
Access Rule Consistency in
Cooperative Data Access Environment

Meixing Le, Krishna Kant, Sushil Jajodia
Center for Secure Information Systems
George Mason University, Fairfax, VA
{mlep, kkant, jajodia}@gmu.edu

Abstract—In this paper we consider the situation where a set
of enterprises need to collaborate to provide rich services to
their clients. Such collaboration often requires controlled access
to each other’s data, which we assume is stored in standard
relational form. The access control is provided by a set of access
rules that may be defined over the joins of various relations.
In this paper we introduce the notion of consistency of access
rules and devise an algorithm to ensure consistency. We also
consider the possibility of occasional changes in access rules and
address the problem of maintaining consistency in the face of
such changes. We propose algorithms for both changes with new
privileges grants and revocations on existing privileges.

Index Terms—access rule consistency, cooperative data access,
join path

I. INTRODUCTION

Providing rich services to clients with minimal manual inter-
vention or paper documents requires the enterprises involved
in the service path to collaborate and share data in an orderly
manner. For instance, an automated determination of patient
coverage and costs requires that a hospital and insurance
company be able to make certain queries against each others’
databases. Similarly, to arrange for automated shipping of
merchandise and to enable automated status checking, the e-
commerce vendor and shipping company should be able to
exchange relevant information, perhaps in form of database
queries. In such environments, data must be released only
in a controlled way among cooperative parties, subject to
the authorization policies established by them. In this paper,
we expose and study various issues that arise in such a
collaboration.

In general, enterprise data may appear in a variety of
forms, including the simplistic key-value forms like Google’s
BigTable. However, for concreteness, we assume that all data
is stored in relational form, with all tables in a standard normal
form. In such a model, data access privileges are given by
a set of access rules, each of which is defined either on
original tables belonging to an enterprise or over the lossless
joins of two or more of these. The join operations, coupled
with appropriate projection and selection operations define the
access restrictions; although in order to enable working with
only the schemas, we ignore selection operation.

This material is based upon work supported by the National Science
Foundation under grant CT-20013A and by the US Air Force Office of
Scientific Research under grant FA9550-09-1-0421.

A query is authorized only if there is a given access rule
providing enough privileges. However, as the access rules are
defined on the join results of basic relations, a party can get
information from several cooperative parties and perform local
computation to obtain the result that is not authorized by any
rule. To give a simple example, if an enterprise P is authorized
to get relations R and S from parties PR and PS respectively,
then it can obtain the result of R ./ S (over appropriate join
attribute). As the access rules are defined according to business
requirements among the cooperative parties, it is possible that
there is no rule authorizing P to access the join result of R ./
S. Consequently, there is a conflict among the access rules.
To avoid such conflict, one solution is to add an additional
privileges to allow P to access the join result. In contrast, the
alternative way is to constrain the party P so that it cannot
access both R and S at the same time and local computation
is prevented.

In this work, we explore the first approach, and remove
the conflicts among the rules by adding more access rules.
Given a set of access rules, we propose an algorithm to
generate additional rules so as to remove all the conflicts.
When a new rule is added, we need to further consider the new
conflicts caused by this rule. To achieve that, the algorithm
takes advantage of the functional dependencies among the
basic relations to add all needed rules. Although the worst
case complexity of the algorithm is exponential, the real world
complexity is generally quite acceptable due to fact that chains
of joins are rare in practice. In addition, the evaluation can be
done as pre-computation so that its complexity is not critical.

Since the business relationships among the cooperative
parties may change from time to time, the access rules also
change correspondingly. We consider two types of changes on
the access rules: independent change and cooperative change.
The first type of change only affects the rules on a single
party and the latter one involves multiple parties. Since any
changes on the access rules may result in new conflicts, we
also propose algorithms to remove conflicts in the cases of a
new access rule is granted or an existing rule is revoked. In
both cases, a single change can lead to a series of changes
in order to ensure consistency. For the cooperative access
rule changes, we assume that the enterprises negotiate and
agree to the necessary changes in advance. This means that
the actual changes must be introduced simultaneously for all
the parties. We propose a mechanism to deal with the required
synchronization in this case. The main issue to address is to

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250467

ensure that rule changes are introduced in such a way that
minimum number of queries are affected.

The outline of the paper is as follows. Section II addresses
the issue of consistency of rules in a cooperative access envi-
ronment and Section III describes an algorithm for consistency
checking. Section IV deals with the problem of changes in the
rules. Section V discusses the related work. Finally, Section VI
concludes the discussion and lays out areas for future work.

II. CONSISTENCY OF ACCESS RULES

A. preliminaries

We consider a group of cooperating parties, each of which
maintains its data in a standard relational form such as
Boyce-Codd Normal Form (BCNF). It is possible to consider
more complex normal forms as well, but this is beyond the
scope of this paper. We also assume simple select-project-join
queries, i.e., no cyclic join schemas or queries. The query
may be answered by any of the parties that has the required
permissions. We assume that the join schema is given – i.e.,
all the possible join attribute sets between any two relations
are known. Each join in the schema is lossless so that a join
attribute is always a key attribute of some relations. We also
assume that the rules are composeable, which means each
rule has all the key attributes of the basic relations in its join
path. We study the problems only involving the cooperating
enterprises; no “helper” third parties are considered here.

Each cooperative party is given a set of access rules that
are defined over the join results of basic relations owned by
these parties. We call a sequence of joins as a join path. An
access rule is further defined with the attribute set authorized
on a specified join path.

Definition 1: A join path is the result of a series of join
operations over a set of relations R1, R2...Rn with the spec-
ified equi-join predicates (Al1, Ar1), (Al2, Ar2)...(Aln, Arn)
among them, where (Ali, Ari) are the join attributes from two
relations. We use the notation Jt to indicate the join path of
rule rt. We use JRt to indicate the set of relations in a join
path Jt. The length of a join path is the cardinality of JRt.

An access rule rt is a triple [At, Jt, Pt], where Jt is called
the join path of the rule, At is the set of authorized attributes,
and Pt is the party authorized to access these attributes. (Note
that projection over the authorized set of attributes is implicit
here but the order of joins in an actual implementation may
be done according to performance considerations.) Each access
rule defines a new relation, and we can perform the relational
operations such as join on them as well. Correspondingly, a
query q can be represented as a pair [Aq, Jq], and any party
has the authorized rule can answer the query.

B. A running example

Our running example models an e-commerce scenario with
five parties: (a) E-commerce, denoted as E, is a company
that sells products online, (b) Customer Service, denoted C,
is another entity that provides customer service functions
(potentially for more than one company), (c) Shipping, denoted
S, provides shipping services (again, potentially to multiple
companies), (d) Supplier, denoted P , is the party that stores

products in the warehouses, and finally (e) Warehouse, denoted
W , is the party that provides storage services. To keep the
example simple, we assume that each party has but one
relation for its local database described below. The attributes
should be self-explanatory; the key attributes are indicated by
underlining them. In each of these relations, a single attribute
happens to form the key, but this is not required in our analysis.

1) E-commerce (order id, product id, total) as E
2) Customer Service (order id, issue, assistant) as C
3) Shipping (order id, address, delivery type) as S
4) Warehouse (product id, supplier id, location) as W
5) Supplier (supplier id, supplier name, factory) as P
In the following, we use oid to denote order id for short,

pid stands for product id, sid stands for supplier id, and
delivery stands for delivery type. The possible join schema
is also given in figure 1. Relations E, C, S can join over their
common attribute oid; relation E can join with W over the
attribute pid, and W can join with P on sid. In the example,
relations are in BCNF, and the only functional dependency
(FD) in each relation is the one implied by the key attribute
(i.e., key attribute determines everything else).

C (oid, issue, assistant)

S (oid, address, delivery)

E (oid, pid, total)

W (pid, sid,
location)

oid

oid
oi

d

pi
d

P (sid, sname,
factory)

sid

Fig. 1. The given join schema for the example

We now define a set of access rules given to the party E
as described in Table I. (Suitable rules must also be defined
for other parties, but are not shown here for brevity.) The first
column of the table is the rule numbers, and the second column
shows the attribute sets of the rules. The third column lists
the join paths on which the rules are defined. The last column
(redundant in this example) indicates the party to which the
rules are given.

Rule No. Authorized attribute set Join Path Party
1 {oid, pid, total} E PE

2 {oid, issue, address} S ./oid C PE

3 {oid, pid, total, issue} E ./oid C PE

4 {oid, pid, sid, location, total} E ./pid W PE

5 {pid, sid, factory} W ./sid P PE

TABLE I
ACCESS RULES FOR E-COMMERCE COOPERATIVE DATA ACCESS

C. Rule conflicts and consistency

There are two styles in which rules can be given. An
implicit specification means any valid compositions of the
given rules are also considered as valid rules. In contrast,
an explicit specification lists out all the allowed accesses and
any access not included in the list is not allowed. Given our
chosen method of conflict resolution (i.e., by adding rules),

the distinction between implicit and explicitly specification is
not significant, as we shall see shortly.

For a query q to be authorized by explicit rules, there must
be an access rule rt whose join path Jt is equivalent to Jq and
At is a superset of Aq . In general, it is possible that a party
obtains two pieces of information, say R and S according to
two different explicit rules. It is then free to join these locally
and obtain R ./ S even if no rule authorizes access to this
composition. Such a situation creates a conflict since access to
R ./ S is not allowed by the rules but is still possible. We say
the set of rules are inconsistent if an access conflict exists with
respect to any join path. As stated earlier, the inconsistency
can be removed in one of two ways: (a) By adding additional
rules that allow for all potential compositions that have not
been explicitly specified, or (b) by actually denying access
to R ./ S. The latter can be done via revocation of some
existing rules. For instance, we can revoke the privilege of
the party P to access R, so that the local computation of
R ./ S is not possible. However, as these initial rules are
given according to their business requirements, it is not desired
to completely revoke such rules as it may affect the business
interactions. Alternatively, we can use the well-known Chinese
Wall policy [4] whereby the party can either access R or
S but not both simultaneously (and hence cannot compute
R ./ S). In this paper we adopt solution (a). In most cases,
it is reasonable to allow the local computation results once
the underlying information is authorized. For this, one must
generate all possible compositions of the given rules and add
any missing ones from the list. Therefore, whether we start
out with an implicit or explicit specification, the result will be
the same. We now define the notion of closure to make the
rules consistent.

Definition 2: If two rules ri, rj of party P can be joined
losslessly according to the given join schema, and the resulting
information [Ai

⋃
Aj , Ji ./ Jj] is also authorized by another

rule rk of party P , then we say the two rules are “upwards
closed”. For a set of rules, if any two rules that can be joined
losslessly are “upwards closed”, we say the set of rules is
consistent, and the rules form a consistent closure.

As access rules are usually defined by the parties based
on their business needs, the given set of rules is usually
inconsistent. Therefore, it is desired to have a mechanism to
add the necessary rules so as to make the rule set a consistent
closure. Although we are discussing the problem in a coopera-
tive environment, the rule consistency property applies to each
individual party separately. Thus, the mechanism for achieving
consistent closure below only involves rules on one party.

D. Key attributes hierachy

Since we assume all the basic relations are in BCNF, and
the join paths are the results of lossless join operations, the key
attributes of basic relations in the given join schema form a
hierarchal relationship. For instance, suppose that the relations
R, S have their key attributes R.K and S.K respectively. If
these relations can join losslessly, then the joining attribute
must be the key attribute in at least one of them [2]. That is,
either the join is performed on R.K, S.K, or R.K is the same

attribute as S.K. In either case, one key attribute from a basic
relation is also the key attribute of the join result of the two
relations. Therefore, if the join is performed over the attribute
S.K (R.K 6= S.K), then the attribute R.K can functionally
determine the relation S. In such case, we say R.K is at a
higher level than S.K, denoted R.K → S.K. If R.K = S.K,
there is no hierarchy, and such key attribute of R and S is also
the key attribute of the join result. Thus, for a given valid join
path, the key attribute of the join path is a key attribute from a
basic relation. We call the key attribute of the join path in an
access rule as key of the rule. Also, the join attributes in the
join paths are always key attributes of some basic relations
so these join attributes form the hierarchal relationship. For
instance, in the running example, the key attribute oid is at
the top level, and we have the hierarchal relationship for three
key attributes, where oid→ pid→ sid.

For each key attribute of basic relation, we create a group
for the rules that take this attribute as their key attribute. As
the rules within this group share the same key attribute, any
two of them can join over their key attributes.

Definition 3: A join group is a group of access rules
associated with a key (join) attribute, where all the attributes
in these rules functionally depend on this attribute. If a join
group is consistent, then it is called a consistent join group.

Since some rules can be the result of local computation over
other rules, there also exist relationships among the rules. In
fact, the relationships are based on the join paths of the rules
as they present the possibilities of join operations. Given a rule
rt with join path Jt, we call a join path as a sub-join path of
Jt if it is a join path that contains a proper subset of relations
of JRt. We say a rule defined on a sub-join path of Jt is a
relevant rule to rt. A rule rt can be locally generated only by
combining the information from its relevant rules, otherwise,
the generated rule contains extra information from relations
not in Jt. Based on the relevance relationship, the rules are
organized in a graph structure. Each node in such structure
is a rule marked by its join path. Rules in such structure are
put into different levels, and the level is determined by the
length of its join path. Two nodes are connected if one is the
relevant rule of the other. For instance, figure 2 shows a graph
structure. J2 is a sub-path of J6, and r2 is a relevant rule to
r6. They are connected in the graph, and they are on different
levels as J2 has length 2 and J6 has length 3.

III. CONSISTENCY CHECKING ALGORITHM

Given a set of rules, our goal is to generate the consistent
closure of it. Our algorithm uses the join attribute hierarchy
property and join groups to efficiently generate the consistent
closure. The rules are first divided into different join groups
and consistent join groups are generated. Next, based on the
join attribute hierarchy, each join attribute is considered for
deriving further rules, and any such rules are added to the rule
closure. When this procedure terminates, we have the entire
consistent closure.

A. Consistent join group generation
The first step is to generate the consistent join group.

With the input as a join group of some given rules, the

oid, issue, pid,
total, address

E S C r6

oid, issue,
pid, total

E C r3 oid, issue,
address S C r2

oid, pid, total
E r1

(E W) r4

(C E W) r7

(S C E W) r8

sid,
location

Fig. 2. The consistent join group of oid

algorithm considers each derived rule in the order of join
path length. When counting the join path length for a group,
we only include the basic relations whose key attributes are
the attribute associated with the join group, and we call these
relations as dependent relations of the group. A join path that
involves only dependent relations is called a dependent join
path. Relations whose key attributes are not this attribute are
called optional relations. Optional relations or join paths are
associated with the dependent join paths. In the graph, we only
assign one node for each dependent join path. If the given rule
set includes two or more rules that have the same dependent
join path, they are assigned to the same node in the graph
but identified with their optional relations. When generating
the consistent join group on the higher level parent nodes of
this node, the algorithm needs to generate corresponding rules
using each of the rule associated with this node. We will use
our running example to illustrate this.

The join paths discussed below to generate the consistent
join group are all dependent join paths. The algorithm looks
for each join path length to check if a pair of rules can be
joined to form a join path of desired length. Starting from the
length of 2, the algorithm takes rules with length less than 2
and generates all the pairs of them. If the resulting rule is not
present in the given join group, the algorithm adds it to the
group. Otherwise, the resulting rule is merged with the existing
rule on their attribute sets. Meanwhile, the graph structure is
also built and edges are added between the resulting rule and
the rules being examined.

Next, the algorithm checks join path length of 3 to k where
k is the number of dependent relations in the join group. When
inspecting the length i join-path, the algorithm first takes the
rule rm with maximal length (m < i) in the current join
group. The algorithm then looks for possible pairs including
rm, so the other rule rj whose dependent join path should
have the property that |JRj \ JRm| + |JRm| = i. The rules
are chosen in the reverse order of join path length since the
rule with longer join path includes all the attributes from its
relevant rules. All the rules with join paths that do not satisfy
this property will not be considered in pair with rm, and a
rule is never paired with its own relevant rules. By iterating
over all the join path lengths, the consistent join group can be
generated.

To illustrate the process, we use the running example. The

first 4 rules have the same key attribute oid, and they are put
into the same join group of oid. Within these rules, r4 has
an optional relation W which does not depend on oid. It is
only counted as join path of length 1 and is associated with
the node of r1 since its dependent join path is the same as
J1. Then the algorithm begins with join path length of 2. As
the only rule with join path length less than 2 is r1, no pair is
found. However, the given rules r2 and r3 are both of length 2,
so they are checked with r1 to see the relevance relationship.
Thus, r3 is connected with r1 in the graph. Next, the algorithm
checks the length of 3. Since this join group only includes 3
different relations {E,C, S}, this is the maximal length to
check. The algorithm first takes r2 and looks for the rule can
pair with it. Among the join path J1 and J3, J3 is selected
since its length is longer, and there is no need to further check
with J1 as it is relevant to J3. Therefore, a rule r6 with join
path E ./ C ./ S is added to the join group with the attribute
set A2

⋃
A3. In the graph structure, this rule is connected with

both r2 and r3.
In addition, rule r4 has the optional relation W , and it is

associated with r1 in the group. Therefore, all the rules that
r1 relevant to also have this optional relation. In such case,
based on r6 and r3, another two rules are added into the
join group. This makes join group consistent and is listed in
Table II. Here the first 4 rules are given and rule 6 to 8 are
added by the algorithm to make the join group consistent. The
built graph structure is shown in Figure 2. In the figure, the
rule numbers are indicated beside the rule join paths, and the
dashed box shows the optional relation of W . Since r4 has
the optional relation E and overlaps with r1 on dependent
join path, all the parent rules of r1 which are r3, r6 should
also have corresponding rules including the optional relation
W , which are the rules r7, r8.

Rule No. Authorized attribute set Join Path Party
1 {oid, pid, total} E PE

2 {oid, issue, address} S ./oid C PE

3 {oid, pid, total, issue} E ./oid C PE

4 {oid, pid, sid, location, to-
tal}

E ./pid W PE

6 {oid, pid, total, issue, ad-
dress}

E ./oid S ./oid
C

PE

7 {oid, pid, total, issue, loca-
tion, sid}

C ./oid E ./pid
W

PE

8 {oid, pid, total, issue, loca-
tion, sid, address}

S ./oid C ./oid
E ./pid W

PE

TABLE II
GENERATED CONSISTENT JOIN GROUP OF oid

B. Iteration of key attributes

We take advantage of the key attributes hierarchy property to
develop a mechanism that can achieve the consistent closure.
As the key attribute hierarchy can be obtained based on the
given join schema, and we assume this information is available
when the algorithm is being executed.

At the beginning, the algorithm makes an empty set called
target rule set, and the algorithm keeps adding rules into this
set. At the end, the target rule set is the rule closure we need.

oid, issue, pid,
total, address

E S C r6

oid, issue,
pid, total

E C r3

oid, issue,
address

S C r2

oid, pid, total E r1

pid, sid,
factory

W P r5

oid, pid, sid,
total, location

E W r4

oid, issue, pid,
total, sid, location

C E W r7

oid, pid, sid,
total, factory

E W P r9

oid, issue, pid,
total, sid, factory

C E W P r10

oid, issue, pid, location
total, sid, address

S C E W r8

oid, issue, pid, location
total, sid, address, factory

S C E W P r11

Fig. 3. The graph structure for the consistent closure.

For the given set of rules, the algorithm first puts each rule into
different join groups based on its key attribute, and it will only
be assigned into one join group. Then, for each join group,
the algorithm generates the consistent join group respectively
using the mechanism discussed above.

Next, the algorithm iterates each join group according to the
level of its associated attribute in the key attribute hierarchy.
To begin with, the algorithm inspects the join group of the top
level attribute. All the rules in the group being inspected are
put into the target rule set first. Then, the algorithm checks
the lower level groups one by one. For each join group being
checked, all the rules in the current target rule set are iterated.
If the rule rt from the current target rule set contains the join
attribute that is associated with the join group being checked,
then each rule in the join group being checked can join with rt.
The algorithm generates all these rules by making the union
of join paths and the attribute sets, and it adds these generated
rules into the target rule set. If there are already a rule in the
target rule set with the same join path, the generated rule is
merged with the existing rule by making union of the attribute
sets from the rules.

As the algorithm iterates all the join groups, the target
rule set will keep grow and eventually form the consistent
closure. At the time when rules are added to the target rule
set, the algorithm also updates the graph structure capturing
the rule relevance relationships. If a new rule is generated, it is
appended to the graph. Connection edges are added between
the rule and the pair of rules that generate it, and the attribute
set can be updated. The detail algorithm is described in Alg. 1.

We can use the running example to illustrate the process of
join group iteration. According to the key attribute hierarchy,
oid is the top level attribute. Thus, the consistent join group
of oid which is listed in Table II is copied to the target rule
set. The only remaining join group is the group of pid since
there is no given rule takes sid as key attribute. Also, there is
only one rule r5 in the join group of pid, and this join group
is already consistent. As in the key attribute hireachy, pid is
on the next level of oid, the algorithm checks each rule in the
current target rule set to see if it contains the attribute pid. The

set of rules {r1, r3, r4, r6, r7, r8} all have this attribute, so 6
rules joining with r5 are generated and added to the target rule
set. However, some of these rules have the same join paths and
they are merged with existing rules, so only 3 new rules are
added to the target rule set. Finally, we generate the consistent
closure as listed in Table III. The last three rules are generated
in this process. Figure 3 shows the built graph structure, where
relevant rules are connected by edges. The attribute sets of the
rules are shown in boxes and the join paths together with rule
numbers are shown above. The rules are put into 5 levels based
on their join path length.

Rule No. Authorized attribute set Join Path Party
1 {oid, pid, total} E PE

2 {oid, issue, address} S ./oid C PE

3 {oid, pid, total, issue} E ./oid C PE

4 {oid, pid, sid, location, to-
tal}

E ./pid W PE

5 {pid, sid, factory} W ./sid P PE

6 {oid, pid, total, issue, ad-
dress}

E ./oid S ./oid
C

PE

7 {oid, pid, total, issue, loca-
tion, sid}

E ./oid C ./pid
W

PE

8 {oid, pid, total, issue, loca-
tion, sid, address}

S ./oid C ./oid
E ./pid W

PE

9 {oid, pid, sid, factory, total} E ./pid W ./sid
P

PE

10 {oid, pid, total, issue, sid,
factory}

C ./oid E ./pid
W ./sid P

PE

11 {oid, pid, total, issue, loca-
tion, sid, factory, address}

C ./oid S ./oid
E ./pid W ./sid
P

PE

TABLE III
GENERATED CONSISTENT CLOSURE BASED ON GIVEN RULE SET

C. Average case complexity

The complexity of the algorithm depends on the given join
schema and given rules. In worst case, generating a consistent
join group takes exponential time. However, in real cases,
usually a join group will not include more than 4 dependent
relations. We make the assumption that the maximal number of
dependent relations in a join group is 4. In addition, we assume
there are at most k given rules in a join group. Within a join
group, there are some given rules overlap on their dependent
join paths. Assuming the number of overlapped rules is p,
then there are k − p nodes for initially given rules. As the
most number of relations is 4, we have k − p < 16. For the
algorithm, at most 22 pairs of nodes will be examined, and
there are at most 11+8p rules are added into the consistent join
group. As k and p are usually small, the number of rules in a
consistent join group is usually less than 20 and the complexity
of generating it is also low. we can think the generation of
consistent join groups takes constant time and there are at
most C rules in a consistent join group.

If there are m join groups in total, it looks like we have the
complexity of Cm in worst case. However, within a join group,
there is only one dependent relation that can join with the
rules in the next join group to be inspected. If at most v rules
including such dependent relation, then at each step only v∗C
rules will be added, and the complexity is O(v ∗C ∗ (m−1)).

In many cases, a join group contains only one or no rule such
as the join group of pid and sid in the example, so C is
fairly small for many join groups. Also, the length of a valid
join path m is usually very small as a join of 5 relations
from different enterprises should be a rare case. Therefore,
the complexity of the algorithm in real scenario is much lower
than the theoretical worst case one.

Algorithm 1 Rule Closure Generation Algorithm
Require: Given access rule set R on one party
Ensure: The set of rules R+ that is a consistent closure

1: Put rules from R into join groups based on their key
2: Put the key attributes of relations into a priority queue Q

based on its level in hierarchy
3: for Each join group G do
4: Generate the consistent join group G+

5: for Length k ← 2 to 4 do
6: Mark all rules unvisited
7: for Each unvisited rule ri length < k do
8: if Exists rm, where |Jj − Ji|+ |Ji| = k then
9: Join ri with rm and get result rj

10: if There is no rule in R+ of join path Jj then
11: R+ ← rj
12: else
13: Get the rule and merge with rj
14: R+ ← updated rj
15: Mark its relevant rules visited
16: while Q 6= ∅ do
17: Dequeue the key attribute, and get its associated G+

18: if R+ 6= ∅ then
19: for Each rule rr in R+ do
20: if rr includes the key attribute of G+ then
21: for Each rule rg in G+ do
22: Join rr with rg and get result rj
23: if There is no rule in R+ of join path Jj then
24: R+ ← rj
25: else
26: Get the rule and merge with rj
27: R+ ← updated rj
28: R+ ←

⋃
G+

Theorem 1: Given a rule set, the algorithm generates its
consistent closure.

Proof: Assuming there are two random rules ri, rj , we
check whether the consistent closure generated by the algo-
rithm always have rk, which is the join result of them. ri, rj
can be given rules or the rules generated by the algorithm.
Firstly, if ri, rj have the same key attribute, the two rules
will be in the same join group. When the algorithm generates
the consistent join group, it tries all possible combinations
of the dependent relations. In addition, optional relations are
considered from bottom up, so there is always a rule in the
generated consistent join group that has the same join path
as rk. When checking the rule relevance in the graph, the
attributes from the relevant rules are added to the higher level
rules so the rule has the same join path as rk also has all
the attributes from ri and rj . Since the algorithm examines

each join path length in ascending order, it does not matter if
ri, rj are given rules or generated rules, and ri, rj are always
upwards closed.

If ri and rj are not in the same join group, then we assume
the key attribute of ri is on the higher level than the key of
rj . If both rules are the given rules and ri includes the key
attribute of rj , when the algorithm iterates the join group of
rj , ri is already in the target rule set, and their join result
is put into the target rule set. On the other hand, if ri is a
generated rule, it is always added into the target rule set by
the algorithm. if it can join with rj , the result is added to
the target rule set also. Thus, after checking the join group of
rj , all the possible joins over that join attribute are examined.
All the rules generated afterwards are joined over the attribute
of lower level of rj , and rules from these join groups never
include the key attribute of rj . If rj is a generated rule, it is
in its consistent join group, so the algorithm adds the result of
ri and rj into the rule set. Therefore, all the rules are upwards
closed, and the generated rule set is consistent.

IV. CONSISTENT ACCESS RULE CHANGES

Cooperative parties may change the access rules over time
because of the evolving business needs. The change could
either be grant more access privileges to a party or revoke
some existing privileges. In addition, the change may cause
new conflicts among the rules. Thus, a mechanism is needed to
maintain the rule consistency while access rules are changed.

In general, a change of access rule that meet the new
business requirement and also has minimal impact on the
remaining access rules is the optimal solution. There are
different factors can be take into consideration to best recover
the rule consistency in the case of change. For instance,
according to the business relationships, some access rules
maybe more important than the others, so they may have
different priorities. In such case, we always prefer to make
changes on the less important rules first. Also, in a cooperative
environment, some parties collaborate more intimately than the
others, and there may also have priorities on different parties.
Thus, it is preferred to grant privileges to the intimate parties
and revoke privileges from the others. To keep the discussion
simple, we propose our mechanism to find the solution that
takes minimal changes to the existing access rules in terms of
the number rules being modified. The priorities in access rules
and parties can be considered by extending such a mechanism,
and we leave them for future works.

A. Rule changes
A possible architecture for the authorization is that the

access rules are stored at a central place different from any
cooperative parties. An independent query optimizer then read
the access rules and generate the query plans. However, coop-
erative enterprises do not typically share a single independent
query optimizer. Instead, each party that answers the queries
usually generates the query plan locally. Therefore, without a
centralized party, each cooperative party should keep a copy of
all access rules locally. We discuss two types of rule changes
below.

1) Independent change: This type of rule change only
applies to a single party. Even though a join path involves
authorizations from several parties, the change may occur
because of a party no longer trusts some other party or their
business relationships changed. Such changes usually affects
only a small set of rules. Even if the change only takes on a
single rule, to maintain the consistency of the rule set, a set
of rules may need to be changed accordingly. The discussions
below about the granting and revoking of access rules can be
directly applied to this type of change. After the party changes
its access rules, it broadcasts the change to other cooperative
parties.

2) Cooperative change: Sometimes a group of parties may
want to update the access rules among them at the same time.
These parties may negotiate the rules together and apply the
changes on multiple parties at the same time. The group of
rules need to be updated as a whole, and we call this type of
change as cooperative change. In such case, the updates on
several parties need to be synchronized. We call the parties
involved in a cooperative rule change as change cooperative
parties. A cooperative change need to be performed among
these parties atomically from a temporal perspective.

To achieve that, we use 2PC protocol for the rule update.
Among the change cooperative parties, one party is selected
as the master party, which we call as coordinator, and all the
other change cooperative parties are called slave parties.

Since we assume that the rule changes do not happen
frequently, each party can only be involved in one cooperative
change process at a time. Therefore, if a slave party is updating
its rules, it will have lock them and other rule update requests
received are rejected.

Overall, the mechanism works as follows. According to the
2PC protocol, the update process is divided into a voting phase
and a commit phase. In the voting phase, the master party
(coordinator) sends messages to all slave parties indicating the
set of rules being changed, and each slave party is required
to update the rules related to itself. If the slave party can
update its rules, which means there is no ongoing rule update
at this party, an agreement is sent back to the coordinator, else
the request is rejected. Only if the agreements from all slave
parties are received, the coordinator will go into the commit
phase. In the commit phase, the coordinator sends a commit
message to slave parties to finish the rule update and locks are
released. Otherwise, the updating transaction is aborted, and
the coordinator will try it later.

B. Consistently grant more information

In the case of rule change, when more access privileges
are granted to a party, we need a mechanism to maintain
the rule consistency. There are also two types of grants. The
first is adding non-key attributes (non-join attributes) to a rule.
If a rule is granted with more attributes, then the algorithm
first selects the higher level parent rules of this rule in the
graph. We search upwards in the graph, and this can be done
with a depth first search. If the rule being inspected does not
have these expanded attributes, then the algorithm adds these
attributes to the rule. If the rule being inspected already has

these attributes, the search along this path will stop and another
path will be picked. Consequently, the added attributes will be
propagated to all the related rules that are at a higher level from
the rule being changed. For instance, in our running example,
if the attribute delivery is added to r2, then the rules r6, r8, r11
on the same path need to add this attribute.

In some cases, the attribute added is not the key attribute of
the rule being modified, but the attribute is the key attribute for
other rules. Therefore, by adding this attribute, the modified
rule can possibly further join with other rules. To deal with
this situation, once a join attribute is added to a rule (non-key
attribute for the rule being modified), the algorithm checks if
there exists a join group associated with this attribute. If that
is the case, rules which use this attribute as the key attribute
are selected from the generated consistent closure. Each rule
selected is then joined with the rule being modified, and the
resulting rule is added to the rule set or merged with existing
rule. Only these rules need to be added to the rule set.

On the other hand, there is another type of change of rules,
where a rule on a new join path is granted to a party. In such
case, we need to check if this rule can join with existing rules
to generate legitimate new rules. The mechanism is similar to
the previous approach for generating the consistent closure. As
the newly added rule rn has a new join path, we first obtain
the key attribute of rn, and then rn is put into the join group
whose associated attribute is the key attribute of rn. Within
this group, as a new rule is added, the algorithm recomputes
the consistent join group. This can be done efficiently since
these rule all can join over their key attributes. In fact, the
rule rn is checked with existing rules in the consistent join
group. rn is inserted into the graph of the join group, and its
relevant rules and the rules it relevant to are not checked with
it. All the other rules are checked and rn can join with each
of them to form a new rule and put into the consistent join
group. The algorithm then keeps the set of newly added rules
for the following rule generation.

In the next step, each of the newly added rules is iterated to
see what are the other rules that can be generated based on it.
For each newly added rule rn, the algorithm checks the join
attributes in its join path (excluding its key attribute), and for
each join attribute the algorithm combines rn with the rules
in the join group and add them into the newly added rule set.
This process actually finds all needed rules which has the same
key attribute as the key of rn. After that, the algorithm looks
for existing rules that include the key attribute of rn but not
using it as their key attributes. Each such rule can join with the
newly added rules in the group of rn over the key attribute of
rn. The algorithm adds all these generated rules into the rule
set so as to complete it as a consistent closure. The attribute
set of the rules should also be considered. If there exists a rule
on the same join path, the attribute sets of the two rules are
merged.

In our running example, we can think a new rule r12
with join path E ./oid S is added whose attribute set is
{oid, pid, total, address}. In this case, the algorithm will put
the rule into the join group of oid. In the graph structure,
such a rule has relevant rule r1, and it is the relevant rule
of r6, r8. Therefore, other rules in the join group are paired

with r12. However, most of these generated rules already exist
in the current join group, so the only new rule r13 need to
be added is on the join path of S ./oid E ./pid W . Next,
the algorithm checks the rules r12, r13. Since both of them
include pid as non-key attribute, and there is no join group
of sid, both rules are paired with the join group of pid. This
results in only one additional rule r14 on the join path of
S ./oid E ./pid W ./sid P . Since oid is the top level join
attribute, by adding this rule to the rule set, the consistent rule
closure is achieved. Table IV lists these newly added rules.

Rule No. Authorized attribute set Join Path Party
12 {oid, pid, total, address} E ./oid S PE

13 {oid, pid, total, address, sid,
location}

S ./oid E ./pid
W

PE

14 {oid, pid, total, address, sid,
location, factory}

S ./oid E ./pid
W ./sid P

PE

TABLE IV
ACCESS RULES ADDED TOGETHER WITH A RULE GRANT CHANGE

In worst case, if there are already n rules exist in the closure,
and there are C rules in the join group. Adding one more
rule will need adding additional C − 1 rules to maintain the
consistency. For the above mechanism, the recompilation of
the join group will take C steps since each existing rule need
to be checked. The remaining complexity depends on the join
groups associated with the added rules. If the total number
of levels is u, and assuming at most s rules in a join group
has the join attribute of the inspected group, then the number
of pairs to examine in for one join group is s ∗ C. The total
complexity can be O(C ∗ u ∗ s).

C. Revocation of existing access rules

Besides grant of more access privileges, the changes on
the rules can also be the revocation of some existing access
rules. Similar to the grant case, the revocation can range from
removing some non-key attributes to complete removal of a
rule. We first discuss the situation where non-key attributes
are revoked. The revocation of attributes usually causes in-
consistency. Since its relevant rules may still have the revoked
attribute, the party can still access these attributes through local
computation. Therefore, we need to also revoke these attributes
from all relevant rules. Based on the built graph structure,
the algorithm retrieves the relevant rules of the rule being
modified, if any relevant rules include such revoked attributes,
these attributes are also revoked from these rules.

For instance, we can take the example of Figure 3. Let’s
assume the modification is made on the rule r10, and the
attribute factory is revoked. In such case, its relevant rules
r9, r5, r4, r1 are checked. Attribute factory should also be
revoked from these rules. Therefore, r9, r5 are modified to
keep the rule closure consistent.

On the other hand, if a rule with a join path is completely
revoked from the rule set, we need to make sure that such
a join path can no longer be generated from the remaining
relevant rules. Therefore, each possible ways to enforce the
join path need to be obtained and the possible pairs should
be taken apart. To achieve that, the algorithm uses the graph

structure built before. In the graph, only the direct relevant
rules of the revoked rule rv are examined. The direct relevant
rules of rv are the relevant ones in the graph that directly
connected with rv with one edge. For each of the direct
connect rule rd, the algorithm computes its matching join
path Jm for Jv . The matching join path Jm is a join path
that Jm ./ Jd = Jv , Jm 6= Jv , and |Jm| is the minimal
one among such join paths. Given the join schema, Jm can
be efficiently determined by computing the minimal set of
JRm = JRv − JRd. If such set does not form a join path
that is a sub-path of Jm, then the matching join path of rd does
not exist. Otherwise, the matching join path Jm is obtained.
In the graph, if a rule containing Jm is not found, higher level
rules connecting to it are examined, and the one with minimal
join path length is selected as Jm.

As we can check the enforceability of the rules [15], we
assume we already know what are the locally enforceable
rules. Thus, for each pair of rules selected, the algorithm needs
to remove one rule from it so as to make the join path no longer
enforceable. If a rule in the pair is not locally enforceable, we
prefer to remove it since it does not cause cascade revocations.
In contrast, if a rule in the pair is locally enforceable, by
removing this rule, we need to make sure all the rules that
can compose this one are taken apart. Thus, a cascade of
revocation will occur. In addition, when iterating each pair, the
algorithm also records the number of appearances of the rules.
The rule with most appearances is preferred to be removed
since removing one such rule can break several pairs. For the
locally enforceable rules that are being removed, the algorithm
puts them into a queue so that they are processed in a cascaded
manner. In worst case, it checks exponential number of pairs,
and half of the existing rules need to be removed from the
rule set.

For instance, in figure 3, the rule r10 is completely removed.
This rule has three direct relevant rules {r4, r9, r3}. r9 is
first examined, and its matching join path is {C}. As {C}
is not available, r3 is paired with r9. On the other hand,
r3 can pair with r5, r9, and r4 cannot pair with any other
rule. Therefore, the algorithm needs to break all the pairs of
rules {(r3, r5), (r3, r9)}. Since r3 appears in both pairs, the
algorithm will revoke it also, and it is put into the queue.
As r3 is not locally enforceable, we do not need further
revocation. Finally, revoking r10 with r3 will keep the rule
closure consistent.

The above mechanism to remove a rule is complicated and it
considers only one next level of rules. Thus, we also consider
to remove the rules in another way. A revocation is usually
issued by a single party, and this party usually revokes the
access rules with its own data. Therefore, when a revocation
is issued, it is common for the party to revoke all the rules
including its basic relation. If this is the case, the revocation
involves a set of rules that all including that basic relation,
and the consistent closure is still maintained.

According to this idea, if we want to remove a rule, we
can also remove a set of rules containing the same basic
relation. Thus, another possible way to consistently revoke
a rule can be found. The algorithm can first obtain all the
relevant rules of rv . For each relevant rule, the algorithm

records the basic relations appearing in the join path. The
basic relation associated with fewest number of rules is then
selected, and rules including this basic relation are removed
from the set.

Back to our example, suppose that we want to revoke rule
r10. This mechanism first retrieves its relevant rules which
are {r4, r5, r9, r3, r1}. These join paths are examined, and
the appearances of 4 basic relations are checked and counted.
Therefore, relation C appears once, E appears 3 times, W
appears 3 times, and P appears twice. Thus, the algorithm
tries to remove the rule whose join path has C. Consequently,
r3 is removed, and this result is the same as the previous
algorithm for this example. In general, these two mechanisms
produce different results.

Here, we argue that the rule closure property is different
from the rule enforcement issue. Though removing a set of
rules will affect the enforceability of other rules, we only
focus on maintaining the rule consistency property here. For
the second approach, the complexity is O(n ∗ t), where n is
the number of relevant rules, and t is the maximal number of
relations in a join path.

V. RELATED WORK

The problem of controlled data release among collaborating
parties has been studied in [8]. The authorization model in this
paper is identical to ours and provides the motivation for our
work. Its main contribution is an algorithm to check if a query
with a given query plan tree can be safely executed. It assumes
all the given rules are already upwards closed. However, this is
not the case in reality since access rules are usually formulated
without consideration of consistency. Therefore, maintaining
the consistency of the set of given rules is a crucial problem,
that we address in this work.

In another work [7], the same authors evaluate whether the
information release asked by a query is allowed by all the
authorization rules given to a particular user. It considers all
possible combinations of rules and assumes that the rules are
defined in an implicit way. Their solution uses a graph model
to find all the possible compositions of the given rules, and
checks the query against all the generated authorization rules.
In our work, we assume access rules are explicitly given. Data
release is prohibited if there is no corresponding rule.

There are some works on the access control in collaborative
environments. In [20], the authors examined existing access
control models as applied to collaboration, and pointed out
the weaknesses of these models. In addition, [11], [18] ap-
plied RBAC in the collaborative environments. Reference [6]
discussed access control problems in social network, and [13]
proposed a web services based mechanism for access control
in collaboration. All these access control models are different
from the one we are using. In [17], collaboration among
enterprises was also studied, but that work focused on different
application data and multilevel policies.

Processing distributed queries under protection requirements
has been studied in [5], [9], [16]. In these works, data access is
constrained by a limited access pattern called binding pattern,
and the goal is to identify the classes of queries that a given

set of access patterns can support. We have a very different
authorization model that involves independent parties who
cooperate in the execution of a query. There are also classical
works on distributed query processing [3], [14], but they do
not deal with constraints made by the data owners.

Our authorization model is similar to the view based au-
thorization, and it is related to the area of answering queries
using views [12], [10], [19]. These techniques are useful for
query optimization, data integration and so on. Although the
given view definitions in these works is similar constraints
to our access rules, they consider the queries and views in
the form of conjunctive queries and they do not consider
the collaboration relationships among different parties. These
make our problem different from these works, and we may
investigate our problem with conjunctive authorization model
in the future. To perform the required join operations, there
are services like Sovereign joins [1]. It gets encrypted relations
from the participating data providers, and sends the encrypted
results to the recipients. Such method is useful to enforce our
access rules.

VI. CONCLUSIONS AND FUTURE WORKS

As more and more enterprises work cooperatively to per-
form computations, securely providing access to cooperative
data is important. We use an authorization model for coop-
erative data access based on the join results of the relational
data. However, in the cooperative environment, access con-
flicts may arise among the rules made according to business
requirements. In this paper, we proposed a mechanism to make
the set of cooperative access rules consistent. In addition, we
also presented algorithms to maintain the rule consistency in
the case of granting and revocation of access privileges.

In the future, we plan to perform experiments with real
world cases to extensively evaluate the complexity of the
algorithms. We will also look for mechanisms that maintain
the rule consistency by removing some of the rules instead
of simply adding rules. In addition, we will consider Chinese
wall policies [4] to remove the inconsistency by preventing
local computations, and devise efficient implementation for it.
Moreover, we will further look into the more dynamic situation
where not only the rules are changed from time to time, but
also parties can join and leave the cooperative environment at
different times.

REFERENCES

[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovereign joins. In
Proceedings of the 22nd International Conference on Data Engineering,
ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 26. IEEE Computer
Society, 2006.

[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational
databases. ACM Transactions on Database Systems, 4(3):297–314, 1979.

[3] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie,
Jr. Query processing in a system for distributed databases (SDD-1).
ACM Transactions on Database Systems, 6(4):602–625, Dec. 1981.

[4] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In
IEEE Symposium on Security and Privacy, pages 206–214, 1989.

[5] A. Calı̀ and D. Martinenghi. Querying data under access limitations. In
ICDE, pages 50–59. IEEE, 2008.

[6] B. Carminati and E. Ferrari. Collaborative access control in on-line
social networks. pages 231–240. IEEE, 2011.

[7] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Assessing query privileges via safe and efficient permission
composition. In Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia, USA,
October 27-31, 2008, pages 311–322. ACM.

[8] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Controlled information sharing in collaborative distributed
query processing. In 28th IEEE International Conference on Distributed
Computing Systems, Beijing, China, June 2008. IEEE Computer Society.

[9] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization
in the presence of limited access patterns. In Proc. 15èmes Journées
Bases de Données Avancées, BDA, pages 41–60, 1999.

[10] J. Goldstein and P. Larson. Optimizing queries using materialized views:
A practical, scalable solution. pages 331–342.

[11] A. Gouglidis and I. Mavridis. domRBAC: An access control model for
modern collaborative systems. Computers & Security, 31(4):540–556,
2012.

[12] A. Y. Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270–294, 2001.

[13] A. A. E. Kalam, Y. Deswarte, A. Baı̈na, and M. Kaâniche. Access
control for collaborative systems: A web services based approach. pages
1064–1071. IEEE Computer Society, 2007.

[14] D. Kossmann. The state of the art in distributed query processing. ACM
Comput. Surv, 32(4):422–469, 2000.

[15] M. Le, K. Kant, and S. Jajodia. Rule configuration checking in secure
cooperative data access. In SafeConfig 2012, Baltimore, USA, 2012.

[16] C. Li. Computing complete answers to queries in the presence of limited
access patterns. VLDB Journal, 12(3):211–227, 2003.

[17] E. Y. Li, T. C. Du, and J. W. Wong. Access control in collaborative
commerce. Decision Support Systems, 43(2):675–685, 2007.

[18] J. S. Park and J. Hwang. Role-based access control for collaborative
enterprise in peer-to-peer computing environments. pages 93–99. ACM,
2003.

[19] R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for
answering queries using views. VLDB J, 10(2-3):182–198, 2001.

[20] Tolone, Ahn, Pai, and Hong. Access control in collaborative systems.
CSURV: Computing Surveys, 37, 2005.

