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Abstract—Time evolving graph (TEG) is increasingly being Hyperlink structure of the World Wide Web, relationshipustr
used as a paradigm for modeling and analyzing dynamic tures in online social networks, connectivity structuréshe
relationships in many emerging domains such as online social |hternet and overlays, communication flow networks among

networks, World Wide Web and evolutionary genomics. A . dividual luti hist f famili
time-evolving graph consists of a sequence of snapshots ofNAividuals, evolutionary history or genome tamilies acerne

the graph as it evolves over time. The ability to scalably €xamples of temporally evolving relationships. Receritye-
process various types of queries on massive TEGs is centralevolving graph sequenc@ime-evolving graphor TEG, for

to building powerful analytic applications for these domains. short) has been proposed as a modeling and representation
Unfortunately, indexing techniques and cluster computing paradigm for such dynamic relationship structures [10}],[1

schemes that have been designed for static graphs are not 121 A ti Vi hi tiall f
very effective for processing massive TEGs. Towards designing[ 1 Ime-evolving graph 1S essentially a sequence o

scalable mechanisms for answering TEG queries, this paper Shapshotof the graph as it evolves over time.

studies three important problems. The first is the distribution of As the numbers and scope of TEG-based applications grow,
TEG data on the nodes of a cluster computing framework such varieties of TEG computations and queries are increasingly
as Pregel or Giraph so that the computing and communication becoming important. Example applications include analyzi

resources of the cluster are effectively harnessed. The seabis the fl f it inf ti . cati fl
the answering of reachability queries on any snapshot of a TEG € flow ob sensiive Intformation in-communication 1ow

and the third is that of processing pattern matching queries in Networks, analyzing duration and stability of relatiomshi
TEGs. For each problem, we provide a brief literature survey and influence among users of social networks, and timely
and explain why trivial extensions of static graph techniques are monitoring, management, and root cause analysis of large-
not adequate for_ TEGs. We also present our prelim_inary idgas scale overlays and distributed systems.
towards addressing these problems and discuss their benefits. .
The current graph computation frameworks and query

Keywords—time-evolving graphs; big-data; partitioning; reach-mechanisms are not adequate for TEGs because of the
ability; pattern matching additional challenges they pose. First, in comparison with
static graphs, TEGs involve an additional dimension, ngmel
time This additional dimension manifests itself in multiple

The importance of graph as a fundamental structure famporally distinct classes of queries such as historioal (
representing, understanding, and analyzing relatiossivip snapshot-specific), inverse-temporal and continuousiegier
many diverse domains can hardly be overemphasized. TAiscommodating this additional dimension into indexing and
is evidenced by the fact that graph storage, querying, cemmuery-processing algorithms is a significant challengeo&e,
tation and mining have continued to be highly active areas EGs in many modern domains are huge. For example,
research over the past several decades [1], [2], [3], [4]I¢%. Facebook Friendship graph is estimated to have around 800
Recently, driven by the needs of applications such as sodaiaillion vertices and 104 billion edges [13]. Furthermoriee t
networks, there is a renewed interest in developing saalakldditional temporal dimension of TEGs causes the data gize t
frameworks and algorithms for processing massive grapliscrease by multiple orders of magnitude. Dealing with data
Pregel [7], Giraph [8], and GPS [9] are some examples of this magnitude demands extreme scalability and effigienc
graph-processing frameworks. In addition to these frannksyo Obviously, we will need a cluster-based infrastructure for
several indexing schemes have also been proposed for kcalabocessing massive TEGs. In these clusters, the TEG data is
and efficiently answering various types of queries on massiglistributed among multiple machines. The manner in which
graphs. These schemes attempt to mitigate the overheddta and computation tasks are distributed among the nechin
imposed by on-demand traversal of graphs by typically maihas significant impact on the performance of the systemeSinc
taining certain indexing information on a relational datsd. the structure of a TEG changes over time, it is not only nec-

While many of the frameworks and algorithms have beerssary to design effective strategies for distributingeiidg
designed and optimized for static graphs (graphs whose nadel querying tasks among multiple machines, but also devise
and edges do not change), in many emerging applications, theremental schemes for maintaining the distributionsrove
relationships are not static — they change or evolve oveg.tintime taking into account the graph dynamics.

I. INTRODUCTION
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In this paper, we explore the above challenges in the contexttimal solution would minimize the overall runtime of the
of three important time-evolving graph problems. Our firsipplication by satisfying two contradictory goals, mirznig
problem is that of distributing or partitioning dynamic gha the communication cost among processors and maximizing the
data on the set nodes of a shared nothing compute clustede utilization. Before explaining why the two metrics may
and maintaining the distributions as the graph evolves owesmpete against each other, we describe shortly the model of
time. The distribution should optimize the overall perfamee computation for performing graph algorithms on a cluster of
of the cluster both in terms of computation and communicaemputers.
tion. Our second problem is to efficiently answer reachghili
queries in dynamic graphs. Reachability query tests whethge py|k Synchronous Parallel
there is at least one path between a given pair of source and
destination vertices in a particular snapshot of a timewengl It has been show in [7], [14] that systems based on
graph. The third problem we study is that of answerinfflaPReduce [15] are not always suitable when processing larg
subgraph queries in a large dynamic graph. This type @faphs. This is mainly because writing graph algorithms in
query finds subgraph instances within a given snapshot ofogm of map and reduce functions are not efficient because the
dynamic graph that match to a query graph. Both reachabilijate of the graph must get written to and read from HDFS
queries and subgraph queries have wide applications insgiveconstantly during each map and reduce job which are costly
areas such as XML query processing and bio-informaticaPerations.

While both of these queries have been well studied for staticBulk Synchronous Parallel (BSP) [16] introduced by L.
graphs, there is very little work on supporting these qudise Valiant in the 90's is a model of computation for parallel
dynamic graphs. For each of the three problems, we provigeocessing where processors are connected to each other
a formulation, we discuss why existing techniques fromistato form a distributed shared nothing cluster. Each of these
graphs cannot be trivially extended for dynamic graphs, af@mputers has their own thread of computation. Computation
we provide possible approaches for addressing the problerit BSP consists of iterations called supersteps. Each super

The rest of the paper is organized as follows. In section $tep consists of three ordered stages: Concurrent corgutat
we examine Cha”enges of partitioning TEGs among the nod@Bere each active computer does its Computation based on its
of a cluster. Section Il is an investigation about runninipcal data and asynchronous form other nodes, Communicatio
reachability queries in TEGs. We also explore the issudéere all of the computers send each other their messages and
of pattern matching for TEGs in section IV. Each of thesBarrier Synchronization in which finished processes wait fo
sections introduces some related concepts and formulamesqther unfinished processes to finish their communication so
problem; then reviews related works, and finally suggests diiey become synchronous.
approach. The last section is dedicated to conclusion of theUsing the BSP model of computation for performing an
paper. algorithm on a graph, one way to maximize the compute node

utilization - hence decreasing the time that they are idtetei
Il. TEG DISTRIBUTION ON CLUSTERS randomly assign the vertices of the graph to different campu

This section first shows the importance of graph partitignimodes. This way of assignment increases the node utilizatio
on the efficiency of any distributed graph processing algbecause upon completion of local computation on a vertex, th
rithm; and then, summarizes the available approaches. stde atertex will have to send messages to its adjacent nodesgsid
explore the pros and cons of each approach. We specificdflydifferent compute nodes (because of random assignment
consider the factors that affect the result of the partitigrof of vertices to nodes). However, this approach increases the
a time evolving graph. amount of messages need to be send among the compute nodes
resulting an increased communication cost.

On the other hand, in order to minimize the communication
Workload distribution - the distribution of data among @&ost one way is to partition the graph to a number of
set of processors - has been one of the fundamental issuebighly connected subgraphs with few edges among them and

any parallel and distributed processing applications. tMxfs distribute each of these partitions among different comput
the data sets in these applications are not regular in gteictnodes. However, this approach can lead to high idle time of
and can be presented in a graph-based form. Each nodeaihpute nodes hence wasting resources and decreasing the
such a graph represents a unit of data where some formnaofde utilization. This is due to the fact that the computatio
computation will take place while each edge represent ardepef the algorithm (based on BSP model of computation) stgrtin
dency between these units of data. Undoubtedly, the way dnem an initial partition can take long time to propagate
partitions such a graph and distributes the data nodes amémgughout all of vertices of the subgraphs residing in pthe
processor nodes of a cluster will affect the performance pértitions on other nodes because of the highly connected
computation. The performance of the system can be measusadcture of the initial subgraph as depicted in figure 1.eBas
with respect to two metrics, namely cost of communicatioon these two extremes, we propose ways and mechanisms that
among compute nodes in the cluster and utilization of noddsstributed graph-processing systems can utilize to ingpthe

in terms of the time that compute nodes are not idle. Aperformance.

A. Problem formulation



Source Shortest Path (SSSP) which have low cost of com-
munication comparing to PageRank may not benefit from
graph partitioning. The performance of such algorithmshman
improved by increasing the node utilization if the assigntne
of vertices to nodes is done in a random fashion. It is our
contention that the overheard of partitioning a graph tdlyig
connected subgraphs is not beneficial for computation such
SSSP
The dynamicity of the TEGs is through addition/deletion
of nodes or edges or both. This can take place within a
partition residing on a compute node or among partitions.
Dynamic repartitioning of subgraphs seems to be the logical
Fig. 1. Assignment of graph vertices to four processor based graph response. However, this should be done carefully because
partitioning algorithm dynamic repartitioning can be expensive, since the assghm
of vertices to compute nodes needs to be changed. The cost
C. Related Work is due to the fact that the graph processing system must make
sure that before communication phase of a BSP super-step
Pregel, Apache Giraph, Mizan [17] and GPS are some &farts, all vertices are aware of the possible new assigtsnoén
the BSP inspired systems. Pregel and Giraph distributéesrt their adjacent vertices to compute nodes so they can seind the
of a graph among the compute nodes randomly (in roumgessages to. This necessitates a repartitioning that isfiben
robin fashion). However, none of them consider the effecgsal. In other words, repartitioning should be performedewh
of graph partitioning algorithms on the computation of grap addition/deletion of nodes or edges pass a certain thréshol
based algorithms. Mizan considers an extra layer betwe®n f8lated to the connectivity and structure of the subgraphs.
graph algorithm API and the computation infrastructure. this manner, we can be sure that repartitioning takes place
can either perform a min cut on the graph to partition it tghen its benefit outweighs the cost.
many as compute nodes or use random assignment of nodes tphe other option that can benefit the communication cost is
partition the graph. This approach can suffer from expensithe incremental reallocation of a node in a subgraph to @noth
computation times. Moreover, it does not consider the nod@bgraph (processed by another processor). In this case wh
utilization of compute node, nor does it consider the TEGsg node in a subgraph starts communicating with another node
GPS is similar to other systems but has three main featurgsanother subgraph, we can send a replica of that node to the
It has an extend API to support graph algorithms that are bajBstination partition. This reduces the network commuitioa
vertex centric and global centric. It also considers dymam¢ost because instead of sending multiple messages we only
repartitioning of the graph based on messages to balanceiged to send one message between partitions to keep the
workload. Moreover it utilizes an optimization method te-di similar copies of the same node.
tribute high degree vertices across compute nodes. Howevelrinally, in order to improve the performance and maximize
it does not consider the graphs that are time evolving and h@ie node utilization, the way the compute nodes are configure
this affects the partitioning mechanisms. to perform the task is important. Our approach is to generate
more partitions than the available compute nodes. In this
manner, by reducing the size of the graph partitions we
As mentioned earlier both assigning the vertices randomdye making sure that the compute nodes have more lighter
and partitioning the graph into connected components wittorkloads to perform rather than a few heavy workloads. This
minimum edges among them have major benefits. Henceapgproach will also lower the overall runtime of the alganith
balanced trade-off between these two extremes will benadit the system. Since the run time of computation based on
any distributed graph processing system. One way to accoBSP is bounded by the slowest worker, by constructing smalle
plish this is to consider what factors affect the result af thworkloads for the compute nodes we are making sure the
partitioning of a time evolving graph. We believe three atpe slowest worker will finish the computation sooner. We are
should be considered: the computation being performed, thet aware of any distributed graph processing system that
dynamic structure of the graph and the way the compute nodesmsiders both of these two metrics while processing graph
are configured to perform the computation. Below we explaalgorithms on time evolving graph. Our approach can improve
each of them. the performance of the cluster based graph processingsyste
The main goal of partitioning is to reduce the number dike Pregel, GPS and Giraph.
inter-partition messages. Hence, algorithms that are apmm
nication intensive and have low computation cost at each
vertex will benefit most. Example of such algorithms are Consider a time evolving directed acyclic graph G. Let
PageRank [18] and Highly Connected Components (HC&¥1,Gs,...,Gy,...,G,} be the different snapshots of the
as implemented in [19]. Whereas algorithms such as Singleph. Let DifiG,, G,—1) represent the changes occurring

D. Our Approach

IIl. REACHABILITY QUERY IN TEGS



between snapshots, andG,_;. Note that the Diff between each incoming non-tree edge. Specifically, suppeseg) is a
any two snapshots can be represented as a union of ars®i-tree edge. During the spanning-tree traversal, whele no
of vertex additions, a set of vertex deletions, a set of edgeis reached, the linKv, y) is traversed as though it is a tree
additions and a set of edge deletions. edge and nodg is assigned a pre-order value. However, this
The reachability quenReach(v, w, ) seeks to find non-tree instance aof is treated as a leaf node (althougimay
out whether nodev was reachable from node in the ¢** have outgoing edges), and it is immediately assigned a post-
shapshot of the time evolving graph — the answer should beder value as well. This pair of values is stored in the pret a
TRUE if w was reachable from in G, and FALSE otherwise. post-order index table, but specifically marked as ‘nom-tre
. o ) Reachability testing is done by computing multipéachabil-
A. Reachability Analysis in Static Graphs ity instance setshrough recursive containment queries. The
There has been considerable interest in efficient answegachability testing in GRIPP i© (M — N), where M and N
ing of reachability queries in static graphs. Several apre the numbers of edges and nodes in the graph respectively.
proaches such as transitive closure, on-demand depth-first = L
traversal/breadth-first traversal, interval-based impx 2- B- Limitations of Existing Approaches
HOP indexing have been studied in the literature [20], [21], A naive way of applying the interval-based indexing strgteg
[22], [23], [24]. These various approaches form a spectruf@r answering ss-reachability queries is to index each smaip
with pre-computation of transitive closure and on-demar®f the graph using any of the current techniques. The ss-
graph traversal lying at its two ends [22]. Pre-computinggachabilitySSReach(v, w, ) can then be answered by
transitive closure has heavy indexing costs while the guetysing the index values corresponding to ¢ snapshot.
time is constant. On the other hand, on-demand traversal lagure 2 shows three snapshots of a time-evolving graph con-
no indexing costs but its query time @3(N + M), whereN  taining 8 nodes A through H (note that the nods a fictitious
and M are respectively the numbers of nodes and edges in tie@t node that is added by GRIPP to deal with certain special
graph. conditions). The figure also provides three tables comgini
Interval-based indexing has received considerable relseathe pre- and post-order indexes corresponding to the three
attention because it provides a good balance in the trag@apshots. In the tables “Tr’ and ‘Nt’ indicate index values
off between indexing costs and query-time. While the vario@tained by traversing tree and non-tree edges respactivel
interval-based index schemes share a common paradigm, theyv, if we want to answeReach(E, H, 3), we use the
do differ considerably from one another. We first discuss thiightmost table and recursively compute reachabilityanse
common aspects and then highlight the differences betweggi of E and B. Since H is in the reachability instance set of
them. Interval-based indexing techniques start by idgntgf B, the answer is TRUE.
a spanning tree (although GRAIL [22] uses multiple spanning
trees, we limit our discussion to a single spanning treejs Th
tree is traversed in the depth-first order and each node is
assigned a pre-order and post order number. The node-ids
and their pre- and post-order values are stored in a table.
The nodew can be reached from node using only the

Diff (G2, Gy)|
Add(E.F)
Delete(C,D)

edges of the spanning tree if and only if the pre-order value ® G OO

of w is in between the pre and post-order valuesvdfi.e., &< 0{ 0ifr(G3, G

vpre < wpre < vpost- DG | ey
The above pre- and post-order index-based querying has fen

to be augmented in some fashion to account for reachability
offered by paths that include at least one non-tree edge. Fig. 2. Reachability Query Processing in TEGs
The individual interval-based indexing schemes differ awh
they analyze such paths. For this purpose, the DualLabelingHowever, there are many drawbacks to this simple approach.
technique [21] maintains a transitive link table (TLT) thaFirst, the computational overhead of indexing every snajpsh
contains the transitive closure of the non-tree edges. @permp is going to be very high, as it will require traversal of
presents a sophisticated algorithm that utilizes the TLd@ arach snapshot. Second, the storage overheads are going to
the pre- and post-order index to answer reachability gaénie be high as well because of the need to store the index of
constant time. every snapshot. Both the computational and storage costs
The GRIPP indexing [20] on the other hand, does not prare exacerbated as the hierarchies increase in size and as
compute the transitive closure of non-tree edges. It exptirel they change more frequently. Third, there may be very few
table containing pre- and post-order indexes to also stone nqueries on some certain fraction of the snapshots in which
tree edges. Every node in the tree gets a pair of pre and peoesse indexing every version is wasteful both in terms ofgfer
order index values reflecting its position in the spannieg.tr and computation. However, it should also be noted that query
However, if a node, say has one or more incoming non-treedistribution in terms of snapshots is not known apriori. fou
edges, it receives an additional pair of values correspani  for large and frequently changing hierarchies, the hugeusrno



of indexing data causes the database to become bulky whRather than processing all changes in chronological ovder,

significantly increases query latencies. searchDiff(G4, G,) for a change that can possibly alter the
current reachability status, and if such an update is fouad w
C. Our Approach process it, and reflect its effect on the reachability stdfuso

Our approach for answering reachability queries in TE@J_Ch changes are found_the process terminates. In our_esxampl
is to index only a selective interspersed subset of snapshdtidure 2), when answering thiach(A, H,  G3) , we first
(using interval-based indexing technique). For exampte, Process the updaidd B, E (since B is reachable from A).
Figure 2, only snapshot§; is indexed. For the rest of the Subsequently, we process the updatesl E, F and Add
snapshots (e.gG> andGj in Figure 2, only the changes fromF> G to conclude thaReach(A, H, Gs) is TRUE.
the previous snapshot is stored in a Diff List or an Edit List Our approach has several advantages. First, since all snap-
(shown below each snapshot). shots need not be indexed, it provides significant reduction

The issue however isow to answer reachability queries onin index computation costs as well as index storage costs.
snapshots that are not indexéelg., in Figure 2 is H reachableSecond, it also improves the query latencies for very large
from A in G3)? In our approach, the queeach(v, w, TEGs. This may seem counter-intuitive (one would expect
G,) , whereG, is non-indexed will be answered in two step§igher query latencies when lesser number of snapshots are
— we answer the querReach(v, w, G,) (G, being the indexed). However, it is because the da}tabase is I(_ass bulky
temporally closest indexed snapshotip® and then checking When only a subset of snapshots are indexed which leads
whether the changes occurring betwe6p and G, alters 0 better query performance. Third, our approach provides
the reachability status. In other words, «f was reachable flexibility to the application in deciding the indexing cest
from v in G,, we need to figure out whether the changeat it can tolerate.
in Diff(G4, G,) make it unreachable, and vice-versa. In the
TEG shown in Figure 2 answering the qué&tgach(A, D,

Gs) will require us to figure out whether the changes in
Diff(Gs, G1) breaks the reachability (sindeeach( A, D,
G1) is TRUE). The straightforward approach of processin
all the changes in Diff¢,, G,) in chronological order and
reflecting each update’s effect @#, will turn out to be very

IV. TEG PATTERN MATCHING

Graph pattern matching is a fundamental problem in graph
8rocessing and can encompass a number of different proplems
ranging from subgraph isomorphism which is very restricted

inefficient because most of the changes (in some cases alf"‘(q{d Ng’-co(rjnpleteb[ZE;] ;mt” _gra(ljph S|mucljat|?_n ;/_vh|ch2|§ mEg)re_
the changes) will have no impact on the reachability status'C 2X€d anad can be determined in quadratic ime [26]. Basi-

Thus, our approach is to find out which changes in th%ally, it is finding all the matches of a given graph, called

. ) . . query graph, in an existent larger graph, called data graph.
Diff are likely to impact the reachabm.ty status and PIEESry define it more formally, assume that there is a data graph
only them. The central question thentiew do we correctly

figure out the changes in Difi{;, G,) that will impact the GV, E,1), vyhereV is the set of verticesE IS the set of

. dges, and is the set of the labels of the vertices. In general,
reachability of w from v?Changes that seem unrelated a ) X
) . : ..edges can be directed or undirected, but here we assume the
first glance might in fact have an effect on the reachabilit

. é’dges are directed and the vertices are labeled unless it is
because of other chronologically subsequent changes.rin gu

example, suppose we are processing the qRegch( A mentioned explicitly. There is also a pattern or query graph

H Gp) 7Thepghange\dd E P F might geem l?nrelited to,theQ(V:?’Eq’ l4) which forms the interesting pattern that we want
y 3) - 1 - . . . . .

query. However, this change along witdd B, E andAdd to find its occurrences in the data graph. The task is finding

F, Galters the reachability from A to H between snapsho%II subgraphs of that match the query). By definition,

! I !/ AN H H /A
o (V/,E'l") is a subgraph of if and only if V' is a subset
G1 and Gs. In our preliminary work, we have made twoOf V and E' is a subset off.

key observations that will help us address this challenge. i ) _
First, supposeReach(v, w, G,) evaluates to be TRUE Matching can be defined by structural or semantic match-
7 ) 1 p 1 . . . .
Diff( G4, G},) could possibly alter the reachability status if itN9 a”‘?' Its relateq algorithms can be deS|gneq for exact or
contains at least one edge deletiobe! et e(u, y) where approximate solutions. Moreover, these algorithms can be
designed and executed in sequential or parallel, cergchli

u andy are two consecutive nodes in a directed path from 7% i ) . )
w in G,. Second, supposReach(v, w, G,) evaluates to distributed fashion. Choice of matching can dramaticaffigc

be FALSE, Diff(G,, G,) could possibly alter the reachabilityemCi_enC_y and complexity_of the problem, and ir_1 this section
status if it contains at least one edge additioAdd(u, ) we first introduce some different types of matching. Then, we

; ; ; ; review some of the recent work in incremental graph pattern
where either: is a node that is reachable fromin G, or y ehi 4 distrbuted H omtt : h.9 F:? p py
is a node from whichw is reachable inG,. Note that both of Matching and distriouted graph pattern matching. regardin
these are necessary, but not sufficient conditions. Ouroaphr the fact that it is fairly a new research topic, we found oy f

will leverage these observations in the following broad mean NUmbers of related papers, and to the best of our knowledge
there is no work done to integrate incremental and disteidbut

1G, may temporally precede or succe€t. For simplicity, in this paper pgttern matching algprithms on Iarge data graphs. At theoénd
we assume that, precedess,. this section, we provide a formulation to address this bl



A. Different Graph Pattern Matching Paradigms In [30] a distributed algorithm is introduced for finding
isomorphic subgraph matches of a given query graph in a huge

Each of these paradigms may suite to a different type ?ID

applications. They are all well defined in the literatured an gta graph. They deploy graphs on Trinity which provides a

here we just summarize some of them. Subgraph isomorphigfﬁmbmed memoLy 'clc;'udt %nvwonmenta IE ﬂ:ﬁ'r systtem ané/
is more restricted and preserves topological structurehef given query graph 1S Tirst decomposed Dy the master hode

query, while graph simulation takes care of child relatfops into a few two-level tree structures, called STwig. Themsth

between different types. Graph simulation is studied in tr%lb-querles, which are set in an order to minimize the size of

recent years because its applications in analysis of Sodpit‘ermedlate results, will become aya|lable to all commyti
networks. nodes as a query plan. The matching results for these sub-

1) Subgraph isomorphismit is a bijective mapping be- queries are found via graph exploration in parallel on parts

tween a query grap@(V,, E,) and a subgraph of a data grapr?f a data graph locally available in the memory of each

; S node; these results should be joined to each other to find the
grgg’r%) wﬁlh gé ;Subzs;z:mgfngr/phi )cﬁ.'ai? tzesrgtijgffuhngt%n results for the complete graph query. The computing node;
£:V' -V, and for anys’ andw’ belonging toV” there are also neeq .to exchange some of thglr intermediate results in
. ’ w belgnging toV, such that edgév’, ') belongs toE" orQer to join them and create the final results of the query.
ifq:’;mdq only if edge(fuq w,) also belon957 t This work focuses on efficient web-scale graph processimg, s

) . O . 4o it avoids exhaustive usage of indices which is very common
2) Simulation and its extensiongraph simulation is less in most of graph processing systems. Indeed, they only use
restricted than traditional matching paradigms like isomo '

hism- h totically faster. It ol . ; atsimple string index which maps node labels to node IDs.
phism, hence, asymptotically faster. 1L piays an Importajg;q argued that the time needed for constructing indices an

role for receptly emerging applications of analyzing Sbc'?he capacity for their storage would be infeasible in wellesc
networks. IF Is said that gr?‘pﬁ’.(v’ E) matchgs a pattern graph processing. Index size and time of the proposed ap-
g(‘g"}f‘ﬂ V"/a graEhthm;n!;Iatlor) i thgre IS adbllna;]ry relt?]t'onproach, in addition to the query processing time, is congpare
= Iq bx ¥ suc a f' (u,u') € V ffhan u a/ve r? with estimation for some other existent systems. Howetver, i
fr;ar?e a/e, r]r;oreo(\j/erl, 0; every € qV fr:et IS au SleC seems that the proposed system is only compared with non-
tha (1{’” ),E V an hihso or Ieverlyg < dq , a,(“’g thﬁ distributed systems, and other possible solutions forieffic
ereisav € v suc affv,v') € Rand(u,v') € E. Wi distributed processing, such as distributed indexing, revie

respect to usefulness of graph simulation in analyzing neé’%plored. On the other hand, Trinity is built on top of a

applications of pattern matching, a few extensions have be&stributed memory storage layer which provides a traresgtar

introduced dgrlng r_ecent years SL.JCh as bounded S'mUIat'iﬂPerface for users to work with a distributed graph as if ésw
[27], strong simulation, and dual simulation [28]. stored in memory of a single machine. The subgraph matching
approach which is proposed in the paper is experimented on a
B. Related Work cluster of at most 12 machines, but it is not clear whethex it i
In many web applications data are generated and storedsitalable for a larger number of machines or not, considering
distributed manner. Even when web-scale data are storedtis fact that providing a transparent memory space is ngt ver
a single location, they are so large that they are distributgcalable inherently.
among machines of a cluster system in a data-warehousein [31] a distributed algorithm for graph simulation is
In order to efficiently process the huge graphs constructptbposed. They have also analyzed distributed algorittons f
from these data, a few distributed graph processing systegraph simulation and identified three complexity measures
are developed during the last years like Pregel, Trinity],[2%or their analysis: (1) visit time, which measures maximum
and GPS. Although providing an efficient distributed graptisiting time of a machine in a cluster system and indicdtes t
pattern matching can be very useful for extracting informaomplexity of interactions, (2) makespan, which is respons
tion out of big data, it is not very well explored. In facttime to the query from submitting query until when its
because of the huge size of the graph, the old approacheswer is ready, (3) data shipment, which is the total size of
are not applicable; for example, exhaustive indexing wdndd messages exchanged between machines of the cluster system
infeasible. Moreover, poor locality of real data graphssesu during computation. They have implemented and tested their
inefficiency in distributed processing. In the following,ew algorithm on a cluster of 16 machines; however, neither the
briefly explain recently suggested approaches in [30] addl [3algorithm nor its implementation is adapted to a widely ie us
about distributed graph pattern matching. cluster computing platform like Pregel, but it is implenmeuht
On the other hand, it is important to have incrementall in Python.
pattern matching in order to avoid running the same proeedur The study presented in [32] investigates incremental al-
for the whole data graph when it is a TEG. Considering thgorithms for simulation, bounded simulation, and subgraph
fact that it is relatively a new emerging field of researcleréh isomorphism. It specially analyzes whether the problenes ar
are only few papers on incremental pattern matching. [38] heounded or not. By the definition given in that paper, an
explored some aspects of this problem; however, it does matremental problem is said to be bounded if the cost of its
cover distributed incremental pattern matching. update is a function of the size of the changes in input and



output. For incremental pattern matching, the authors keepabels of their match’s children in the query graph. Thosd th

set of result graphs representing the found matches in tiae deannot satisfy this condition should leave S. Any vertexaluhi

graph. Then they adjust this result graph to update it basedremoves itself from S, will report it to all of its saved paten

the changes in data graph. When a vertex receives a removal message from a child, first
the child will be removed from its list of saved children, and

C. Our Approach then will be examined again to make sure it still satisfies the

We suggest an approach for efficiently processing disendition of being in S. If the remained children do not $tis
tributed subgraph matching on BSP framework. We also intéhe required ones, the vertex should remove itself from S and
grate a mechanism to support incremental processing whigport it to its all saved parents. This will be repeated| s
we believe can dramatically improve the response time plirified to only the true graph simulation matches. When there
graph queries on a distributed dynamic graph. For implés no more communication among the nodes which means they
mentation we use GPS which its architecture is very similail voted to halt, the master will broadcast to all the nodes a
to Pregel. It means that vertex-centric algorithms can lgks about the members of S.
implemented easily; in addition, it has an extension to Enab 2) Worker-centric:For this algorithm, the query is assumed
efficient implementation of algorithms composed of morenthao be a rooted directed graph. This assumption does not make
one vertex. In Pregel-like systems, each vertex is awartsof lose of generality because it can be proved that each ditecte
own label and its outgoing edges. graph can be decomposed to a few rooted directed graphs in

Assuming that a large directed data graptV, E,l) is such a way that the union of their graph simulation results
distributed among many workers according to a particuléy equal to the result of the initial graph. First, the master
partitioning paradigm, we use GPS features and graph expieadcasts the query to all workers. Each worker will find the
ration technique to efficiently find maximum graph simulatioset of potential matches for the query’s root vertex amog th
match in G for a given Query Q. The system contains onertices of G which are located at that worker using a local
master process and many worker processes. Each workeinidex. Then, the children of these vertices will be expldiad
responsible for a partition of G which may consist of mankaving the appropriate set of labels. It continues to tiséne
vertices. In general, a processing unit is dedicated to easitbgraphs while consequent matches vertices are found and
worker. The input of an appropriate algorithm would be wrong subgraph matches are removed.
directed graptQ(V,, E,,1,) as pattern (query) graph, and its
output would be the maximum match M in G for Q.

Following we explain two algorithms, the first one is a
purely vertex-centric algorithm which would be easier tdeo
and enjoys high level of parallelism; however, it may not be
very efficient when the number of vertices is large. The sdcon
one is at worker-centric and enjoys a distributed index for
finding vertices given a label in each worker. In more detail,
the distributed algorithms work as it follows:

1) Vertex-centric: At the first superstep, the master node
of the system after receiving a query graph will broadcast it
to all the workers. At the second superstep, any vertex of G
which has the same label in Q will flag its membership in a
set of match nodes, called S. Vertices in S need to know at  Fig. 3. A sample data graph G, query Q, and Result Graph
least one list of the labels for their children dictated bgith
potential match in Q. It is possible to have two vertices in Q In the aforementioned algorithms, vertices located at the
with the same label, so a vertex of G might match to mosame partition will be controlled by the same worker, and
than one vertex of Q; moreover, the correspondent vertexthere would be no real network communication among them.
Q may not have any child. Hence, members of S may ne&tle edges between vertices on different workers do not hurt
to remember more than one list or just one empty list as thiee accuracy of the algorithms, but decrease the perforepanc
legitimate labels of their children. Obviously, if the nuentof hence, an appropriate partitioning of G, using methods sug-
outgoing edges in a vertex is less than any list of its childregested in section II, will be useful to improve efficiency of
the vertex should remove itself from S. At the end of thithe system. Moreover, to address graph simulation matching
superstep, any member of S sends its ID to its all childrenin TEGs we borrow the idea @ésult graphsrom [32] to store

In the next superstep, vertices which have received tlee answer of different snapshots with their appropriateeti
message save the IDs of their parents, and reply back wdtamps in order to evolve between them. We make separate
their own label, ID, and the membership status in S. THists for requests of insert and delete, and add time stamps t
vertices receiving message in the next superstep are menmdmeh entry. Time stamps help to recognize which changes in
of S and can figure out if the label of their children in dat#he lists oflInsertandDeleteshould be considered for evolving
graph, returned by them in the messages, is a superset ofttieresult graph of one snapshot of G to the next snapshot. It

Result Graph



is obvious that deleting an edge from G can only diminish4]
the result if it already exists in the previous result graph.

Adding a new edge to G will be also considered with respeg;
to expansion of previous result graph. A sample data graph

G, a sample query Q, and the result graph of the simulati

matching in G for Q is illustrated in figure 3.

V. CONCLUSION

fg)

(17]

Research activity on processing very large data graphs on
cluster systems has increased lately. Common classes of pigg;

lems include graph partitioning, reachability, and supbra

pattern matching. As a form of big data, processing massive
data graphs requires innovation in the development of digg

tributed algorithms to run on high-performance clustersilgvh

innovation is needed for both distributed query procesaimdy
graph updates, particularly for massive time-evolvingphs
there is little work done in this area. This paper surveys tfizd]
state-of-the-art and discusses avenues for future rdselrc 21]
our ongoing work, we are going to implement approachés

suggested in this paper and evaluate them through expesmen
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