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Abstract—Time evolving graph (TEG) is increasingly being
used as a paradigm for modeling and analyzing dynamic
relationships in many emerging domains such as online social
networks, World Wide Web and evolutionary genomics. A
time-evolving graph consists of a sequence of snapshots of
the graph as it evolves over time. The ability to scalably
process various types of queries on massive TEGs is central
to building powerful analytic applications for these domains.
Unfortunately, indexing techniques and cluster computing
schemes that have been designed for static graphs are not
very effective for processing massive TEGs. Towards designing
scalable mechanisms for answering TEG queries, this paper
studies three important problems. The first is the distribution of
TEG data on the nodes of a cluster computing framework such
as Pregel or Giraph so that the computing and communication
resources of the cluster are effectively harnessed. The second is
the answering of reachability queries on any snapshot of a TEG
and the third is that of processing pattern matching queries in
TEGs. For each problem, we provide a brief literature survey
and explain why trivial extensions of static graph techniques are
not adequate for TEGs. We also present our preliminary ideas
towards addressing these problems and discuss their benefits.

Keywords—time-evolving graphs; big-data; partitioning; reach-
ability; pattern matching

I. I NTRODUCTION

The importance of graph as a fundamental structure for
representing, understanding, and analyzing relationships in
many diverse domains can hardly be overemphasized. This
is evidenced by the fact that graph storage, querying, compu-
tation and mining have continued to be highly active areas of
research over the past several decades [1], [2], [3], [4], [5], [6].
Recently, driven by the needs of applications such as social
networks, there is a renewed interest in developing scalable
frameworks and algorithms for processing massive graphs.
Pregel [7], Giraph [8], and GPS [9] are some examples of
graph-processing frameworks. In addition to these frameworks,
several indexing schemes have also been proposed for scalably
and efficiently answering various types of queries on massive
graphs. These schemes attempt to mitigate the overheads
imposed by on-demand traversal of graphs by typically main-
taining certain indexing information on a relational database.

While many of the frameworks and algorithms have been
designed and optimized for static graphs (graphs whose node
and edges do not change), in many emerging applications, the
relationships are not static – they change or evolve over time.

Hyperlink structure of the World Wide Web, relationship struc-
tures in online social networks, connectivity structures of the
Internet and overlays, communication flow networks among
individuals, evolutionary history of genome families are some
examples of temporally evolving relationships. Recently,time-
evolving graph sequence(time-evolving graphor TEG, for
short) has been proposed as a modeling and representation
paradigm for such dynamic relationship structures [10], [11],
[12]. A time-evolving graph is essentially a sequence of
snapshotsof the graph as it evolves over time.

As the numbers and scope of TEG-based applications grow,
varieties of TEG computations and queries are increasingly
becoming important. Example applications include analyzing
the flow of sensitive information in communication flow
networks, analyzing duration and stability of relationships
and influence among users of social networks, and timely
monitoring, management, and root cause analysis of large-
scale overlays and distributed systems.

The current graph computation frameworks and query
mechanisms are not adequate for TEGs because of the
additional challenges they pose. First, in comparison with
static graphs, TEGs involve an additional dimension, namely
time. This additional dimension manifests itself in multiple
temporally distinct classes of queries such as historical (or
snapshot-specific), inverse-temporal and continuous queries.
Accommodating this additional dimension into indexing and
query-processing algorithms is a significant challenge. Second,
TEGs in many modern domains are huge. For example,
Facebook Friendship graph is estimated to have around 800
million vertices and 104 billion edges [13]. Furthermore, the
additional temporal dimension of TEGs causes the data size to
increase by multiple orders of magnitude. Dealing with data
of this magnitude demands extreme scalability and efficiency.
Obviously, we will need a cluster-based infrastructure for
processing massive TEGs. In these clusters, the TEG data is
distributed among multiple machines. The manner in which
data and computation tasks are distributed among the machines
has significant impact on the performance of the system. Since
the structure of a TEG changes over time, it is not only nec-
essary to design effective strategies for distributing indexing
and querying tasks among multiple machines, but also devise
incremental schemes for maintaining the distributions over
time taking into account the graph dynamics.
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In this paper, we explore the above challenges in the context
of three important time-evolving graph problems. Our first
problem is that of distributing or partitioning dynamic graph
data on the set nodes of a shared nothing compute cluster
and maintaining the distributions as the graph evolves over
time. The distribution should optimize the overall performance
of the cluster both in terms of computation and communica-
tion. Our second problem is to efficiently answer reachability
queries in dynamic graphs. Reachability query tests whether
there is at least one path between a given pair of source and
destination vertices in a particular snapshot of a time evolving
graph. The third problem we study is that of answering
subgraph queries in a large dynamic graph. This type of
query finds subgraph instances within a given snapshot of a
dynamic graph that match to a query graph. Both reachability
queries and subgraph queries have wide applications in diverse
areas such as XML query processing and bio-informatics.
While both of these queries have been well studied for static
graphs, there is very little work on supporting these queries for
dynamic graphs. For each of the three problems, we provide
a formulation, we discuss why existing techniques from static
graphs cannot be trivially extended for dynamic graphs, and
we provide possible approaches for addressing the problem.

The rest of the paper is organized as follows. In section II
we examine challenges of partitioning TEGs among the nodes
of a cluster. Section III is an investigation about running
reachability queries in TEGs. We also explore the issues
of pattern matching for TEGs in section IV. Each of these
sections introduces some related concepts and formulates the
problem; then reviews related works, and finally suggests our
approach. The last section is dedicated to conclusion of the
paper.

II. TEG DISTRIBUTION ON CLUSTERS

This section first shows the importance of graph partitioning
on the efficiency of any distributed graph processing algo-
rithm; and then, summarizes the available approaches. We also
explore the pros and cons of each approach. We specifically
consider the factors that affect the result of the partitioning of
a time evolving graph.

A. Problem formulation

Workload distribution - the distribution of data among a
set of processors - has been one of the fundamental issues in
any parallel and distributed processing applications. Most of
the data sets in these applications are not regular in structure
and can be presented in a graph-based form. Each node of
such a graph represents a unit of data where some form of
computation will take place while each edge represent a depen-
dency between these units of data. Undoubtedly, the way one
partitions such a graph and distributes the data nodes among
processor nodes of a cluster will affect the performance of
computation. The performance of the system can be measured
with respect to two metrics, namely cost of communication
among compute nodes in the cluster and utilization of nodes
in terms of the time that compute nodes are not idle. An

optimal solution would minimize the overall runtime of the
application by satisfying two contradictory goals, minimizing
the communication cost among processors and maximizing the
node utilization. Before explaining why the two metrics may
compete against each other, we describe shortly the model of
computation for performing graph algorithms on a cluster of
computers.

B. Bulk Synchronous Parallel

It has been show in [7], [14] that systems based on
MapReduce [15] are not always suitable when processing large
graphs. This is mainly because writing graph algorithms in
form of map and reduce functions are not efficient because the
state of the graph must get written to and read from HDFS
constantly during each map and reduce job which are costly
operations.

Bulk Synchronous Parallel (BSP) [16] introduced by L.
Valiant in the 90’s is a model of computation for parallel
processing where processors are connected to each other
to form a distributed shared nothing cluster. Each of these
computers has their own thread of computation. Computation
in BSP consists of iterations called supersteps. Each super
step consists of three ordered stages: Concurrent computation
where each active computer does its computation based on its
local data and asynchronous form other nodes, Communication
where all of the computers send each other their messages and
Barrier Synchronization in which finished processes wait for
other unfinished processes to finish their communication so
they become synchronous.

Using the BSP model of computation for performing an
algorithm on a graph, one way to maximize the compute node
utilization - hence decreasing the time that they are idle - is to
randomly assign the vertices of the graph to different compute
nodes. This way of assignment increases the node utilization
because upon completion of local computation on a vertex, the
vertex will have to send messages to its adjacent nodes residing
in different compute nodes (because of random assignment
of vertices to nodes). However, this approach increases the
amount of messages need to be send among the compute nodes
resulting an increased communication cost.

On the other hand, in order to minimize the communication
cost one way is to partition the graph to a number of
highly connected subgraphs with few edges among them and
distribute each of these partitions among different compute
nodes. However, this approach can lead to high idle time of
compute nodes hence wasting resources and decreasing the
node utilization. This is due to the fact that the computation
of the algorithm (based on BSP model of computation) starting
from an initial partition can take long time to propagate
throughout all of vertices of the subgraphs residing in other
partitions on other nodes because of the highly connected
structure of the initial subgraph as depicted in figure 1. Based
on these two extremes, we propose ways and mechanisms that
distributed graph-processing systems can utilize to improve the
performance.



Fig. 1. Assignment of graph vertices to four processor based on a graph
partitioning algorithm

C. Related Work

Pregel, Apache Giraph, Mizan [17] and GPS are some of
the BSP inspired systems. Pregel and Giraph distribute vertices
of a graph among the compute nodes randomly (in round
robin fashion). However, none of them consider the effects
of graph partitioning algorithms on the computation of graph-
based algorithms. Mizan considers an extra layer between the
graph algorithm API and the computation infrastructure. It
can either perform a min cut on the graph to partition it to
many as compute nodes or use random assignment of nodes to
partition the graph. This approach can suffer from expensive
computation times. Moreover, it does not consider the node
utilization of compute node, nor does it consider the TEGs.

GPS is similar to other systems but has three main features.
It has an extend API to support graph algorithms that are both
vertex centric and global centric. It also considers dynamic
repartitioning of the graph based on messages to balance the
workload. Moreover it utilizes an optimization method to dis-
tribute high degree vertices across compute nodes. However,
it does not consider the graphs that are time evolving and how
this affects the partitioning mechanisms.

D. Our Approach

As mentioned earlier both assigning the vertices randomly
and partitioning the graph into connected components with
minimum edges among them have major benefits. Hence, a
balanced trade-off between these two extremes will benefit
any distributed graph processing system. One way to accom-
plish this is to consider what factors affect the result of the
partitioning of a time evolving graph. We believe three aspects
should be considered: the computation being performed, the
dynamic structure of the graph and the way the compute nodes
are configured to perform the computation. Below we explain
each of them.

The main goal of partitioning is to reduce the number of
inter-partition messages. Hence, algorithms that are commu-
nication intensive and have low computation cost at each
vertex will benefit most. Example of such algorithms are
PageRank [18] and Highly Connected Components (HCC)
as implemented in [19]. Whereas algorithms such as Single

Source Shortest Path (SSSP) which have low cost of com-
munication comparing to PageRank may not benefit from
graph partitioning. The performance of such algorithms canbe
improved by increasing the node utilization if the assignment
of vertices to nodes is done in a random fashion. It is our
contention that the overheard of partitioning a graph to highly
connected subgraphs is not beneficial for computation such
SSSP

The dynamicity of the TEGs is through addition/deletion
of nodes or edges or both. This can take place within a
partition residing on a compute node or among partitions.
Dynamic repartitioning of subgraphs seems to be the logical
response. However, this should be done carefully because
dynamic repartitioning can be expensive, since the assignment
of vertices to compute nodes needs to be changed. The cost
is due to the fact that the graph processing system must make
sure that before communication phase of a BSP super-step
starts, all vertices are aware of the possible new assignments of
their adjacent vertices to compute nodes so they can send their
messages to. This necessitates a repartitioning that is benefi-
cial. In other words, repartitioning should be performed when
addition/deletion of nodes or edges pass a certain threshold
related to the connectivity and structure of the subgraphs.In
this manner, we can be sure that repartitioning takes place
when its benefit outweighs the cost.

The other option that can benefit the communication cost is
the incremental reallocation of a node in a subgraph to another
subgraph (processed by another processor). In this case, when
a node in a subgraph starts communicating with another node
in another subgraph, we can send a replica of that node to the
destination partition. This reduces the network communication
cost because instead of sending multiple messages we only
need to send one message between partitions to keep the
similar copies of the same node.

Finally, in order to improve the performance and maximize
the node utilization, the way the compute nodes are configured
to perform the task is important. Our approach is to generate
more partitions than the available compute nodes. In this
manner, by reducing the size of the graph partitions we
are making sure that the compute nodes have more lighter
workloads to perform rather than a few heavy workloads. This
approach will also lower the overall runtime of the algorithms
on the system. Since the run time of computation based on
BSP is bounded by the slowest worker, by constructing smaller
workloads for the compute nodes we are making sure the
slowest worker will finish the computation sooner. We are
not aware of any distributed graph processing system that
considers both of these two metrics while processing graph
algorithms on time evolving graph. Our approach can improve
the performance of the cluster based graph processing systems
like Pregel, GPS and Giraph.

III. R EACHABILITY QUERY IN TEGS

Consider a time evolving directed acyclic graph G. Let
{G1, G2, . . . , Gq, . . . , Gr} be the different snapshots of the
graph. Let Diff(Gq, Gq−1) represent the changes occurring



between snapshotsGq andGq−1. Note that the Diff between
any two snapshots can be represented as a union of a set
of vertex additions, a set of vertex deletions, a set of edge
additions and a set of edge deletions.

The reachability queryReach(v, w, q) seeks to find
out whether nodew was reachable from nodev in the qth

snapshot of the time evolving graph – the answer should be
TRUE if w was reachable fromv in Gq and FALSE otherwise.

A. Reachability Analysis in Static Graphs

There has been considerable interest in efficient answer-
ing of reachability queries in static graphs. Several ap-
proaches such as transitive closure, on-demand depth-first
traversal/breadth-first traversal, interval-based indexing, 2-
HOP indexing have been studied in the literature [20], [21],
[22], [23], [24]. These various approaches form a spectrum
with pre-computation of transitive closure and on-demand
graph traversal lying at its two ends [22]. Pre-computing
transitive closure has heavy indexing costs while the query-
time is constant. On the other hand, on-demand traversal has
no indexing costs but its query time isO(N +M), whereN
andM are respectively the numbers of nodes and edges in the
graph.

Interval-based indexing has received considerable research
attention because it provides a good balance in the trade-
off between indexing costs and query-time. While the various
interval-based index schemes share a common paradigm, they
do differ considerably from one another. We first discuss the
common aspects and then highlight the differences between
them. Interval-based indexing techniques start by identifying
a spanning tree (although GRAIL [22] uses multiple spanning
trees, we limit our discussion to a single spanning tree). This
tree is traversed in the depth-first order and each node is
assigned a pre-order and post order number. The node-ids
and their pre- and post-order values are stored in a table.
The nodew can be reached from nodev using only the
edges of the spanning tree if and only if the pre-order value
of w is in between the pre and post-order values ofv (i.e.,
vpre< wpre< vpost).

The above pre- and post-order index-based querying has
to be augmented in some fashion to account for reachability
offered by paths that include at least one non-tree edge.
The individual interval-based indexing schemes differ in how
they analyze such paths. For this purpose, the DualLabeling
technique [21] maintains a transitive link table (TLT) that
contains the transitive closure of the non-tree edges. The paper
presents a sophisticated algorithm that utilizes the TLT and
the pre- and post-order index to answer reachability queries in
constant time.

The GRIPP indexing [20] on the other hand, does not pre-
compute the transitive closure of non-tree edges. It expands the
table containing pre- and post-order indexes to also store non-
tree edges. Every node in the tree gets a pair of pre and post
order index values reflecting its position in the spanning tree.
However, if a node, sayy has one or more incoming non-tree
edges, it receives an additional pair of values corresponding to

each incoming non-tree edge. Specifically, suppose(v, y) is a
non-tree edge. During the spanning-tree traversal, when node
v is reached, the link(v, y) is traversed as though it is a tree
edge and nodey is assigned a pre-order value. However, this
non-tree instance ofy is treated as a leaf node (althoughy may
have outgoing edges), and it is immediately assigned a post-
order value as well. This pair of values is stored in the pre- and
post-order index table, but specifically marked as ‘non-tree’.
Reachability testing is done by computing multiplereachabil-
ity instance setsthrough recursive containment queries. The
reachability testing in GRIPP isO(M −N), where M and N
are the numbers of edges and nodes in the graph respectively.

B. Limitations of Existing Approaches

A naive way of applying the interval-based indexing strategy
for answering ss-reachability queries is to index each snapshot
of the graph using any of the current techniques. The ss-
reachabilitySSReach(v, w, q) can then be answered by
using the index values corresponding to theqth snapshot.
Figure 2 shows three snapshots of a time-evolving graph con-
taining 8 nodes A through H (note that the noder is a fictitious
root node that is added by GRIPP to deal with certain special
conditions). The figure also provides three tables containing
the pre- and post-order indexes corresponding to the three
snapshots. In the tables ‘Tr’ and ‘Nt’ indicate index values
obtained by traversing tree and non-tree edges respectively.
Now, if we want to answerReach(E, H, 3), we use the
rightmost table and recursively compute reachability instance
set of E and B. Since H is in the reachability instance set of
B, the answer is TRUE.
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Fig. 2. Reachability Query Processing in TEGs

However, there are many drawbacks to this simple approach.
First, the computational overhead of indexing every snapshot
is going to be very high, as it will require traversal of
each snapshot. Second, the storage overheads are going to
be high as well because of the need to store the index of
every snapshot. Both the computational and storage costs
are exacerbated as the hierarchies increase in size and as
they change more frequently. Third, there may be very few
queries on some certain fraction of the snapshots in which
case indexing every version is wasteful both in terms of storage
and computation. However, it should also be noted that query
distribution in terms of snapshots is not known apriori. Fourth,
for large and frequently changing hierarchies, the huge amount



of indexing data causes the database to become bulky which
significantly increases query latencies.

C. Our Approach

Our approach for answering reachability queries in TEGs
is to index only a selective interspersed subset of snapshots
(using interval-based indexing technique). For example, in
Figure 2, only snapshotsG1 is indexed. For the rest of the
snapshots (e.g.,G2 andG3 in Figure 2, only the changes from
the previous snapshot is stored in a Diff List or an Edit List
(shown below each snapshot).

The issue however ishow to answer reachability queries on
snapshots that are not indexed(e.g., in Figure 2 is H reachable
from A in G3)? In our approach, the queryReach(v, w,
Gq), whereGq is non-indexed will be answered in two steps
– we answer the queryReach(v, w, Gp) (Gp being the
temporally closest indexed snapshot toGq

1 and then checking
whether the changes occurring betweenGp and Gq alters
the reachability status. In other words, ifw was reachable
from v in Gp, we need to figure out whether the changes
in Diff(Gq, Gp) make it unreachable, and vice-versa. In the
TEG shown in Figure 2 answering the queryReach(A, D,
G3) will require us to figure out whether the changes in
Diff(G3, G1) breaks the reachability (sinceReach(A, D,
G1) is TRUE). The straightforward approach of processing
all the changes in Diff(Gq, Gp) in chronological order and
reflecting each update’s effect onGp will turn out to be very
inefficient because most of the changes (in some cases all of
the changes) will have no impact on the reachability status.

Thus, our approach is to find out which changes in the
Diff are likely to impact the reachability status and process
only them. The central question then ishow do we correctly
figure out the changes in Diff(Gq, Gp) that will impact the
reachability of w from v?Changes that seem unrelated at
first glance might in fact have an effect on the reachability
because of other chronologically subsequent changes. In our
example, suppose we are processing the queryReach(A,
H, G3). The changeAdd E, F might seem unrelated to the
query. However, this change along withAdd B, E andAdd
F, G alters the reachability from A to H between snapshots
G1 and G3. In our preliminary work, we have made two
key observations that will help us address this challenge.
First, supposeReach(v, w, Gp) evaluates to be TRUE,
Diff(Gq, Gp) could possibly alter the reachability status if it
contains at least one edge deletion –Delete(u, y) where
u andy are two consecutive nodes in a directed path fromv to
w in Gp. Second, supposeReach(v, w, Gp) evaluates to
be FALSE, Diff(Gq, Gp) could possibly alter the reachability
status if it contains at least one edge addition –Add(u, y)
where eitheru is a node that is reachable fromv in G′

q or y
is a node from whichw is reachable inGp. Note that both of
these are necessary, but not sufficient conditions. Our approach
will leverage these observations in the following broad manner.

1Gp may temporally precede or succeedGq . For simplicity, in this paper
we assume thatGp precedesGq .

Rather than processing all changes in chronological order,we
searchDiff(Gq, Gp) for a change that can possibly alter the
current reachability status, and if such an update is found we
process it, and reflect its effect on the reachability status. If no
such changes are found the process terminates. In our example
(Figure 2), when answering theReach(A, H, G3), we first
process the updateAdd B, E (since B is reachable from A).
Subsequently, we process the updatesAdd E, F and Add
F, G, to conclude thatReach(A, H, G3) is TRUE.

Our approach has several advantages. First, since all snap-
shots need not be indexed, it provides significant reduction
in index computation costs as well as index storage costs.
Second, it also improves the query latencies for very large
TEGs. This may seem counter-intuitive (one would expect
higher query latencies when lesser number of snapshots are
indexed). However, it is because the database is less bulky
when only a subset of snapshots are indexed which leads
to better query performance. Third, our approach provides
flexibility to the application in deciding the indexing costs
that it can tolerate.

IV. TEG PATTERN MATCHING

Graph pattern matching is a fundamental problem in graph
processing and can encompass a number of different problems,
ranging from subgraph isomorphism which is very restricted
and NP-complete [25] until graph simulation which is more
relaxed and can be determined in quadratic time [26]. Basi-
cally, it is finding all the matches of a given graph, called
query graph, in an existent larger graph, called data graph.
To define it more formally, assume that there is a data graph
G(V,E, l), whereV is the set of vertices,E is the set of
edges, andl is the set of the labels of the vertices. In general,
edges can be directed or undirected, but here we assume the
edges are directed and the vertices are labeled unless it is
mentioned explicitly. There is also a pattern or query graph
Q(Vq, Eq, lq) which forms the interesting pattern that we want
to find its occurrences in the data graph. The task is finding
all subgraphs ofG that match the queryQ. By definition,
G′(V ′, E′, l′) is a subgraph ofG if and only if V ′ is a subset
of V andE′ is a subset ofE.

Matching can be defined by structural or semantic match-
ing and its related algorithms can be designed for exact or
approximate solutions. Moreover, these algorithms can be
designed and executed in sequential or parallel, centralized or
distributed fashion. Choice of matching can dramatically affect
efficiency and complexity of the problem, and in this section
we first introduce some different types of matching. Then, we
review some of the recent work in incremental graph pattern
matching and distributed graph pattern matching. Regarding
the fact that it is fairly a new research topic, we found only few
numbers of related papers, and to the best of our knowledge
there is no work done to integrate incremental and distributed
pattern matching algorithms on large data graphs. At the endof
this section, we provide a formulation to address this problem.



A. Different Graph Pattern Matching Paradigms

Each of these paradigms may suite to a different type of
applications. They are all well defined in the literature, and
here we just summarize some of them. Subgraph isomorphism
is more restricted and preserves topological structure of the
query, while graph simulation takes care of child relationships
between different types. Graph simulation is studied in the
recent years because its applications in analysis of social
networks.

1) Subgraph isomorphism:It is a bijective mapping be-
tween a query graphQ(Vq, Eq) and a subgraph of a data graph
G(V,E). That is, assumingG′(V ′, E′) as a subgraph ofG,
graphQ will be subgraph isomorphic ofG if there is a function
f : V ′ → Vq and for anyv′ andw′ belonging toV ′ there are
vq, wq belonging toVq such that edge(v′, w′) belongs toE′

if and only if edge(vq, wq) also belongs toEq.
2) Simulation and its extensions:Graph simulation is less

restricted than traditional matching paradigms like isomor-
phism; hence, asymptotically faster. It plays an important
role for recently emerging applications of analyzing social
networks. It is said that graphG(V,E) matches a pattern
Q(Vq, Eq) via graph simulation if there is a binary relation
R ⊆ Vq × V such that if (u, u′) ∈ R, u and u′ have the
same label; moreover, for everyu ∈ Vq there is au′ such
that (u, u′) ∈ R, and also for everyv ∈ Vq that (u, v) ∈ Eq

there is av′ ∈ V such that(v, v′) ∈ R and(u′, v′) ∈ E. With
respect to usefulness of graph simulation in analyzing new
applications of pattern matching, a few extensions have been
introduced during recent years such as bounded simulation
[27], strong simulation, and dual simulation [28].

B. Related Work

In many web applications data are generated and stored in
distributed manner. Even when web-scale data are stored in
a single location, they are so large that they are distributed
among machines of a cluster system in a data-warehouse.
In order to efficiently process the huge graphs constructed
from these data, a few distributed graph processing systems
are developed during the last years like Pregel, Trinity [29],
and GPS. Although providing an efficient distributed graph
pattern matching can be very useful for extracting informa-
tion out of big data, it is not very well explored. In fact,
because of the huge size of the graph, the old approaches
are not applicable; for example, exhaustive indexing wouldbe
infeasible. Moreover, poor locality of real data graphs causes
inefficiency in distributed processing. In the following, we
briefly explain recently suggested approaches in [30] and [31]
about distributed graph pattern matching.

On the other hand, it is important to have incremental
pattern matching in order to avoid running the same procedure
for the whole data graph when it is a TEG. Considering the
fact that it is relatively a new emerging field of research, there
are only few papers on incremental pattern matching. [32] has
explored some aspects of this problem; however, it does not
cover distributed incremental pattern matching.

In [30] a distributed algorithm is introduced for finding
isomorphic subgraph matches of a given query graph in a huge
data graph. They deploy graphs on Trinity which provides a
distributed memory cloud environment. In their system any
given query graph is first decomposed by the master node
into a few two-level tree structures, called STwig. Then, these
sub-queries, which are set in an order to minimize the size of
intermediate results, will become available to all computing
nodes as a query plan. The matching results for these sub-
queries are found via graph exploration in parallel on partitions
of a data graph locally available in the memory of each
node; these results should be joined to each other to find the
results for the complete graph query. The computing nodes
also need to exchange some of their intermediate results in
order to join them and create the final results of the query.
This work focuses on efficient web-scale graph processing, so
it avoids exhaustive usage of indices which is very common
in most of graph processing systems. Indeed, they only use
a simple string index which maps node labels to node IDs.
It is argued that the time needed for constructing indices and
the capacity for their storage would be infeasible in web-scale
graph processing. Index size and time of the proposed ap-
proach, in addition to the query processing time, is compared
with estimation for some other existent systems. However, it
seems that the proposed system is only compared with non-
distributed systems, and other possible solutions for efficient
distributed processing, such as distributed indexing, arenot
explored. On the other hand, Trinity is built on top of a
distributed memory storage layer which provides a transparent
interface for users to work with a distributed graph as if it was
stored in memory of a single machine. The subgraph matching
approach which is proposed in the paper is experimented on a
cluster of at most 12 machines, but it is not clear whether it is
scalable for a larger number of machines or not, considering
the fact that providing a transparent memory space is not very
scalable inherently.

In [31] a distributed algorithm for graph simulation is
proposed. They have also analyzed distributed algorithms for
graph simulation and identified three complexity measures
for their analysis: (1) visit time, which measures maximum
visiting time of a machine in a cluster system and indicates the
complexity of interactions, (2) makespan, which is response
time to the query from submitting query until when its
answer is ready, (3) data shipment, which is the total size of
messages exchanged between machines of the cluster system
during computation. They have implemented and tested their
algorithm on a cluster of 16 machines; however, neither the
algorithm nor its implementation is adapted to a widely in use
cluster computing platform like Pregel, but it is implemented
all in Python.

The study presented in [32] investigates incremental al-
gorithms for simulation, bounded simulation, and subgraph
isomorphism. It specially analyzes whether the problems are
bounded or not. By the definition given in that paper, an
incremental problem is said to be bounded if the cost of its
update is a function of the size of the changes in input and



output. For incremental pattern matching, the authors keepa
set of result graphs representing the found matches in the data
graph. Then they adjust this result graph to update it based on
the changes in data graph.

C. Our Approach

We suggest an approach for efficiently processing dis-
tributed subgraph matching on BSP framework. We also inte-
grate a mechanism to support incremental processing which
we believe can dramatically improve the response time of
graph queries on a distributed dynamic graph. For imple-
mentation we use GPS which its architecture is very similar
to Pregel. It means that vertex-centric algorithms can be
implemented easily; in addition, it has an extension to enable
efficient implementation of algorithms composed of more than
one vertex. In Pregel-like systems, each vertex is aware of its
own label and its outgoing edges.

Assuming that a large directed data graphG(V,E, l) is
distributed among many workers according to a particular
partitioning paradigm, we use GPS features and graph explo-
ration technique to efficiently find maximum graph simulation
match in G for a given Query Q. The system contains one
master process and many worker processes. Each worker is
responsible for a partition of G which may consist of many
vertices. In general, a processing unit is dedicated to each
worker. The input of an appropriate algorithm would be a
directed graphQ(Vq, Eq, lq) as pattern (query) graph, and its
output would be the maximum match M in G for Q.

Following we explain two algorithms, the first one is a
purely vertex-centric algorithm which would be easier to code
and enjoys high level of parallelism; however, it may not be
very efficient when the number of vertices is large. The second
one is at worker-centric and enjoys a distributed index for
finding vertices given a label in each worker. In more detail,
the distributed algorithms work as it follows:

1) Vertex-centric: At the first superstep, the master node
of the system after receiving a query graph will broadcast it
to all the workers. At the second superstep, any vertex of G
which has the same label in Q will flag its membership in a
set of match nodes, called S. Vertices in S need to know at
least one list of the labels for their children dictated by their
potential match in Q. It is possible to have two vertices in Q
with the same label, so a vertex of G might match to more
than one vertex of Q; moreover, the correspondent vertex in
Q may not have any child. Hence, members of S may need
to remember more than one list or just one empty list as the
legitimate labels of their children. Obviously, if the number of
outgoing edges in a vertex is less than any list of its children,
the vertex should remove itself from S. At the end of this
superstep, any member of S sends its ID to its all children.

In the next superstep, vertices which have received a
message save the IDs of their parents, and reply back with
their own label, ID, and the membership status in S. The
vertices receiving message in the next superstep are member
of S and can figure out if the label of their children in data
graph, returned by them in the messages, is a superset of the

labels of their match’s children in the query graph. Those that
cannot satisfy this condition should leave S. Any vertex which
removes itself from S, will report it to all of its saved parents.
When a vertex receives a removal message from a child, first
the child will be removed from its list of saved children, and
then will be examined again to make sure it still satisfies the
condition of being in S. If the remained children do not satisfy
the required ones, the vertex should remove itself from S and
report it to its all saved parents. This will be repeated until S is
purified to only the true graph simulation matches. When there
is no more communication among the nodes which means they
all voted to halt, the master will broadcast to all the nodes and
asks about the members of S.

2) Worker-centric:For this algorithm, the query is assumed
to be a rooted directed graph. This assumption does not make
lose of generality because it can be proved that each directed
graph can be decomposed to a few rooted directed graphs in
such a way that the union of their graph simulation results
is equal to the result of the initial graph. First, the master
broadcasts the query to all workers. Each worker will find the
set of potential matches for the query’s root vertex among the
vertices of G which are located at that worker using a local
index. Then, the children of these vertices will be exploredfor
having the appropriate set of labels. It continues to traverse the
subgraphs while consequent matches vertices are found and
wrong subgraph matches are removed.

Fig. 3. A sample data graph G, query Q, and Result Graph

In the aforementioned algorithms, vertices located at the
same partition will be controlled by the same worker, and
there would be no real network communication among them.
The edges between vertices on different workers do not hurt
the accuracy of the algorithms, but decrease the performance;
hence, an appropriate partitioning of G, using methods sug-
gested in section II, will be useful to improve efficiency of
the system. Moreover, to address graph simulation matching
in TEGs we borrow the idea ofresult graphsfrom [32] to store
the answer of different snapshots with their appropriate time
stamps in order to evolve between them. We make separate
lists for requests of insert and delete, and add time stamps to
each entry. Time stamps help to recognize which changes in
the lists ofInsertandDeleteshould be considered for evolving
the result graph of one snapshot of G to the next snapshot. It



is obvious that deleting an edge from G can only diminish
the result if it already exists in the previous result graph.
Adding a new edge to G will be also considered with respect
to expansion of previous result graph. A sample data graph
G, a sample query Q, and the result graph of the simulation
matching in G for Q is illustrated in figure 3.

V. CONCLUSION

Research activity on processing very large data graphs on
cluster systems has increased lately. Common classes of prob-
lems include graph partitioning, reachability, and subgraph
pattern matching. As a form of big data, processing massive
data graphs requires innovation in the development of dis-
tributed algorithms to run on high-performance clusters. While
innovation is needed for both distributed query processingand
graph updates, particularly for massive time-evolving graphs,
there is little work done in this area. This paper surveys the
state-of-the-art and discusses avenues for future research. In
our ongoing work, we are going to implement approaches
suggested in this paper and evaluate them through experiments.
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