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Abstract—A business process can be developed as a compo-
sition of Web services provided by different service providers.
These service providers may have their own policies and con-
straints for service provisioning and collaboration. In this paper,
we focus on secure composition of services, specifically from
the perspective of service enactment. Service enactment requires
finding an execution plan for the service composition that
conforms to the requirements and constraints of the service
requester and all service providers. However, due to privacy and
security concerns, participants may selectively expose their Web
service operations and process details. We propose an approach
for service enactment that does not require the participants to
reveal their internal operations and constraints and that can
still result in an execution plan which satisfies the requirements
and constraints of all participants. The proposed approach uses
Finite State Machines (FSM) to model component Web service
operations, their interdependencies, as well security and access
control policy constraints. Model checking is used to generate
an appropriate Web service execution plan in an incremental
manner. Commutative encryption based techniques are used to
preserve privacy and security.
Index Terms—web service composition, security, privacy.

I. INTRODUCTION

Cloud computing infrastructure and semantic Web tech-
nologies have together created unprecedented opportunities for
composing large-scale business processes and workflow-based
applications that span multiple organizational domains. One of
primary hurdles towards wide-spread adoption of Web services
in a collaborative environment is security and policy disclosure
from the perspective of both service providers and service
requesters. For example, sensitive information that can be
attributed to individual service providers or service requesters
should not be disclosed [1], [2]. Similarly, local business
process details of one entity should not be disclosed to other
entities. Given such diverse security and privacy requirements,
Web service composition in the cloud environment poses ma-
jor challenges. In this paper, we focus on secure composition
of Web service in publicly available clouds as well as in
enterprise clouds. We consider Web service composition from
service enactment perspective [3]. Service enactment deals
with finding an execution plan, that conforms to the overall
requirements and constraints of the composite service specified
by the requester, and satisfies the security and access control
policies of individual Web services.

Figure 1 depicts the main aspects of distributed composition
of Web services that involves orchestration of many atomic
or composite Web services to complete a multi-step business

process in shared services cloud. We refer to such Web
services as component Web services and their composition as a
Web service process (WSP). Component Web services can be
modeled as a finite state machine (FSM), though due to privacy
and security concerns, only a partial view of the FSM may be
visible to the requester. For example in Figure 1, the dark-
filled circles corresponds to visible Web service operations
while the white circles are the invisible internal operations.
These internal operations may in turn invoke Web services
of other service providers. This is consistent with the notion
of partner links in BPEL, where only certain operations of
partners are visible to the organization. However, an operation
of the partner link may itself be a BPEL process which is
invisible to the organization invoking such operation.

The WSP specifications consist of the control-flow and
information-flow dependencies among the component Web
services and a set of constraints. Constraints are used to define
global requirements over the WSP [3]. These requirements can
be classified as: i) aggregate service quality constraints (e.g.,
overall cost of executing the WSP); and ii) Event constraints
(e.g., event a cannot occur between events b and c). As
depicted in Figure 1, a component Web service can be com-
posed of multiple Web services and therefore can have its own
aggregate and event constraints that need to be considered for
WSP enactment. Composing cascaded Web services securely
in such a distributed environment is a challenging task, that
nevertheless occurs in many real life situations, as discussed
below:

Illustrative Example: Consider State health department
countermeasure inventory management process for tracking
inventory of critical medical countermeasures (e.g., antivirals)
in different localities. In case of shortage of countermeasure
supplies in any local jurisdiction, the State health department
may mobilize supplies from its stockpile or from the private
sector pharmaceutical supply chain to that local jurisdiction.
As depicted in Figure 1, this process involves interaction with
the inventory management and resource planning systems of
various stakeholders including state and local health agencies
and emergency response organizations, hospital, clinics, and
private sector pharmaceutical supply chain entities, including
retail pharmacies, distributors and manufactures. The individ-
ual Web services of the stakeholders’ system may also be
complex business processes as depicted in Figure 2. These
services may be hosted on different enterprise clouds and
need to be linked together to compose the global process. For

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250522



Govt. Services Cloud

Medical

Supply

Logistics

Mgmt.

Control/information flow

R esp o n se  tim e   T

e f g

Constraints

Countermeasure

Inventory Tracking Process

Logistics

Assessment

Caregiver

Registration/

Assignment

Resource

Mobilization

Medical Resource

Provider Registry

Access

State Health Dept.

County

Health Dept.

City/Town

Health Dept.

State/local

Stockpile Registries

Health Services

Cloud

Hospital

Inventory Mgmt.

Applications

Community Clinics

Inventory Mgmt.

Tertiary care

Centers

Pharmaceutical Supply Chain Cloud

Pharmacies Distributors Manufacturers

Fig. 1. Example of Web service process composition in shared services cloud
environment.

example, the inventory management and supply acquisition
services of public health agencies are hosted on Govt. ser-
vices cloud; hospitals and clinic host their inventory tracking
and ordering services on health services cloud; and private
sector pharmaceutical entities provide their services on the
pharmaceutical supply chain cloud as shown in Figure 1.

The entire WSP may have several event constraints: i) If the
inventory in the stockpile of the local jurisdiction (city/town;
county) is not at satisfactory level, only then the inventory
of the private sector entities (hospitals/clinics, pharmacies) is
to be checked. ii) If the inventory level of a hospital has
already been reported for one locality then the inventory level
of that hospital cannot be reported later for another locality.
For the first constraint, the temporal dependencies between
events (Event 1: reporting of the local jurisdiction inventory
below satisfactory level. Event 2: checking hospitals, phar-
macies inventories in that locality) can be represented in the
event algebra formalism of Concurrent Transaction Logic [3]
as: ▽localInvNotOK⊗(▽Invoke InvCheck(Hospitals)∧
▽Invoke InvCheck(Pharmacies)); where, ▽e ⊗ ▽f im-
plies that event e must occur before event f .

Given the information disclosure and privacy concerns re-
lated to Web service operations and event message attribution,
enactment and execution of a WSP become a challenging issue
when considering the following scenarios:

S1. The events specified in a WSP constraint may
occur as internal operations of component Web
services that are not exported globally. Moreover,
different events in a WSP constraint may occur at
different component Web services. For example in
Figure 2, invokeInvCheck(City stockP ile),
invokeInvCheck(Hospital), and
invoke invCheck(pharmacies) are the internal
operations of the City 1 and City 2 Web services
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Fig. 2. Countermeasure inventory checking and reporting processes of:(a)
County A; (b) City 1; and (c) City 2

and are not visible to County A that has invoked
the inventory reporting services of these cities.

S2. The events specified in a WSP constraint have or-
dering and temporal dependencies that may span
multiple component Web services.

S3. The WSP constraints are not disclosed globally.
Such scenarios are likely to occur in the countermeasure

inventory tracking example of Figure 1. For example, a
local jurisdiction may not reveal which hospitals/pharmacies’
inventory management services it has used for reporting the
countermeasure stock information in its region (scenario S1).
Similarly, there is a temporal dependency between events
included in constraint 1, e.g., stockpile of local health agency
need to be checked first before checking the inventory of
private sector entities (scenario S2). The challenge here is that
there is no single party who is aware of all the operations
of component Web services that need to be enacted for
WSP composition. Therefore, no party can verify whether the
interactions among the component services conform to a given
constraint associated with the WSP.

Contribution: In this paper, we develop an automata-
theoretic model checking approach with encryption strategy
for enactment of a cascaded Web service process in a secure
and privacy preserving manner. The proposed approach em-
ploys Finite State Machine (FSM) for modeling component
Web service operations, their interdependencies, the global
constraints of requesters, as well as security policies of service
providers. The proposed approach generates the execution plan
in an incremental manner. In terms of security and privacy, the
proposed approach prevents disclosure of policies and internal
operations of service providers against service requesters at
different levels in the composition hierarchy.

II. PRELIMINARIES

We now present the formalism and notations used to repre-
sent Web services, execution plans, and WSP constraints.
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Fig. 3. FSM representation of the processes of:(a) County A; (b) City 1;
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A. Web Service Behavior Modeling

We model the behavior of each component Web ser-
vice sp as a finite state machine denoted by FSMsp =
{Σsp, Ssp, s

0
sp, X, δsp, Fsp, B, status}. Here, Σsp denotes the

Web service operations or events; Ssp is a set of states;
s0sp ∈ Ssp is a single initial state which is also called entry
state or initiation point of the Web service; X = {x1, ..., xn}
is a finite set of integer variables used to represent data value
and data flow dependencies; δsp : Ssp × Σsp → Ssp is the
transition function; Fsp ⊆ Ssp is the set of final states which
marks completion of the component web service sp; and B is
a set of boolean variables, where each b ∈ B provides status
information of the state; the function status assigns to each
state s ∈ Ssp, the set of boolean variables that are true in s.

Figure 3 shows the FSM representation of the Web service
processes of County A, City 1, and City 2 depicted in Figure
2.

B. Execution Plan

An execution plan of a given Web service is basically a
sequence of operations that need to be invoked for successful
completion of the given Web service [3]. Since, a Web service
is characterized by the set of operations it can execute and the
interdependencies/constraints among these operations, it can
be modeled by finite state machines (FSM) [4]. In this respect,
an execution plan can be viewed as a state-transition path (st-
path) s1, e1, s2, ...en−1sn, where si (1 ≤ i ≤ n) is a state and
ei is an operation, alternatively event that changes the state
from si to si+1.

For a WSP, the execution plan and the corresponding st-
path span multiple component Web services. Alternatively,
the execution plan for a given WSP is an interleaving of the
st-paths of the component Web services organized based on
the control/information flow requirements of the WSP and the
component Web services.

Projection of an execution plan. We define a projection
operation PROJ over an execution plan for a given Web
service FSM. Given an execution plan and a Web service
FSM, this operation projects only those states and events in the
execution plan that are included in the given Web service FSM.
For example, given the execution plan of the WSP (πWSP )
and the component Web service FSM.

PROJFSM(πWSP ) = π′, where π′ is the longest common
subsequence of πWSP of the form s1, e1, s2, . . . en−1, sn such
that FSM includes the transition (si, ei, si+1), 1 ≤ i ≤ n.

C. Constraints

We also model constraints as a finite state machine. Con-
straints can be composed to form more complex constraints.

A constraint c is characterized by a finite state machine
FSMc = {Σc, Sc, s

0
c , X, δc, errc, Ac, B, status, bc}. Where,

Σc denotes the events over which the constraint is defined;
Sc is a set of states; s0c ∈ Ssp is a single initial state; X =
{x1, ..., xn} is a finite set of integer variables used to represent
data value or data flow dependencies; δc : Sc × Σc → Sc is
the transition function; errc ∈ Sc is an error state; Ac ⊆ Sc

is a set of acceptable states; B is a set of boolean variables,
where each b ∈ B provides status information of the state;
the function status assigns to each state s ∈ Ssp, the set of
boolean variables that are true in s, and bc ∈ B is a boolean
variable called constraint status variable such that bc = 1 in
the acceptable states only, and bc = 0 in all other states.

Similar to concurrent transaction logic (CTR) [3], we con-
sider primitive constraints, immediate serial constraints, serial
constraints and allow composition of these constraints.

1) Primitive constraint (depicted in Figure 4(a)) is used
to represent if an event e ∈ Σc must occur or must
not occur in the execution plan. In the CTR formalism,
this is represented by ▽e (must occur – positive prim-
itive constraints) and ¬▽e (must not occur – negative
primitive constraints). An example of the positive prim-
itive constraint with reference to the inventory tracking
process of Figure 1 is checking the local inventory
of each jurisdiction for every countermeasure x, i.e.,
▽localInvCheck(?x) must occur in the execution plan.

2) Immediate serial constraint (depicted in Figure 4(b))
is used to represent if events e1, ..., en ∈ Σc must occur
next to each other with no other events in-between in
the execution plan. In CTR, this is represented by ▽⊙
(e1 ⊗ ...⊗ en).

3) Serial constraint is used to define a serial order between
two or more constraints that are either positive primitive
or positive immediate serial constraints. Figure 4(c)
depicts the serial constraint composition c1 ⊗ c3 with
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Fig. 4. FSM representation of constraints

c1 = ▽d (positive primitive constraints) and c3 =
▽⊙(e1⊗ ...⊗en) (positive immediate serial constraint).

4) Complex constraints can be composed using the con-
junction (∧) or disjunction (∨) operators. In the FSM
representation, we use the constraint satisfaction vari-
ables of underlying constraints to model complex con-
straints. Figure 4 (d) and (e) depicts constraints C1∧C2

and C1 ∨ C2.

The above constraints or constraints composed from the
above constraints can be converted to the normal form[3]:
∨i(∧jserialconstri,j) where each serialconstri,j is either
a primitive constraint or a serial constraint composed of
two positive primitive constraints. The set formed by such
constraints is a closed set. Since the FSM representation allows
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Fig. 5. FSM representation of the constraint CWSP =
▽localInvNotOK ⊗ (▽InvokeInvCheck(Hospitals)∧
▽InvokeInvCheck(Pharmacies))

modeling of complex constraints from primitive constraints,
immediate serial constraints, and serial constraints using the
∨ and ∧ operators, any constraint that can be represented in
CTR can also be represented as an FSM.

Figure 5 shows the FSM represen-
tation of the constraint CWSP =
▽localInvNotOK ⊗ (▽InvokeInvCheck(Hospitals)∧
▽InvokeInvCheck(Pharmacies)).

III. PROBLEM STATEMENT

Definition 1 (Service Enactment): Let FSMWSP and
CWSP denote the FSM representation of the WSP and the
global constraints associated with WSP. Let SP denote the
set of component Web services that need to be composed
for WSP execution. For any sp ∈ SP , let FSMsp and
Csp denote the FSM representation of the component Web
service and the constraints respectively. Service enactment
can be formally stated as determining an interleaving of
the st-paths π of each component Web service such that:
πWSP : interleave({πsp|sp ∈ SP}) |=
(FSMWSP ||CWSP )||sp∈SP(FSMsp||Csp). Here, A||B
represents the FSM composed from automata A and B.

The above expression implies that πWSP is a trace of the
FSM composed from FSMWSP , CWSP , and the FSMs of
all the component Web services and constraints. We consider
a hierarchical structure among the different entities involved
in service composition as depicted in Figure 6. This hierarchy
is established based on the roles of these entities as a service
requester or as a service provider at different levels of the
composition. At the lowest level (level = 0), the original WSP
is the service requester and the component Web services that
have direct interaction with the WSP as service providers.
At the next level these service providers become service
requesters and the component Web services invoked by them
are the service providers and so on.

Given the service enactment definition above and the Web
service composition hierarchy of Figure 6, the goal is to
compute πWSP in a secure and privacy preserving way. The
security requirement is entailed in service enactment definition
in terms of satisfaction of all the constraints and process spec-
ifications. Privacy entails the following three requirements.



Fig. 6. Web service composition hierarchy

P-I At any level i, the service requester sri can only see
the combined FSM composed from the component web
services FSM and the constraint FSM of all the service
providers at level i. However, the individual component
Web service FSM and constraint FSM of any service
provider at level i or higher is not visible to sri.

P-II Even the combined FSM composed from the compo-
nent web services FSM and the constraint FSM of the
service providers at level i is not visible to the service
requester sri.

P-III The constraints Csri are local to the service requester
sri and are not disclosed to any service provider at level
i or higher.

IV. SECURE SERVICE ENACTMENT

The proposed approach achieves service enactment and
generates a WSP execution plan along the service compo-
sition hierarchy (Figure 6) in an incremental and bottom-up
manner in accordance with the requester’s specification and
all providers’ security policies. After generation of the WSP
execution plan, the execution plan for individual component
Web services is extracted and disclosed to the service providers
in a top-down manner. In terms of privacy, the approach can
be configured to satisfy the meaningful combinations of above
privacy requirements P-I, P-II, and P-III.

A. Basic Idea

Service enactment in a cascaded Web service environment
involves two major tasks: i) generation of the overall WSP
execution plan; and ii) Extraction of the execution plans for
individual Web services from the overall WSP execution plan.
The second task ensures that the execution plan of any given
individual Web service is consistent with the overall execution
plan generated at level 0. Since individual Web service may
have multiple execution plans, it is critical to select a plan
consistent with the overall WSP execution.

Generation of WSP Execution Plan. The basic idea
for generating WSP execution plan is simple and can be
summarized in the following steps.

1) Assuming that the leaf nodes of the service compo-
sition hierarchy tree (Figure 6) is at level n, each
service provider sp at level n sends a composition of
its component Web service FSM and constraints FSM
(FSMsp||Csp) to the service requester at level n that
has invoked its service.

2) The service requester (sri) at level i (i ≤ n) upon
receiving the FSMs from the service providers at level

i verifies if the composition of all the FSMs satisfies
its process specification and constraints. In case the
privacy requirement P-III is not considered, i.e., sri
knows the process specification and constraints of all
service requesters at level j < i, then these are also
included for constraint verification.

3) If the constraint verification is succeeded, sri, sends
the composition of all the FSMs (including its own
component Web service FSM and constraint FSM and
the FSMs received from the service providers at level
i) to the service requester at level i − 1. This process
continues, until the constraint verification is performed
at level 0. Any trace of the combined FSM at level 0 that
leads to a final state corresponds to the WSP execution
plan that satisfies the specification and constraints of the
WSP and all service providers.

This incremental and bottom-up strategy for constraint
verification and service enactment ensures that at any given
level a service requester only sees the combined FSM of the
service providers at the same level. In other words, a service
requester at level i does not know who is providing component
Web service at level i+1 and what portion of the FSM at level
i comes from the service providers at level i+ 1. However at
level i, the requester can link component Web service FSM to
the service providers at level i.

Extraction and Disclosure of Execution Plans for In-
dividual Web Services. The execution plan for individual
component Web services is extracted from the overall WSP
execution plan and is disclosed to the service providers of the
corresponding services in a top down manner along the service
composition hierarchy as summarized in the following steps.

1) The original service requester at level 0, sr0, after
computing the execution plan πWSP from the combined
FSM sends πWSP to its immediate service providers
(who are also service requesters at level 1).

2) When a service requester sr1 at level 1 receives the
overall execution plan πWSP , it extracts the execution
plan specific to its Web service, i.e., πsr1 from πWSP

by projecting only those states and events that are
included in the FSM composed by sr1 from the FSMs
of its service providers. For this extraction, the PROJ
operation described in Section II is used.
After computing πsr1 , sr1 send its execution plan down-
ward to its immediate service providers for extraction of
their execution plans. This process continues, until the
execution plan is computed/extracted for all the service
providers in the service composition hierarchy.

B. Proposed Approach.

To address the privacy requirements related to disclosure of
policies and internal operations, an encryption based strategy
can be used that enables constraint verification using model
checking over an encrypted set of component Web service
FSMs. This requires that all the component Web service
FSMs of service providers as well as the constraint FSMs
of service requester be encrypted with the same key. This



can be achieved using commutative encryption∗, whereby the
component Web service FSM of each service provider at level
i is commutatively encrypted by all other service providers at
the same level using their respective encryption keys. Since
service providers may not be known to each other, therefore
the encryption of the component Web service and FSM can be
coordinated through the service requester (sri). Accordingly,
each service provider can send its encrypted FSM to the
requester which can iteratively route it to other providers for
commutative encryption. The service requester (sri) also send
its own component Web service FSM and constraint FSM
FSMsri ||Csri for commutative encryption by all its service
providers at level i. These commutatively encrypted FSMs can
be combined by sri to generate a composite encrypted FSM,
E1..En(FSMsri ||Csri)||sp∈SPiE1..En(FSMsp||Csp),
where SPi denotes the set of service providers whose
component Web services are invoked by sri. Accordingly the
composite FSM can be checked for existence of the trace that
lead to the completion state of the Web service process of the
service requester sri and satisfy all constraints of the service
providers and service requester at level i. This corresponds
to performing service enactment (checking for satisfaction of
the expression in Definition 1) at level i. The resulting trace
πsri will be in encrypted form.

However, this simple encryption strategy does not prevent
the service requester to learn the operations or events in the
component Web services of its service providers. For example
service requester, sri, can correlate the commutatively en-
crypted value of certain event in its constraints FSM Csri

with the commutatively encrypted values in the components
Web service FSM of a given service provider and learn that
such event is included in the component Web service of the
given service provider. The main reason for this problem
is that at any given level both composition of FSMs and
constraint verification is performed by the requester. Therefore,
the commutatively encrypted FSM of each service provider is
known to the requester. Another issue is the communication
overhead associated with the commutative encryption of each
component Web service FSM by all service providers.

The proposed approach utilizes the hierarchical structure
of the cascaded WS environment to separate out the task
of coordinating encryption of component Web service FSMs
and verification of the encrypted composite FSM for con-
straint satisfaction. Additionally, this relaxes the requirement
of having each component Web service FSM encrypted by
all service providers. Specifically, at any given level i the
service requester sri receives the encrypted component Web
service FSMs from each of its service providers. Each FSM is
encrypted only with the encryption key of the corresponding
service provider. These encrypted FSMs are used for gener-
ation of the encrypted composite FSM which is verified for

∗An encryption algorithm is commutative if the order of encryption does
not matter. Thus, for any two encryption keys E1 and E2, and any message
m, E1(E2(m)) = E2(E1(m)). The same property applies to decryption as
well - thus to decrypt a message encrypted by two keys, it is sufficient to
decrypt it one key at a time.

Protocol 1 Executed by service requester sri at level i
Require: SPi a set of service providers at level i whose

component Web services are invoked by sri.
Require: constraint FSMs of all service requesters above level

i in the composition hierarchy, i.e., CWSP , Csr1 , ..Csri−1

(Not required when considering privacy requirement P-III)
1: Generation of WSP Execution Plan
2: sri creates commutative encryption and decryption key set

(Esri , Dsri).
3: CFSM ← ∅
4: for each sp ∈ SPi do
5: receive f ← Esp(FSMsp) from sp
6: f ← Esri(f)
7: CFSM ← CFSM ∪ {(f, sp)}
8: end for
9: if P-III is considered then

10: send CFSM,Esri(FSMsri) and Esri(Csri) to the
service requester sri−1 at level i− 1

11: else
12: send CFSM,Esri(FSMsri) and

Esri(CWSP ||Csr1 ..||Csri) to sri−1

13: end if
14: Extraction of Execution Plan for individual web ser-

vices of service providers
15: extract πsri from πsri−1 by invoking steps 6-10 of Proto-

col 2 if (i ≥ 1).
16: for each (f, sp) ∈ CFSM do
17: send Esri(πsri) and f to sp. {Note that f =

EsriEsp(FSMsp)}
18: end for
19: for each sp ∈ SPi do
20: receive EsriEsp(πsp) from sp and apply the decryption

key Dsri to generate Esp(πsp)
21: send Esp(πsp) to sp
22: end for

constraint satisfaction one level up, i.e., at level (i − 1). For
this, it is assumed that the decryption key of each service
provider at level i (where, i ≥ 1) is known to the service
requester sri−1 at level i−1. However, the proposed approach
ensures that such disclosure of the decryption key does not
enable sri−1 to learn the operations or events in the component
Web services of the respective service providers.

1) Generation of WSP Execution Plan: The proposed ap-
proach for privacy preserving generation of WSP execution
plan employs three protocols. Protocol 1 (Lines 1-13) is
executed by the service requester at level i, Protocol 2 (Lines
1-4) is executed by each service provider at level i, and
Protocol 3 is executed by the service requester at level i− 1.
The key interactions are as follows:

Step 1. Each service provider spi at level i (i ≥ 1) creates a
set of commutative encryption and decryption keys and sends
its decryption key to the service requester sri−1 at level i −
1. It then encrypts its component Web service FSM with its
encryption key, and sends it to the requester sri at level i as



Protocol 2 Executed by each service provider sp ∈ SPi at
level i
Require: service requester sri and sri−1 at level i and i− 1

respectively
1: Generation of WSP Execution Plan
2: sp creates commutative encryption and decryption key set

(Esp, Dsp).
3: sp sends Dsp to sri−1

4: sp sends Esp(FSMsp) to sri
5: Extraction of sp’s Execution Plan
6: receive Esri(πsri) and EsriEsp(FSMsp) from sri
7: Apply the encryption key Esp on sri’s encrypted execu-

tion plan to generate EsriEsp(πsri)
8: EsriEsp(πsp)← PROJEsri

Esp(FSMsp)(EsriEsp(πsri))
9: send EsriEsp(πsp) to sri for decryption and receive

Esp(πsp)
10: πsp ← DspEsp(πsp)

Protocol 3 Executed by service requester sri−1 at level i− 1
for constraint verification
Require: service requester (sri) and (SPi) a set of service

providers at level i whose component Web services are
invoked by sri

1: receive Dsp from each sp ∈ SPi

2: receive CFSM,Esri(FSMsri), and
Esri(CWSP ||Csr1 ||..Csri) from sri

3: DFSM ← ∅
4: for each (f, sp) ∈ CFSM do
5: f ← Dsp(f)
6: DFSM ← DFSM ∪ {f}
7: end for
8: compute F ← Esri(FSMsri)||Esri(Csri)||Esri(CWSP )||

, .., Esri(Csri−1)||f∈DFSM (f)
9: if exists a trace π such that π |= F then

10: send constraint verified message to sri
11: else
12: send Error message to sri
13: end if

illustrated in Figure 7.
With reference to the running example, Figure 8 shows the

execution plan generation and constraint verification for the
counter measure inventory tracking process. In this figure, City
1 and City 2 are service providers at level 1, and County A is
the service requester at level 1. At level 0, State is the service
requester. Both City 1 and City 2 send their decryption keys
to the State. Moreover, each city encrypts is component Web
service FSM with its encryption key and send it to the County
A. The component Web service FSMs of City 1 and City 2 are
depicted in Figure 3(b) and (c), respectively.

Step 2. Upon receiving the encrypted FSM from a service
provider, sri further encrypts it with its key Esri . After
applying its encryption key on all the component Web service
FSMs sri sends all the commutatively encrypted component

SR(i-1)

FSMSP1 FSMSP2

FSMSR, CSR

1. Send Esp1(FSMSP1) 1. Send ESP2(FSMsSP2)

2. Send {ESRESP1(FSMSP1),                                             

ESRESP2(FSMSP2),                     

ESR (FSMSR), ESR (CSR)}

3a. Generate ESR(FSMSP1), ESR

(FSMSP2) by decrypting

3b. Model check to find

ESR( ) |=  ESR(FSMSP1) || ESR (FSMSP2)

|| ESR (FSMSR) || ESR (CSR)

SR(i)

SP
1

(i) SP
2

(i)

Fig. 7. Generation of execution plan and constraint verification at level i.

State

FSMCity 1 FSMCity 2

FSMCounty_A,

CWSP

1. Send Ecity_1(FSMCity_1) 1. Send

ECity_2(FSMCity_2)

2. Send

{ECounty_AECity_1(FSMCity 1),

ECounty_AECity_2(FSMCity 2)

Ecounty_A(FSMCounty_A),

ECounty_A(CWSP)}

3a. Generate ECounty_A(FSMCity 1),   

ECounty_A (FSMCity2) by decrypting

3b. Model check to find

ECounty A( ) |=  ECounty A(FSMCity 1) || 

ECounty A (FSMCity 2) || 

ECounty A (FSMCounty A) || 

ECounty A (CWSP)

County
A

City 1 City 2

Fig. 8. Generation of execution plan and constraint verification for the counter
measure inventory tracking example.

Web service FSMs of the service providers to the service
requester sri−1 at level i − 1 as illustrated in Figure 7. In
addition, sri encrypts its constraint FSM Csri and constraints
FSMs of service requesters at higher levels in the composition
hierarchy, in case such constraints are visible to sri (i.e.,
privacy requirement P-III is not considered). These constraints
FSMs encrypted with sri’s encryption key are then sent to
service requester sri−1 at level i− 1. Note that sri−1 cannot
correlate any event in the component Web service FSMs of
the service providers and the encrypted constraint FSM of
service requesters, as all constraint FSMs of service requesters



(Csrj , j ≤ i) are encrypted with the encryption key of sri only,
whereas the component Web service and constraint FSM of
service providers are encrypted with the encryption keys of all
the service providers as well as by sri.

In the context of the running example, County A receives
the encrypted FSM (ECity 1(FSMCity 1)) from City 1 and
the encrypted FSM (ECity 2(FSMCity 2)) from City 2 as
depicted in Figure 8. County A further encrypts these FSMS
with its encryption key ECounty A. In addition, County A
encrypts its component Web service FSM (FSMCounty A,
shown in Figure 3(a)) and the WSP constraint FSM (CWSP ,
shown in Figure 5) with its encryption key ECounty A. Here
we assume that CWSP which is the constraint defined by the
State is visible to County A. After applying its encryption key,
County A sends all the encrypted FSMs to its service requester,
i.e., State as depicted in Figure 8. For reason discussed above,
State cannot learn which of the events in CWSP occur at City
1 or City 2.

Step 3. sri−1 receives the following set of encrypted
FSM from sri: i) component Web service and constraint
FSMs of service providers (FSMsp); ii) component Web
service FSM and constraint FSM of the service requester sri
(FSMsri ||Csri ); iii) and if privacy requirement P-III is not
considered, the encrypted constraint FSM of all service re-
questers above sri in the composition hierarchy. sri−1 applies
the decryption key of the respective service provider at level i
to the corresponding component Web service FSM. Even after
application of the decryption keys, such FSMs still remain
encrypted with the encryption key of sri as the decryption key
of sri is not known to sri−1. sri−1 then generates a composite
FSM by combining all the FSMs and check for existence of a
trace in the composite FSM that leads to a service completion
state without causing any of the constraint FSM to go into
error state. The existence of such trace implies satisfaction of
all the constraints and service requester specifications.

Figure 7 illustrates the process of generating the execution
plan and verifying constraints at level i with two service
providers SP

(i)
1 , SP (i)

2 , a service requester SR(i) at level i
and service requester SR(i−1) at level i− 1.

With reference to the running example, the role of sri−1

is played by State as shown in Figure 8. The state re-
ceives the set of encrypted FSMs from County A. This
set of FSMs includes: i) FSMCity 1 (shown in Figure
3(b)) encrypted with ECity 1 and ECounty A; ii) FSMCity 2

(shown in Figure 3(c))encrypted with ECity 2 and ECounty A;
iii) FSMCounty A (shown in Figure 3(a)) encrypted with
ECounty A; and iv) FSM of CWSP (shown in Figure 5)
encrypted with ECounty A. The state has the decryption keys
for City 1 and City 2. It applies the respective decryption key
on the received FSM of City 1 and City 2. After this, the only
encryption remaining on all the FSMs is that of County A.
This enables the state to perform model checking , i.e., find
an execution plan that leads to service completion without
causing violation of the constraint CWSP .

The above steps are repeated for levels i− 1, i− 2, ... and
so on. However, at level 0 there is no other requester beyond

sr0 that can verify the overall CWSP , i.e., the constraints
of the original requester. Therefore, at level 0, sr0 performs
both composition of the FSM and checking for constraint
verification. This may allow sr0 to learn the internal operations
and events occurring during the execution of the component
Web services by service providers at level 0. However, the
internal operations and events of service providers at level 1
or greater are not disclosed to sr0.

In case the service providers at level 0 do not want to reveal
their internal operations or events to the service requester sr0,
two alternatives can be considered: i) use a third party for
constraint verification; and ii) use secure multiparty compu-
tation (SMC)approach. For the first alternative, protocol 1 is
executed by sr0 and Protocol 3 is executed by the third party.
In addition, all the service providers running Protocol 2 at level
0 send their decryption keys to the third party. The second al-
ternative is the most general and secure. However, as discussed
in the Introduction, the existing SMC techniques designed for
related problems such as distributed policy composition [5],
trust negotiation [6], set intersection and association mining
[7], [8] do not consider any ordering relation between input
data. Also, the generic circuit evaluation solutions [9], [10]
are likely to be very inefficient and impractical.

2) Extraction of Individual WS Execution Plan: For ex-
traction of individual Web service execution plan Protocol 1
(Lines 14-22) is executed by the service requester at level i,
Protocol 2 (Lines 5-10) is executed by each service provider
at level i. We now explain the extraction process assuming
that the service requester is at level 0 and the overall WSP
execution plan πWSP has been computed using the protocol
steps discussed above:

Step 1. Service requester sr0 has the component Web
service FSM of each of its immediate service provider’s
component Web service FSM which is commutatively en-
crypted with the encryption key of the respective service
provider and sr0. For any given service provider sp, sr0
sends the corresponding commutatively encrypted FSM (i.e.,
Esr0Esp(FSMsp)) to sp. In addition sr0 also encrypts its
execution plan and send Esr0(πWSP ) to sp.

For example, suppose that the execution plan with respect
to the running example of countermeasure inventory tracking
process is:

πWSP = S0
State Invoke InvCheck(County A)

S0
County A InvCheck Start(County A) S1

County A

Invoke InvCheck(City 1) S1
City 1 . . . Sn

State

The state encrypts this execution plan (πWSP ) with its
encryption key EState and sends it to County A.

Step 2. The extraction of the execution plan is performed
by the service requester by performing the PROJ operation
(discussed in Section II-B) over the execution plan received
from the requester. Before applying the PROJ operation, the
service provider encrypts the received execution plan with its
encryption key Esp to ensure that projection is carried out over
the component Web service FSM that is encrypted with the
same set of keys. The execution plan extracted by applying
the PROJ operation is also commutatively encrypted with the



keys Esr0 and Esp. For decryption, sp first sends the encrypted
execution plan EsriEsp(πsp) to receive Esp(πsp), which can
be decrypted by sp using its key to compute πsp securely.

With reference to the countermeasure inventory tracking
example, County A receives EState(πWSP ) from the state
as mentioned above in Step 1. Upon receiving this execution
plan, County A further encrypt it with its encryption key to
generate ECounty AEState(πWSP ). It then applies the PROJ
operation to extract its execution plan.
PROJFSMCountyA||City1||City2(ECountyAEState(πWSP ))

= ECountyAEState(S
0
CountyA InvCheck Start(CountyA)

S1
CountyAInvoke InvCheck(City1) . . .) =

ECountyAEState(πCountyA).
For decryption of the extracted execution plan, County A

sends ECounty AEState(πCounty A) to the state and it re-
ceives ECounty A(πCounty A), which is then decrypted by
County A using its decryption key to compute πCounty A

securely.
The above steps are repeated for level 1, 2, and so on.

C. Complexity Analysis

We assume that the service composition hierarchy of Figure
6 has k levels and at any given level each service requester
invokes the services of at most m service providers. We also
assume that no component Web service FSM has more than
n states.

1) Computation Complexity: Consider Protocol 1 for gener-
ation of the WSP execution plan (lines 1-13). Since the cost of
encryption dominates, for a service requester sri at level i, the
computation complexity for encrypting the service providers
FSMs is O(mni), where ni = mni+1, 0 ≤ i ≤ k − 1 and
nk−1 = n. Expanding this recursion makes the expression
O(mni) = O(mk−in). For execution plan extraction phase,
the complexity of Protocol 1 remains the same as it involves
encryption and decryption of the extracted plan which is linear
in the number of states of the FSM.

Protocol 2 also involves encryption of service providers
FSM. At level i, such FSM is composed from the FSM
of m service providers that are at level i + 1. Therefore,
the computation complexity for Protocol 2 is O(mni+1) =
O(mk−i+1n). For Protocol 3, the complexity is dominated by
model checking of the composite FSM, which is linear in the
number of its states [11]. Therefore, at level i the computation
complexity of Protocol 3 is O(mk−in)

2) Communication Complexity: In Protocol 1, during the
WSP execution plan generation phase, service requester sri at
level i receives m messages of size O(mk−i+1n) one from
each its immediate service providers. In addition sri sends
one message of size O(mk−in) to the requester one level up.
For extraction of the individual Web service execution plan,
sri sends and receive one message to each of the m service
providers of size O(mk−i+1n). In Protocol 2, three messages
of size O(mk−in) are exchanged between the each service
provider and service requester at level i. Finally, in Protocol
3, sri−1 receives one message from sri of size O(mk−in).

3) Experimental Results: The table below shows the experi-
mental results for service enactment and constraint verification
at different levels of the service composition hierarchy. For
these experiments, we consider 4 levels in the service com-
position hierarchy (k = 4). In each level, a service requester
interacts with 2 distinct service providers (m = 2) and the
FSM of each service provider has 10-15 states (10 ≤ n ≤ 15)
states. For constraint verification, we ran the model checking
tool HyTech [12] on a quad processor Sun SPARC machine
with 8 GB RAM.

Level Computation time for constraint verification
3 0.59s
2 1.82s
1 7.31s
0 84.5s

D. Disclosure Analysis

A service requester at level i (i ≥ 1) receives the component
Web service FSM from its immediate service providers. Each
of these FSMs is encrypted with the encryption key of the
respective service provider. Therefore, the service requester
cannot learn the internal operations or events in the FSMs
of its service providers. However, at level 0, since there is
no other requester above sr0, sr0 can see the composite FSM
during constraint verification and can attribute the components
of the composite FSM to its immediate service providers.

The service requester sri−1 at level i − 1, when verifying
constraint satrisfaction for sri cannot see the events and
internal operations included in the FSMs of service providers
at level i as such FSMs even after decryption by applying
the respective service providers’ keys remain encrypted with
the key of sri. Similarly, the component Web service FSM
of sri sent to sri−1 is also encrypted with the key of sri
and so sri−1 cannot learn the internal operations/events of
sri except at level 0. However, sri−1 can learn which service
providers are contracted by sri. Note that if P-III is not
considered (line 12 of Protocol 1) then sri−1 receives the prod-
uct automata of constraints, i.e., Esri(CWSP ||Csr1 ||..Csri).
If instead, the service requester sri sends the encrypted
constraints (CWSP , Csr1 , ..., Csri) separately (i.e., without
composing them in a parallel product automaton), sri−1 could
correlate the encrypted values for the individual constraint, say
Esri(Csrj ), to the events in Csrj that are visible to sri−1. This
would enable sri−1 to infer if some particular event occurs
in any of the service providers FSM. To avoid such disclo-
sure, sri sends the parallel product automata of constraints
rather than the individual constraint FSMs. Since the structure
of Esri(CWSP ||Csr1 ||..Csri) (constraints that are visible to
sri)and CWSP ||Csr1 ||..Csri−1 (constraints that are visible to
sri−1) is different, it is unlikely that CWSP ||Csr1 ||..Csri−1

is isomorphic to the subgraph of Esri(CWSP ||Csr1 ||..Csri).
Hence, it is unlikely that sri−1 can find the association
between the encrypted value of some event that appears in
any of the constraint visible to sri−1.

During the execution plan extraction phase, sri (i ≥ 1)
sees the overall execution plan, which is an interleaving of



the execution plan of the service providers. But sri cannot
determine which portions of the execution plan comes from
which service provider. However sr0 may learn the execution
plan of its immediate service providers though not of service
providers at level 1 or greater. In summary, the privacy
requirement P-II which is stricter than P-I is satisfied at each
level i ≥ 1. At level 0, neither P-I nor P-II can be satisfied
without involving a trusted third party. Also as discussed
earlier, P-III can be satisfied at each level at the expense of
increased computational and communication complexity due
to delaying the detection of constraint violation of service
requesters at higher levels.

V. RELATED WORK

The related work can be broadly categorized into i) policy
conformance verification; ii) peer-to-peer service composition;
and iii) information flow control.

Policy conformance approaches deal with checking the
compatibility between service requester’s security/privacy re-
quirements and Web service policies and process model [13],
[14]. However, these approaches are primarily designed
for single-level service composition and also do not prevent
disclosure of internal operations/business process for both
service providers and requester.

Peer-to-peer service composition approaches [15], [16],
[17] deal with decentralized orchestration of a global business
process, wherein participants only provide certain degree of
inter-visibility to support peer-to-peer interactions. However,
in the cascaded Web service environment the global process
constraints may include dependency between events that may
occur at multiple non-interacting component Web services.
The peer-to-peer based service composition approaches may
not ensure compliance of such event constraints without as-
suming that some special peers/participants have visibility to
the processes of other peers at various levels of the service
composition hierarchy.

Information flow control in the context of service com-
position has been recently addressed by She et al. [2], [18].
Their approach enforces information flow control policies in
service chains and enables runtime filtering of compositions
that do not satisfy the policy requirements. Information flow
control approaches assume a multi-level security hierarchy and
ensure that information only flows from low security clearance
services to high security clearance services. However, these
approaches cannot be directly applied to the service compo-
sition, specifically enactment problem discussed in this paper
that does not assume any multilevel security hierarchy and
requires to prevent disclosure of the internal operations of
an organization to its partners irrespective of their security
clearance level.

VI. CONCLUSION

In this paper, we study the problem of secure composition
of cascaded web services in a collaborative environment.
We model three varying levels of privacy requirements that
organizations may have. Our main contribution is to develop

an encryption based automata theoretic approach that prevents
the disclosure of policies and internal operations of service
providers against service requesters at different levels in the
composition hierarchy, and can satisfy all three levels of
privacy. Our experimental results show that our approach is
robust and scalable. In the future, we will also explore the use
of threshold based encryption to make the protocol completely
secure by removing the necessity of service providers having
to disclose their decryption keys to the second level requester.
We also plan to look at the privacy-preserving aspects of
service discovery, service negotiation, and service execution.
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