

Definition 3 (Data-Aware Choreography; DAChor).
Let I = (R,D,C, domC , sC , rC , ε) be an interaction
domain. Then: A Data-Aware Choreography (DAChor) over
I is a tuple DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,G

s
d×,G

s
e×,G

m
× ,

V, class,→,⇢, domV , grd), with



Example 1 (Basic Notions). Consider the interaction model of the patient transportation scenario from Fig. 2. Its interaction
domain is I = (R,D,C, domC , sC , rC , ε) with:
R = {Hospital,PET Provider,Transp. Provider}
D = {Dε = {ε},DStatus = {uncritical, critical},DOrder = {abort, continue},DDate = {1.1.1900, . . . ,31.12.2099}
C = {Request PET,Confirmation,Request Trans.,Request Exam.,Result,Arrival,Retransport,Return,Confirmation+,Cancel PET}
sC(Request PET) = Hospital rC(Request PET) = {PET provider}
sC(Confirmation) = PET provider rC(Confirmation) = {Hospital}
sC(Request Trans.) = PET provider rC(Request Trans.) = {Transp. Provider}
sC(Request Exam.) = Transp. Provider rC(Request Exam.) = {Hospital}
sC(Result) = Hospital rC(Result) = {Transp. Provider}
sC(Arrival) = Transp. Provider rC(Arrival) = {PET provider}
sC(Retransport) = PET provider rC(Retransport) = {Transp. Provider}
sC(Return) = Transp. Provider rC(Return) = {Hospital}
sC(Confirmation+) = PET provider rC(Confirmation+) = {Hospital, Transp. Provider}
sC(Cancel PET) = Transp. Provider rC(Cancel PET) = {PET provider}
domC(Request PET) = DStatus domC(Confirmation) = DDate
domC(Request Trans.) = DDate domC(Request Exam.) = Dε
domC(Result) = DOrder domC(Arrival) = Dε
domC(Retransport) = Dε domC(Return) = Dε
domC(Confirmation+) = DDate domC(Cancel PET) = Dε

ΣI = { (Request PET, uncritical), (Request PET, critical), (Result, abort), (Result, continue), (Request Exam., ε), (Arrival, ε),
(Confirmation,1.1.1900), . . . , (Confirmation,31.12.2099), (Confirmation+,1.1.1900), . . . , (Confirmation+,31.12.2099),
(Request Trans.,1.1.1900), . . . , (Request Trans.,31.12.2099), (Retransport, ε), (Return, ε), (Cancel PET, ε)}

● N is the set of nodes being the disjoint conjunction of the
set of interactions I and the set of gateways and events G.
In turn, the latter is the disjoint conjunction of the start
event {es}, the set of end events Ee, the set of AND-splits
Gs+, the set of AND-mergers Gm+ , the set of data-based
XOR-splits Gsdx, the set of event-based XOR-splits Gsex,
and the set of XOR-mergers Gmx ,

● V is the set of virtual data objects,
● class ∶ I → C assigns a message class to each interac-

tion,
● →⊆ (N −Ee)×(N −{es}) is the interaction flow relation,
● ⇢⊆ I × V is the data assignment relation,
● domV ∶ V → D is a function assigning a domain to each

virtual data object,
● grd ∶ (→) → GV is a function assigning a guard to each

interaction flow.

The set of guards GV is defined as the set of propositional
logic formulas over propositions of the form v = s or
v ∈ {s1, s2, . . . , sn}. Thereby, v ∈ V is a virtual data object
and s, s1, s2, . . . , sn ∈ domV (v) are values of the related data
domain. If a guard g ∈ GV uses a virtual data object v ∈ V , we
denote this as v ∈

∼ g. Note that a guard can be constantly true.
In this case, we omit it in the graphical representation of the
DAChor (cf. Fig 2). In the following, we introduce the well-
formedness of DAChors. Example 2 then provides a formal
description of our scenario from Fig. 2.

Definition 4 (Well-Formed DAChor). A DAChor is well-
formed, iff the following properties hold:

● the start event, each interaction, and each merge node
have exactly one successor, i.e., ∀n ∈ {es}∪I∪G

m
+ ∪G

m
× ∶

∣{n′ ∈ N ∣n→ n′}∣ = 1
● each split node has at least one successor, i.e.,
∀gs ∈ Gs+ ∪G

s
d× ∪G

s
e× ∶ ∣{n ∈ N ∣gs → n}∣ ≥ 1

● each end event, each interaction, and each split node have
exactly one predecessor, i.e., ∀n ∈ Ee∪I∪G

s
+∪G

s
d×∪G

s
e× ∶

∣{n′ ∈ N ∣n′ → n}∣ = 1
● each merge node has at least one predecessor, i.e.,
∀gm ∈ Gm+ ∪Gm× ∶ ∣{n ∈ N ∣n→ gm}∣ ≥ 1

● each event-based XOR-split is solely followed by interac-
tions, i.e., ∀gse× ∈ G

s
e× ∶ {n ∈ N ∣gse× → n} ⊆ I

● guards of interaction flows are constantly
true unless the source of an inter-
action flow is a data-based XOR-split, i.e.,
grd ((n1, n2)) ≠ true⇔ n1 ∈ G

s
d×

● the data of an interaction is solely assigned to variables
of the same data domain, i.e.,
∀i ∈ I,∀v ∈ V ∶ i⇢ v ⇒ domC(class(i)) = domV (v).

● there is no cycle solely consisting of gateways, i.e.,
∄g0, g1, . . . gn ∈ G ∶ g0 → g1 → ⋅ ⋅ ⋅→ gn → g0.

C. Data-Aware Interaction Net

We introduce the notion of Data-Aware Interaction Net
(DAI Net). It combines IP Nets [9] and WFD Nets [12]:
Hence, the main elements of a DAI Net are places and
transitions. To add data, these elements are enriched with
variables and guards on transitions as known from WFD Nets.
Furthermore, DAI Nets allow assigning message classes to
transitions. Like in IP Nets, respective transitions are denoted
as interaction transitions. Finally, all other transitions are
called silent transitions.

Definition 5 (Data-Aware Interaction Net;
DAI Net). Let I = (R,D,C, domC , sC , rC , ε)
be an interaction domain. Then: A tuple
# = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) is
called Data-Aware Interaction Net (DAI Net) over I, where

● P is the set of places; P can be partitioned into the initial
place pin, the set of ordinary places Po, and the set of
final places Pfi,

● T is the set of transitions; T can be partitioned into the
sets of silent transitions TS and the set of interaction
transitions TI ,



Example 2 (DAChor). Consider the scenario from Fig. 2. Basing its interaction domain I (cf. Example 1) we can describe
the given scenario as DAChor DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,G

s
d×,G

s
e×,G

m
× , V, class,→,⇢, domV , grd):

I = {i1, . . . , i8},Ee = {e1e, e
2
e},G

s
d× = {gs1d×, g

s2
d×},G

m
× = {gm× },Gs+ = G

m
+ = Gse× = ∅, V = {Status,Order},⇢= {(i1,Status), (i5,Order)}

→= {(es, i1), (i1, i2), (i2, i3), (i3, g
s1
d×), (g

s1
d×, i4), (g

s1
d×, g

m
× ), (i4, i5), (i5, g

s2
d×), (g

s2
d×, e

1
e), (g

s2
d×, g

m
× ), (gm× , i6, ), (i6, i7), (i7, i8), (i8, e

2
e)}

class(i1) = Request PET class(i2) = Confirmation class(i3) = Request Trans. class(i4) = Request Exam.
class(i5) = Result class(i6) = Arrival class(i7) = Retransport class(i8) = Return
domV (Status) = Dstatus grd ((gs1d×, i4)) = Status = critical grd ((gs1d×, g

m
× )) = Status = uncritical

domV (Order) = Dorder grd ((gs2d×, e
1
e)) = Order = abort grd ((gs2d×, g

m
× )) = Order = continue

● V is the set of variables,
● class ∶ TI → C is a function assigning a message class

to each interaction transition,
● →⊆ ((P−Pfi)×T )∪(T×(P−{pin})) is the flow relation,
● ⇢⊆ TI × V is the data assignment relation. It expresses

that the data of an interaction transition is assigned to
the related variable,

● domV ∶ V → D is a function assigning a data domain to
each variable,

● grd ∶ T → GV is a function assigning a guard (cf. Def 3)
to each interaction flow relation.

Further, we define

● Σ# ∶= ⋃i∈TI Σclass(i) as the set of all messages corre-
sponding to #

● P→t ∶= {p ∈ P ∣p→ t} as the set of all places preceding t
● P←t ∶= {p ∈ P ∣t→ p}as the set of all places succeeding t
● P↮t ∶= {p ∈ P ∣p↛ t ∧ t↛ p} as the set of the faraway

places of t

Definition 6 (Well-Formed DAI Net). A DAI Net is well-
formed, iff the following properties hold:

● each transition has at least one preceding and one
succeeding place, i.e., ∀t ∈ T ∶ ∃p1, p2 ∈ P ∶ p1 → t→ p2

● the content of an interaction transition is solely assigned
to variables of the same data domain, i.e., ∀ti ∈ TI ,
∀v ∈ V ∶ ti ⇢ v ⇒ domC(class(ti)) = domV (v).

● there exists no cycle solely consisting of places and silent
transitions, i.e., ∄p0, p1, . . . pn ∈ P, t0, t1, . . . tn ∈ TS ∶
p0 → t0 → p1 → t1 → ⋅ ⋅ ⋅→ pn → tn → p0.

D. Mapping DAChors to DAI Nets

In Section III-C, we introduced DAI Nets to define the
behavior of DAChors. Based on this we can now define a
mapping from data-aware choreographies to DAI Nets. This
mapping is based on the approach proposed by Decker et
al. [9] who define the behavior of iBPMN Choreographies
through their transformation to IP Nets.

Definition 7 (Mapping DAChors to DAI Nets). Let
DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,G

s
d×,G

s
e×,G

m
× , V, class,→

,⇢, domV , grd) be a DAChor (cf. Def. 3). Then,
DAC can be mapped to a DAI Net defined as # ∶=
(P, pin, Po, Pfi, T, TS , TI , V, class

′,→′,⇢′, domV , grd
′),

with

P ∶= {p(n1,n2)
∣(n1, n2) ∈→ ∧ n1 ∉ G

s
e×}

pin ∶= p(es,n) ∈ P,whereby es → n ∈ N
Pfi ∶= {p(n,ee)∣p(n,ee) ∈ P ∧ ee ∈ Ee} ⊆ P
Po ∶= P − ({pin} ∪ Pfi)
T+ ∶= {tg+ ∣g+ ∈ G

s
+ ∪G

m
+ }

T s× ∶= {ts
(gs
×
,n)∣g

s
× ∈ G

s
d × ∧ n ∈ N ∧ gs× → n}

Tm× ∶= {tm
(n,gm

×
)
∣gm× ∈ Gm× ∧ n ∈ N ∧ n→ gm× }

TI ∶= {ti∣i ∈ I}, TS ∶= T+ ∪ T
s
× ∪ T

m
× , T ∶= TS ∪ TI

class′(ti) ∶= class(i)
→′ ∶= {(p(n1,n2)

, tn2
)∣n1 → n2 ∧ n1 ∉ G

s
e×

∧ n2 ∈ I ∪G
s
+ ∪G

m
+ }

∪ {(tn1
, p(n1,n2)

)∣n1 → n2 ∧ n1 ∈ I ∪G
s
+ ∪G

m
+ }

∪ {(p(n1,n2)
, tm(n1,n2)

)∣n1 → n2 ∧ n2 ∈ G
m
× }

∪ {(tm(n0,n1)
, p(n1,n2)

)∣n0 → n1 → n2 ∧ n1 ∈ G
m
× }

∪ {(p(n1,n2)
, ts(n2,n3)

)∣n1 → n2 → n3 ∧ n2 ∈ G
s
d×}

∪ {(ts(n1,n2)
, p(n1,n2)

)∣n1 → n2 ∧ n1 ∈ G
s
d×}

∪ {(p(n0,n1)
, tn2

)∣n0 → n1 → n2 ∧ n1 ∈ G
s
e×}

⇢′ ∶= {(ti, v)∣(i, v) ∈⇢}

grd′(t) ∶= {
grd ((gs×, n)) , iff t = t(gs

×
,n) ∈ T

s
×

true, else

Theorem 1 states that the mapping from DAChors to DAI
Nets preserves well-formedness as proven in [15]. The appli-
cation to our example is shown in Example 3 and Fig. 4.

Theorem 1 (Preservation of Well-Formedness).
Let DAC be a DAChor that is mapped to a DAI Net #. If
DAC is well-formed, # is well-formed as well.

E. Behavior of DAI Nets

Since DAI Nets are based on both WFD Nets and IP
Nets, we use token semantics (i.e., tokens assigned to places
and token changes) to define their behavior. Together with
the values of variables, tokens define the marking of a DAI
Net. Each Interaction Net starts with an initial marking, with
exactly one token placed in the initial place pin and each
variable having the empty value ε. A marking is called final,
if all tokens belong to final places of Pfi. A transition t is
activated under marking m, iff all directly preceding places of
t contain at least one token, and the guard of t is evaluable
and evaluates to true.

Definition 8 (DAI Net Markings and Activated Transi-
tions). Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢
, domV , grd) be a DAI Net. Then: A marking of # is a tuple
m = (⊙, val) with

● ⊙ ∶ P → N0 assigns to each place the number of
corresponding tokens,

● val ∶ V → ΩI assigns to each variable its current value;
val(v) is either the empty value ε or an element of the
variable’s domain, i.e., val(v) ∈ domV (v) ∪ {ε}.

Additionally, for each DAI Net # we define the
● set of all markings M#, whereby
M# ∶= {m = (⊙, val) ∣ m is a marking of # }



Example 3 (Transformation). The DAChor DAC = (N, I,G, es,Ee,G
s
+,G

m
+ ,G

s
d×,G

s
e×,G

m
× , V, class,→

,⇢, domV , grd) from our Example 2 (i.e., the patient transport scenario) is mapped to the
DAI Net # = (P, pin, Po, Pfi, T, TS , TI , V, class

′,→′,⇢′, domV , grd
′) as follows (cf. Fig. 4):

P = {p(es,i1), p(i1,i2), p(i2,i3), p(i3,gs1d×)
, p
(gs1
d×
,i4)

, p
(gs1
d×
,gm
×
)
, p(i4,i5), p(i5,gs2d×)

, p
(gs2
d×
,e1e)

, p
(gs2
d×
,gm
×
)
, p(gm

×
,i6,)

, p(i6,i7), p(i7,i8), p(i8,e2e)
}

pin = p(es,i1) Pfi = {p
(gs2
d×
,e1e)

, p
(i8,e

2
e)

} Po = P − ({pin} ∪ Pfi)

T s× = {ts
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,i4)

, ts
(gs1
d×
,gm
×
)
, ts
(gs2
d×
,e1e)

, ts
(gs2
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×
)
, tm
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,gm
×
)
} T+ = ∅ TS = T+ ∪ T

s
× ∪ T

m
× TI = {ti1 , ti2 , . . . , ti8}

V = {Status,Order} ⇢′= {(ti1 ,Status), (ti5 ,Order)}
→′ = {(p(es,i1), ti1), (p(i1,i2), ti2), (p(i2,i3), ti3), (p(gs1

d×
,i4)

, ti4), (p(i4,i5), ti5), (p(gm× ,i6,)
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), (ti4 , p(i4,i5)), (ti5 , p(i5,gs2d×)

), (ti6 , p(i6,i7)), (ti7 , p(i7,i8)), (ti8 , p(i8,e2e)
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×
)
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×
)
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×
)
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×
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,gm
×
)
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×
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(i3,g

s1
d×
)
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)
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×
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class′(ti1) = Request PET class′(ti2) = Confirmation class′(ti3) = Request Trans. class′(ti4) = Request Exam.
class′(ti5) = Result class′(ti6) = Arrival class′(ti7) = Retransport class′(ti8) = Return

domV (Status) = DStatus grd(ts
(gs1
d×
,i4)

) = Status = critical grd(ts
(gs1
d×
,gm
×
)
) = Status = uncritical

domV (Order) = DOrder grd(ts
(gs2
d×
,e1e)

) = Order = abort grd(ts
(gs2
d×
,gm
×
)
) = Order = continue

● initial marking min
# ∶= (⊙in, valin) ∈M#, whereby

⊙in(p) ∶= {
1, if p = pin
0, else

∧ ∀v ∈ V ∶ valin(v) ∶= ε

● set of all final markings F#, whereby
F# ∶= {(⊙, val) ∈M#∣∀p ∈ P ∶ ⊙(p) ≠ 0⇔ p ∈ Pfi}

Further, ↝⊆ M# × T is the transition activation relation.
m ↝ t denotes that marking m ∈ M# activates transition
t ∈ T , iff the following conditions hold:

1) ∀p ∈ P→t ∶ ⊙(p) ≥ 1,
2) ∀v

∈
∼ grd(t) ∶ val(v) ≠ ε,

3) grd(t) is satisfied for marking m

If a transition is activated, it may fire and lead from the
current marking to a subsequent one. More precisely, one
token is taken from each preceding place and one is added
to each succeeding place. Silent transitions fire immediately
when they become activated. Activated interaction transitions
fire, if and only if a message of the corresponding message

class is sent. In this case, the value of the message is assigned
to virtual data objects as expressed by the data assignment
relation. Note that a message can only be sent if an interaction
transition of the related message class is activated and no silent
transition is activated (cf. Def. 9).

Definition 9 (Options and Subsequent Markings of DAI
Nets). Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢
, domV , grd) be a DAI Net, an m = (⊙, val),m′ = (⊙′, val′) ∈
M# be two related markings. Then:

● O# ∶= TS ∪Σ# is the set of all options on #.
● opt# ∶ M# → 2O# ∶ m ↦ {o ∈ O#∣∃m′ ∧ m

o
→ m′}

maps each marking m to the options available under m.
● m

o
→m′ expresses that m leads to m′ by applying option

o ∈ opt#(m) with:
Case 1: o = ts ∈ TS is a silent transition. Then: m

ts
→m′

holds, iff each of the following conditions is met:
1) m↝ ts,
2) ∀p ∈ P→ts ∶ ⊙′(p) = ⊙(p) − 1,
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3) ∀p ∈ P←ts ∶ ⊙′(p) = ⊙(p) + 1,
4) ∀p ∈ P↮ts ∶ ⊙′(p) = ⊙(p),
5) ∀v ∈ V ∶ val′(v) = val(v).

Case 2: o = µ = (c, x) ∈ Σ# is a message. Then: m
µ
→m′

holds, iff the following conditions are met:
1) ∀ts ∈ TS ∶m  ts,
2) ∃ti ∈ TI ∶m↝ ti ∧ µ ∈ Σclass(ti),
3) ∀p ∈ P→ti ∶ ⊙′(p) = ⊙(p) − 1,
4) ∀p ∈ P←ti ∶ ⊙′(p) = ⊙(p) + 1,
5) ∀p ∈ P↮ti ∶ ⊙′(p) = ⊙(p),
6) ∀v ∈ V with ti ⇢ v ∶ val′(v) = x,
7) ∀v ∈ V with ti ` v ∶ val′(v) = val(v).

Based on Def. 9, the following two theorems can be derived.
(See [15] for formal proofs).

Theorem 2 (Separation of Options). Let # be a DAI Net.
Then: For each marking, the set of options either contains
solely silent transitions or messages or it is empty, i.e., ∀m ∈
M# ∶
opt#(m) ≠ ∅ ⇒ opt#(m) ⊆ TS ⊕ opt#(m) ⊆ Σ#

Theorem 3 (Termination of final markings). Let # be a DAI
Net. Then: For each final marking, the set of options is empty,
i.e., ∀m ∈ F# ∶ opt#(m) = ∅.

Based on Def. 9, we define traces on DAI Nets as sequences
of options. To be more precise, a trace corresponds to a related
sequence of markings that starts with the initial marking. If this
related sequence of markings ends with a final marking, we
denote the trace as completed.

Definition 10 (Traces, Prefixes, and Extensions).
(A) Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢
, domV , grd) be a DAI Net and τ = (τk)k∈[1..n] ∈ O

⋆
# be a

finite sequence of options (i.e. silent transitions and messages)
with length ∣τ ∣ =∶ n ∈ N. Let further m = (mk)k∈[1..n+1] ∈M

⋆
#

be a finite sequence of markings with length n + 1. Then:

● τ ∼ m denotes that τ and m are related sequences, iff
∀l ∈ [1..n] ∶ml

τl
→ml+1 and m1 =m

in
# .

● last ∶M⋆
# →M# with (mk)k∈[1..n] ↦mn is a function

mapping a sequence of markings to its last marking.
● τ ∈ O⋆

# is a trace, iff ∃m ∈M⋆
# and τ ∼m. If last(m) ∈

F#, we denote τ as completed trace.
● T# denotes the set of all traces on #.
● T c# denotes the set of all completed traces on #.

(B) Let L ⊆M⋆ be a set of finite sequences over a set M and
let a = (ak)k∈[1..n], b = (bk)k∈[1..l], c = (cm)m∈[1..m] ∈ L be
elements of L, i.e. sequences over M . Then:

● a ⊴ b (a◁ b) denotes a is prefix (real prefix) of b and b
an extension (real extension) of a, iff n ≤ l (n < l) and
∀i ∈ [1..n] ∶ ai = bi,

● a+c = b denotes that a is extended by c to b, iff m+n = l,
and a is prefix of b, and ∀i ∈ [1..m] ∶ ci = bn+i,

● L⊴b ∶= {a ∈ L∣a ⊴ b} (L◁b ∶= {a ∈ L∣a◁ b}) denotes the
subset of L that contains all prefixes (real prefixes) of
b ∈ L, and

● L⊵b ∶= {a ∈ L∣b ⊴ a} (L▷b ∶= {a ∈ L∣b◁ a}) denotes the

subset of L that contains all extensions (real extensions)
of b ∈ L.

We described the behavior of a DAI Net by means of its
traces. We can also use traces to characterize the desired be-
havioral properties of DAI Nets. The first one is determinism.
It expresses that a trace is unique in terms of its related
markings, i.e., replaying a trace will always lead to the same
marking. The second fundamental property is soundness in
terms of boundedness as well as the absence of deadlocks and
lifelocks [16].

Definition 11 (Determinism and Soundness).
(A) We call a DAI Net # deterministic, iff for each trace τ on
# there exists exactly one related sequence of markings, i.e.,
∀τ ∈ T# ∶ ∣{m ∈M⋆

#∣m ∼ τ}∣ = 1.
Let # be a deterministic DAI Net. Then: Function mark#

maps each trace on # to its current marking, i.e. the last
marking of the related sequence of markings:
mark# ∶ T# →M# ∶ τ ↦ mark#(τ) ∶= last(m), whereby
m is defined by τ ∼∶ m ∈M⋆

#; Since # is deterministic, the
definition of m is unique. Thus, mark# is well defined.
(B) We call a deterministic DAI Net # sound, iff the following
conditions hold:

● There exist completed traces on #, i.e., T c# ≠ ∅,
● Each trace on # is a prefix of a completed trace, i.e.,
∀υ ∈ T#∃τ ∈ T

c
# ∶ υ ⊴ τ .

● The set of reachable markings is finite, i.e.,
∣{m ∈M#∣∃τ ∈ T# ∶ last(τ) =m}∣ ∈ N

Note that the observable behavior of any DAI Net is solely
explained through the messages exchanged. Hence, we must
abstract from the silent elements of traces (i.e. silent transi-
tions) and define the observable behavior as a conversation
being the projection of a trace to its messages (i.e., the part
of the trace defining its semantic). In the following, we first
introduce projections of sequences.

Definition 12 (Projections and Conversations).
Let A,B be two sets with B ⊆ A, and # =
(P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be
a DAI Net and τ ∈ T# be a trace on #. Then:

● ΠB ∶ A⋆ → B⋆ ∶ a ↦ ΠB(a) is the projection function
that restricts a sequence a ∈ A⋆ to its elements of B,

● η ∈ Σ⋆
# denotes a conversation on #, iff it is the

projection of a trace on # to its messages, i.e., ∃(τ) ∈
T# ∶ ΠΣ#

(τ) = η. η denotes a completed conversation on
#, iff it is the projection of a completed trace on #,

● C# denotes the set of all conversations on #,
● Cc# denotes the set of all completed conversations on #,
● con# ∶ T# → C# ∶ τ ↦ con#(τ) ∶= ΠΣ#

(τ) maps each
trace to the related conversation.

As aforementioned, the behavior of silent transitions is not
observable. Hence, to ensure compatible behavior of partici-
pating roles, silent transitions must behave deterministically.
In other words, it must be possible to determine the behavior
of a DAI Net solely based on the messages exchanged, i.e.,



Example 4 (Traces and Conversations). Consider the DAI Net # from Example 3. Its set of completed traces T c# consists of
traces τ1, τ2, and τ3. Projecting them to their messages leads to the conversations η1, η2, and η3, which build Cc#:
τ1 =< (Request PET, uncritical), (Confirmation, _1), (Request Trans., _1), ts

(gs1
d×
,gm
×
)
, tm
(gs1
d×
,gm
×
)
, (Arrival, ε), (Retransport, ε), (Return, ε) >

τ2 =< (Request PET, critical), (Confirmation, _1), (Request Trans., _1), ts
(gs1
d×
,i4)

, (Request Exam., ε), (Result, abort), ts
(gs2
d×
,e1e)

>

τ3 =< (Request PET, critical), (Confirmation, _1), (Request Trans., _1), ts
(gs1
d×
,i4)

, (Request Exam., ε), (Result, continue), ts
(gs2
d×
,gm
×
)
, tm
(gs2
d×
,gm
×
)
,

(Arrival, ε), (Retransport, ε), (Return, ε) >

η1 = con#(τ1) ∶= ΠΣ#
(τ1) =< (Request PET, uncritical), (Confirmation, _1), (Request Trans., _1), (Arrival, ε), (Retransport, ε), (Return, ε) >

η2 = con#(τ2) ∶= ΠΣ#
(τ2) =< (Request PET, critical), (Confirmation, _1), (Request Trans., _1), (Request Exam., ε), (Result, abort) >

η3 = con#(τ3) ∶= ΠΣ#
(τ3) =< (Request PET, critical), (Confirmation, _1), (Request Trans., _1), (Request Exam., ε), (Result, continue),

(Arrival, ε), (Retransport, ε), (Return, ε) >

message-determinism. First, this requires, that firing of silent
transitions always terminates, i.e., it is impossible to solely
execute silent transitions infinitely (cf. Theorem 4 and see [15]
for formal proof). Second, when silent transitions terminate,
the set of activated options may only depend on the messages
exchanged before, i.e., it should be independent from the order
in which the silent transitions were fired. 1

Theorem 4 (Termination of silent subtraces).
On a well-formed DAI Net #, any trace cannot
infinitely be continued by silent transitions, i.e.
∀τ ∈ T# ∶ ∃N ∈ N such that ∀υ ∈ T ⊵τ

# with
∣τ ∣ +N < ∣υ∣ ⇒ con#(τ) ≠ con#(υ).

According to Theorem 4, a DAI Net is message-
deterministic, if the set of activated messages solely depends
on the messages exchanged before (cf. Def. 13).

Definition 13 (Message-Determinism). We call a deterministic
and sound DAI Net # message-deterministic, iff the same
sequence of messages always activates the same messages, i.e.,
the set of activated messages solely depends on the messages
exchanged before, i.e.,

∀τ, υ ∈ T# ∶

(opt#(mark#(τ)), opt#(mark#(υ)) ⊆ Σ# ∧ ΠΣ#
(τ) = ΠΣ#

(υ)) ⇒

opt#(mark#(τ)) = opt#(mark#(υ))

Let # be a deterministic, sound and message-deterministic
DAI Net. Then: Function mark# maps each conversation to
the set of messages it activates:
mo# ∶ C# → 2Σ# ∶ η ↦ mo#(η) ∶= opt#(mark#(τ)), τ ∈
O⋆

# is defined by η = con#(τ) and opt#(mark#(τ)) ⊆ Σ#.
Since # is message-deterministic, the definition is unique.
Thus, mo# is well defined.

Until now, we solely considered DAI Nets and conversations
from a global perspective. However, a role solely knows those
messages of a conversation it sends or receives. Thus, in
Def. 14 the view of a role on the messages of a conversation is
introduced. Further, for each role the set of activated options
is defined.

Definition 14 (Views on Conversations and Options).
Let I = (R,D,C, domC , sC , rC , ε) be an interaction domain
and let the tuple # = (P, pin, Po, Pfi, T, TS , TI , V, class,→

1For reasons of simplification, we abstract from irrelevant message content
in Example 4

,⇢, domV , grd) be a sound, deterministic, and message-
deterministic DAI Net. Let further R ∈ R be a role. Then
we can define the following views

● vcR# ∶ C⋆# → Σ⋆
R ∶ (ηk)k∈[1..n] ↦ vcR#(η) ∶= ΠΣR(η) maps

each conversation on # to the view of R on it, whereby
the view is the projection to the messages sent or received
by R,

● vcR→# ∶ C⋆# → Σ⋆
R ∶ (ηk)k∈[1..n] ↦ vcR→# (η) ∶= ΠΣR→(η)

maps each conversation on # to the messages sent by R,
● voR# ∶ 2Σ# → 2ΣR ∶M ↦ voR#(M) ∶=M ∩ΣR maps each

set of messages to its messages sent or received by R,
● voR→# ∶ 2Σ# → 2ΣR→ ∶M ↦ voR→# (M) ∶=M ∩ΣR→ maps

each set of messages to its messages sent by R and,

Based on Def. 14, we can define realizability. It denotes
DAI Nets to be deterministic from the viewpoint of a role.
Further, clear termination is defined, which indicates that a
role can determine when it sent or received its last message.

Definition 15 (Realizability, Clear Termination). Let # be
a deterministic, sound, and message-deterministic DAI Net.
Then, for a role R ∈R:

● # is realizable, iff the messages role R may send solely
depend on the messages R has sent and received before,
i.e., ∀R ∈ R ∶ ∀η, κ ∈ C# ∶ vcR#(η) = vcR#(κ) ⇒
voR→# (mo#(η)) = voR→# (mo#(κ))

● # clearly terminates, iff it solely depends on the messages
R has sent and received before whether further interac-
tion with R will occur, i.e.,
∀R ∈R ∶ ∀η ∈ Cc#∄κ ∈ C# ∶ vcR#(η)◁ vcR#(κ)

An important issue concerns decidability of the introduced
properties of DAI Nets and DAChors; i.e., determinism, sound-
ness, message-determinism, realizability, and clear termination
(cf. Def. 11-15). Basically, these properties are decidable. Due
to lack of space, we omit a discussion in this paper.

IV. RELATED WORK

In the context of workflows, correctness has been discussed
for a long time [16]. The approaches presented [12], [17]
consider data as well. The two paradigms for modeling
choreographies (i.e. interconnection and interaction models)
are compared in [18]. Examples of interconnection models
are BPMN 2.0 Collaborations [3] and BPEL4Chor [4]. There
are several approaches that discuss the verification classic



soundness criteria (i.e. boundedness, absence of deadlocks, ab-
sence and lifelocks) of distributed and collaborative workflows
and service orchestrations [5], [13], [14], [19]–[22]. Some
approaches use data dependencies to interconnect processes
and to define process interactions [23], [24]. Examples of in-
teraction models (i.e., the paradigm we apply) include Service
Interaction Patterns [7], WSCDL [8], iBPMN Choreographies
[9], and BPMN 2.0 Choreographies [3]. Our approach has
been mainly inspired by [9], which defines the behavior
of iBPMN Choreographies through their transformation to
Interaction Petri Nets and further discusses correctness and re-
alizability. Realizability of interaction models is also discussed
in [10], [25]. Furthermore, [11] provides a tool for checking
realizability of BPMN 2.0 Choreographies. However, all these
approaches do not explicitly consider the data exchanged by
messages and used for routing decisions.

In [26], [27], state-based conversation protocols are intro-
duced, which are aware of message contents. The messages
(and data) exchanged trigger state transitions. Thus, different
data may trigger different transitions. However, conversation
protocols do not support the modeling of parallelism since
they are state-based. Furthermore, realizability of conversation
protocols requires that at every state each partner is either
able to send or receive a message or to terminate (autonomy
condition). This condition strongly restricts parallelism. For
example, consider a choreography solely consisting of two
parallel branches: In the upper branch partner A sends a
message m1 to partner B and partner B sends message m2 to
A in the lower branch. Obviously, the autonomy condition is
violated although the choreography is realizable (cf. Def. 15).
Hence, conversation protocols do not constitute interaction
models in our point of view. Thus, to our best knowledge
the framework presented within this paper is the first one
that considers realizability and clear termination of data-aware
interaction models.

V. SUMMARY AND OUTLOOK

Our vision is to provide sophisticated support for distributed
and collaborative workflows. To foster this vision, we base our
work on the analysis of scenarios from different domains. In
essence, we learned that data support is practically relevant
for interaction models from a variety of domains.

Further, this paper introduced a formal framework for data-
aware interaction models and described how correctness can be
ensured. The main parts of our framework include DAChors
and DAI Nets as well as the transformation of DAChors to
DAI Nets. Further, the behavior of DAI Nets is defined. Other
fundamental contributions are the definitions of correctness
criteria for data-aware interaction models. The latter include
message-determinism, realizability, and clear termination. In
future work, we will extend our framework to support asyn-
chronous message exchange and related correctness properties.
Finally, we will develop algorithms for efficiently checking
correctness of data-aware interaction models. In this context,
we plan to apply abstraction strategies to large data domains
similar to [28].
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