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Abstract—This paper is an early report of our continuing effort 

to provide a platform-independent framework so that 

information originators and security administrators can specify 

access rights to information consistently and completely, and that 

this specification is then rigorously enforced. To accomplish this 

objective it is necessary to link a security policy model to a policy 

language with sufficient expressive power to ensure logical 

consistency. For the purposes of this research we are using a 

modified Attribute-Role-Based Access Control (ARBAC) security 

model and the Web Ontology Language (OWL) with additional 

rules in a logic programming framework to express access policy, 

going beyond the limitations of previous attempts in this vein. In 

addition we are developing a mechanism using knowledge 

compilation techniques that allows access policy constraint 

checking to be implemented in real-time, via a bit-vector 
encoding that can be used for rapid run-time reasoning. 

Index Terms—access control policy, attribute-based, role-

based, Semantic Web, logic programming, knowledge 
compilation, social network, ontology, rule-based reasoning 

I.  INTRODUCTION 

This paper is an early report of our continuing effort to 
provide a platform-independent framework so that information 
originators and security administrators can specify access rights 
to information consistently and completely, and that this 
specification can then be rigorously enforced.  

Information sharing cannot be totally open for numerous 
sensitivity, privacy, and proprietary concerns. In an open and 
dynamic environment , it is difficult to specify and enforce a 
coherent and consistent security policy that spans multiple 
organizations, diverse computing environments and data 
systems, multiple dissemination platforms, and potentially 
thousands  of people with complex and overlapping roles and 
responsibilities, and multiple group memberships. 

Furthermore, it is difficult to enforce access rights 
consistently and coherently: the originator must be able to state 
the access rights clearly and unambiguously; a security 
administrator must implement the correct matching rules for a 
given computing environment; and the system must enforce the 
access rules correctly and efficiently.   

Access control of information protecting privacy, security, 
and also enabling a complex range of policy respecting those 
requirements, in a collaborative social environment is difficult. 

To accomplish these objectives it is necessary to link a 
security policy model to a policy language with sufficient 

expressive power to ensure logical consistency. For the 
purposes of this research we are using a modified Attribute-
Role-Based Access Control (ARBAC) security model and the 
Web Ontology Language (OWL) with additional rules in a 
logic programming framework to express access policy, going 
beyond the limitations of previous attempts in this vein. In 
addition we are developing a mechanism using knowledge 
compilation techniques that allows access policy constraint 
checking to be implemented in real-time, via a bit-vector 
encoding that can be used for rapid run-time reasoning.  

We have focused on three aspects: expressivity, 
adaptability, and efficiency. To this point, we have developed 
an architecture and concept of operations document, an overall 
design, a semantic policy model expressed in OWL and its 
instantiation, and are currently working to transform the policy 
model instance into a logic programming execution 
environment that includes rules. The latter itself is embedded in 
a Java program that interfaces with external services, e.g., 
obtaining identity and access tokens (and their specific attribute 
information) from the authentication service, and passing that 
information to the underlying logic programming execution. 
We expect soon to address optimization issues and integration 
of the access policy enforcer into the larger emerging 
collaborative environment and its processes and services. We 
intend to develop a mechanism that allows access policy 
constraint checking to be implemented in real-time via a bit-
vector encoding that can be used for rapid run-time reasoning. 

Our access control regime is one component of a larger 
effort (dubbed the MITRE Partnership Network (MPN)) to 
develop a large-scale collaborative environment for group-
based (social network) information sharing among disparate 
governmental, commercial, academic, and other communities. 

II. PROPOSED SYSTEM ARCHITECTURE 

The proposed system architecture of the semantic ARBAC 
system is represented in Figure 1. It consists of three processes 
which flow from left to right. The three processes are: 1) the 
Development time process; 2) the Transformation time process; 
and 3) the Execution (runtime) process. 

The Development time process involves: 1) the creation (or 
update) of the ARBAC policy ontology, represented in OWL 
and RDF, i.e.,  the semantic policy model SPM; and 2) the 
instantiation of the specific ARBAC policy (policies) to be 
transformed and deployed, i.e., the semantic policy instance 
(SPI). 
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The Transformation time process involves developing 
and/or generating in Prolog and Java: 1) the transformer 
interpreter that will take the SPI and generate the runtime 
semantic policy instance (RSPI), which is the bit-vector 
representation of the policy + rules; the attribute signature 
assignment engine (ASAE) which generates and updates the 
resource access registry (RAR); and the RAR, which captures 
the attributes of the resources in bit-vector representation, 
indexed by resource URI; 2) the runtime user access routine 
(RUAR); 3) the runtime inference engine (RTIE) which will 
execute the RSPI using the RUAR. The Transformation time 
process can thus be considered a knowledge compilation 
process, where source semantic models and their interpreting 
engines get transformed to efficient Execution time process 
objects. 

The Execution time process thus includes the RAR, ASAE, 
RTIE, and the RUAR, in addition to access to the Development 
and Transformation models and data. 

  
Fig. 1. Proposed Fast Semantic ARBAC System Architecture Proposed 

Fast Semantic ARBAC System Architecture 

III. FAST SEMANTIC ARBAC RUNTIME SYSTEM COMPONENTS 

This section briefly describes the proposed runtime system 
components of the Fast Semantic ARBAC system, as depicted 
in Figure 2. The runtime system components view represents 
most components of the system architecture modules displayed 
in Figure 1, but focuses on their relationships at runtime only. 

 

Fig. 2. ARBAC Runtime System Components 

A. Semantic Policy Module (SPM) 

The SPM consists of the OWL ontology classes, object 
properties, and data properties. The major classes will consist 
of: Subject (the person, organization, software that requests 

specific access to a resource), Action (the kind of access 
requested, e.g., read, write, create, delete, execute, etc.), 
Resource (the object needing to be accessed by a subject: 
executable, graphic, text, sound, video, hardware, etc.), 
Environment  (salient aspects of the space or session’s 
environment, e.g., risk or alert level, initial access vector (e.g., 
entry network domain), Role (traditional roles such as 
administrator, expert, end user, developer, etc., that are also 
related to groups), and related notions: Authentication, 
Security, ClassificationLevel, Identity, Time, etc.  

In addition, rules are a very important component of the 
SPM. Rules exist outside of the OWL ontology per se, but are 
based on the classes and properties specified in the ontology. 
Rules are expressed in a logic programming language such as 
Prolog. Rules are potentially recursive and express logical 
constraints among and across class and property values 
(instances). Some examples are given below. 

The SPM represents a set of generic semantic components 
for ARBAC policy, and thus constitutes a family of potential 
specific ARBAC instantiations. 

B. Semantic Policy Instance (SPI) 

The SPI is a specific instantiation  of the SPM. It consists of 
those classes, object properties, and data properties deemed 
needed for a specific ARBAC policy, populated with instances 
of those, e.g., specific Resources (specific executables, files, 
hardware, etc.), specific Subjects (specific persons, 
organizations, registered consumer executables, etc.), specific 
Groups (specific communities of interests + their inter-linkings 
or hierarchies, user-defined friendships groups, topic 
subscribers, etc.), and specific Environment objects and 
constraints (specific authenticity or identity standards, network 
entry points, etc.), and specific rules to be in effect. 

Note that there could be multiple SPIs created, e.g., one for 
normal-risk/normal-alert global situations, one for high-
risk/high-alert global situations, etc. In addition, it is probable 
that the high-level ARBAC controller (the Java application that 
controls the runtime components in Figure 2, above) could 
detect or be instructed to change to a high-risk/high-alert 
situation and swap the SPI in effect, by switching to a different 
runtime semantic policy instance (RSPI). 

C. Runtime Semantic Policy Instance (RSPI) 

The RSPI is the bit-vector-based optimized runtime model 

generated from the SPI. Because there are potentially multiple 

SPIs, there are respectively multiple RSPI. Each RSPI is 
generated by the access transformer interpreter (ATI),  

consisting of Prolog and Java code, into a bit-vector 

representation  of the specific portions (classes, properties, 

values) of the OWL and RDF model, along with the specific 

instances and rules, that constitutes the SPI. 

The RSPI is the optimized model executed by the Runtime 

Inference Engine (RTIE), the latter of which also uses the 

Resource Access Registry (RAR), which in turn has bit-vector 

representation (instances of resources and their access 

attributes). An important point is: the RSPI, RTIE, and the 

RAR all use the same, consistent bit-vector-based 

representation, because they were all generated or transformed 
by the same optimization scheme in the Transformation time 

process. 



 

 

D. Resource Access Registry (RAR) 

The RAR is the runtime data structure for resources, with 

individual resources indexed by URI/IRI and each resource 

having a bit-representation of its access attributes. 

Conceptually (notionally),  the RAR is depicted in Figure 3. 

The primary elements are the URI (which can be considered a 

unique identifier, and possibly also the address of the 

resource), a short description in English of the resource, and 

the bit-vector encoding of access attributes. The latter are 

simply notionally given at this point, since the actual encoding 

scheme is not yet worked out. It is possible that the bit-

encoding could be segmented, with distinct segments for class, 
group, environmental, and risk attributes, etc. 

Still to be determined are issues such as how the RAR is 

implemented, e.g., whether a hash scheme for the identifier is 

used, and the separation of human-usable and machine-usable 

elements. 

 
Fig. 3. Resource Access Registry (RAR) 

E. Attribute Signature Assignment Engine (ASAE) 

The ASAE is the module that assigns the attributes to the 

resources and is responsible for maintaining the bit-

representation of the attributes. It must do so in a fashion 

consistent with the runtime inference engine (RTIE), the RAR, 

and typically is at least partially generated by the 

Transformation time processes that provide the consistent bit-

encoding of all runtime bit-representations. 

F. Runtime Inference Engine (RIE) 

The RTIE is the main knowledge component of the 

ARBAC system: it enforces the prospectively multiple, bit-

represented RSPIs, which are the actual runtime policy 

instances in effect, provides efficient rule-based reasoning 

over the bit-represented RAR, and interacts with the RUAR, 

by which users interact with the runtime policy instances, 

resources, and the inference engine. Typically, the RTIE will 

also interact with the ASAE to update the RAR. The RTIE 
may invoke the SPI directly and other components. 

G. Runtime User Access Routine (RUAR) 

The RUAR is the primary component responsible for 

interaction at runtime with the user. It is invoked by the 

runtime controller, which is the encapsulating java application 

that also controls the external service interface. The RUAR is 

the internal API to the ARBAC. 

H. Parser 

The parser consists of the parser of OWL/RDF and related 

formats, the set of  translation routines (XSLT or otherwise,  

from OWL/RDF to logic programming, XML, and service 

syntaxes such as SOAP, WSDL, etc.) 

I. Encapsulating Java Application and External Service  

Interface 

The encapsulating Java application (with external service 

interface) controls the external interaction with the ARBAC 

system, providing an API for external services. This 

component also invokes the parser and related services 

required for transformation time and execution time processes. 

IV. ACCESS DECISION PROCESS FLOW 

The following depicts the access decision process flow 
involved. 

 Initially, the Policy/Rules KB is read and loaded 
(including any general rules that apply to all 
circumstances) by the inference engine.  

 Then a request comes in containing the Subject, 
Resource, Action, and Environment. 

 The Subject’s Group membership is looked up and 
formed. 

 An initial Resource/Group/Access may be performed. 

 For some common accesses these may be cached, or 
may require no further processing if a quick decision 
can be made. 

 Otherwise, the appropriate rule set is generated and 
populated with: any referenced access rule (pre-filtered 
to keep the KB small and fast), all facts about the 
Subject, Resource, Groups, and Environment, and 
General (generally applicable) rules. 

 The rule set is passed to a runtime inference engine 
which evaluates the truth of the permission statement 
(something along the lines of allow(Subject, Access, 
Resource)). 

 The Inference Engine passes back the permission 
decision. 

V. WALKTHROUGH 

The Semantic Policy Model (SPM) is the holder of much of 

the underlying knowledge. Its contents include: 

 Data Model and Ontology 

 Access Rules 

 Group Membership Rules 

 General Rules 

The Access Rules ultimately determine whether an action 
can be performed on a resource – we will retain the use of the 

term ‘Privilege’ to denote the pairing of actions and resources; 

each rule can be thought of as consisting of 3 parts: 



 

 

 

1. The head, or consequence, which is always a 

privilege (e.g., hasPrivilege(subject22, 

read,medicalRecord66) ). This leaves the body of the 

rule which for convenience is broken into 2 parts: 

2. The Group membership required to obtain the 
privilege, and 

3. Any additional requirements, expressed in terms of 

environment variables. 

Example:  

hasPrivilege(Subject, Action, Resource)  

  agent(Subject), member(Subject, Group),  
environmentalConstraints(Group, Action, Resource, 

Environment), groupWithPrivilege(Group, Action, 

Resource, Environment). 

Premises: 

 All access decisions can be expressed as a  

privilege    requirements rule. 

 All role or subject attribute requirements for access 

can ultimately be expressed as group membership. 

 Group membership is both dynamic and contextual. 

 Resources and their attributes are known a priori 

(otherwise, we couldn’t reason about them except in 

the most general sense); therefore it is possible to 

extensionalize much of the access constraints about 

them. 

o Definition of Extensionalize: bind all rule 

variables to concrete values (instances) in 

advance. 

o Note that if resources and attributes can change 

arbitrarily dynamically, then we will have to 

factor this in, and it will contribute to lesser 
performance. 

o In general, any variable at run-time (i.e., 

evaluated dynamically) will decrease 

performance. 

Knowledge of four things is used to resolve a permission 

question: 

1. The Subject (the entity requesting the permission) 

2. The Resource that the Subject is requesting 

permission about 

3. The Action that the Subject wishes to perform 

4. The Environment, which is a set of facts/assertions 
that the rules may take into account in order to make 

a permission determination. 

The result will be either a yes or no answer as to whether 

permission is granted (i.e., the privilege is allowed to the 

Subject). 

The overall process for determining whether to grant the 

permission is as follows: 

 The Subject’s Group Membership is determined and 

generated (possibly using knowledge about the 

Resource and the Environment). 

 All of the Access Rules applicable to the privilege are 
identified. 

 The Group Membership and Environment assertions 

are combined with the Access Rules and passed to the 

Inference Engine, which is then queried for the 

privilege. 

 If the query is satisfied, then permission is granted. 

Because group membership is both dynamic and 

independent of other decisions in this process, it is possible to 

isolate it as a separate function.  By doing this we can build a 
more efficient and scalable ARBAC system. 

The access rules can have fairly complicated group 

membership conditions (e.g., a doctor who is an associate of a 

patient’s primary care physician can have read access to that 

patient’s medical record).  Therefore, determining group 

membership may rely on a number of General Rules to help 

resolve the inferences (e.g., a doctor may be a member of a 

group; if another doctor is also a member of that group, then 

that doctor is an associate of the first doctor, etc.).  By making 

group membership dynamic we can keep the access rules 

general (i.e., the extensionalized access rule would only be 

fired if the dynamic assertion of group membership was 
generated by the Policy Instance and passed to the Inference 

Engine – which would only happen if the Subject were found 

to be an associate doctor based on the rules).  As will be seen, 

this allows Subject/Resource relations to be extensionalized, 

but prevents having to extensionalize every possible 

combination of Subject and Privilege. 

A. Example 

To illustrate all of this, suppose that Dr. Nick Riviera (an 

associate of Dr. Hibbert) wants to read Homer Simpson’s 

medical record (id: medicalRecord66); Homer’s primary care 

physician is Dr. Hibbert.  The request would come in to the 

RUAR. The RUAR would pass the Resource ID to the RTIE 

that would access the RAR to obtain all of the attributes (the 

attribute signature), which would then, along with the 

Subject’s ID (for Dr. Nick, his ID is person002) be returned to 

the RTIE which would compute all of the Subject’s group 

memberships based on the RSPI. The RTIE would infer that 
Dr. Nick is an associate of Dr. Hibbert, and then invoke the 

RAR to check to see which access rules apply to the resource 

and the requested action, and pass them back to the RTIE. The 

RTIE would (if required) modify the RSPI to update the 

runtime rules containing the requested privilege 

(read,medicalRecord66), and the Subject’s group membership, 

plus any environment assertions, and return them to the RTIE. 

It would then query the RTIE whether the privilege 

(read,medicalRecord66) was satisfiable by the runtime engine, 

and upon receiving a positive answer, would grant permission.   

In more detail, the SPM contains the following access 
rules: 

Rule 1: A doctor has Write access to a medical record if 

they are the patient’s primary care physician 

Rule 2: A doctor who is an associate of a patient’s primary 

care physician has Read access to that patient’s medical 

record 

Rule 3: A person may access any printer in the Springfield 

Medical Center if they are a member of the medical staff, 

and they are accessing the printer from inside the center 

(i.e., no external print jobs allowed). 

It also contains the following facts: 



 

 

TABLE I.  SEMANTIC POLICY MODEL FACTS 

person001 hasName Homer 
Simpson 

person002 hasName Julius Hibbert 

person003 hasName Nick Riviera 

medicalRecord66 type Medical record 

printer23 type Printer 

printer23 location facility21 

facility21 hasName Springfield 

Medical 

Center 

medicalRecord66 about person001 

medicalRecord66 primaryCarePhysician person002 

person002 occupation Physician 

person002 hasAssociate person003 

person002 employedBy facility21 

person003 employedBy facility21 

 

The SPM also contains the following inference rules, 

which associate a Subject with a Resource (for the purpose of 

Group Membership): 

 

isPrimaryPhysician(X,Y)  type(X,Medical record) & 
primaryCarePhysician(X,Y). 

 

hasAssociatePhysicianGroupMember(X,Y)  type(X,Medical 
record) & occupation(Y,Physician) & 

primaryCarePhysician(X,Z) & hasAssociate(Z,Y). 

 

isMedicalStaffGroupMember(X,Y)  type(X,Printer) & 

location(X,Z) & employedBy(Y,Z). 
 

Using these General Rules many of the Subject/Resource 

relations can be extensionalized and stored in a bit vector.  

Each predicate, whether from a relational property in the SPI 

or the head of a rule, is captured in a table that assigns a bit 

position to it: 

TABLE II.  ASSIGNMENT OF BIT REPRESENTATION 

predicateID predicate 

1 hasName 

2 type 

3 location 

4 about 

5 primaryCarePhysician 

6 occupation 

7 hasAssociate 

8 employedBy 

9 hasAssociatePhysician 

10 isMedicalStaffGroupMember 

 

The predicateID corresponds to the bit position in the next 

table, which captures (some) of the Subject/Resource 

Relations: 

 

 

TABLE III.  PREDICATE-ID BIT POSITION OF SUBJECT/RESOURCE 

RELATIONS 

Resource Subject Vector 

medicalRecord66 person001 0001000000 

medicalRecord66 person002 0000100000 

medicalRecord66 person003 0000000010 

printer23 Facility21 0010000000 

 

So the third table row contains the fact that person003 (Dr. 

Nick Riviera) and medicalRecord66 (Homer’s medical record) 

are in fact associated by predicate 9 (hasAssociatePhysician).  

This relationship would be passed to the RTIE. 

The RAR has the following bit vectors mapping Resources 

to Access Rules: 
 

medicalRecord66  1 1 0 

printer23  0 0 1 

 

This means that privileges associated with the resource 

‘medicalRecord66’ can be obtained (but aren’t necessarily 

guaranteed to be granted) by calling Access Rules 1 and 2.  

Similarly, privileges associated with the resource ‘printer23’ 

can be obtained by calling Access Rule 3.  These bit vectors 

are built a-priori by the system – the information needed to 

build them is contained in the model (e.g., printer23 is of type 
Printer, and Access Rule 3 only applies to resources of type 

Printer, etc.). 

The RAR also has the following bit vectors mapping 

Actions to Access Rules: 

 

Read  1 1 0 

Write  1 0 0 

Print  0 0 1 

 

This means that the Read privilege is granted by rules 1 

and 2 (Write subsumes Read, so Read is automatically granted 

if Write is granted – this would be a General Rule), Write is 
granted by rule 1, and Print is granted by rule 3. 

The complete set of associations between privileges and 

rules can then be built by comparing each row vector for each 

Resource and Action, and for each Rule (position) where both 

values are 1, then that corresponding rule would get passed to 

the RTIE. So if the requested privilege were (Read, 

medicalRecord66), the RTIE would get passed rules 1 and 2. 

If the requested privilege were (Write, medicalRecord66) the 

RTIE would get passed rule 1.  If the requested privilege were 

(Print, printer23) the RTIE would get passed rule 3.  All other 

privilege combinations would result in an empty set of access 
rules (meaning it would be impossible to obtain permission for 

the requested privilege). 

The RTIE already contains the relation 

hasAssociatePhysicianGroupMember(medicalRecord66,perso

n003) based on the inference from the General Rules 

described above.  by calling the rules  to compute Group 

Membership for the Subject. The Therefore, the RTIE has 

assembled the following knowledge base: 

 



 

 

Privilege(Read,medicalRecord66)  
isPrimaryPhysician(medicalRecord66,Y). 

Privilege(Read,medicalRecord66)  
hasAssociatePhysicianGroupMember(medicalRecord66,Y). 

hasAssociatePhysicianGroupMember(medicalRecord66,perso

n003). 

The knowledge base would be passed to the runtime 

portion of the RTIE, which would then be queried whether the 

assertion Privilege(Read,medicalRecord66) was satisfiable. 
Since it is, the permission for Dr. Riviera to read Homer’s 

medical file would be granted. 

Since all of the consequents in the knowledge base are 

ground (no variables), the resolution of the query should be 

extremely fast.  Also, the privileges themselves should be 

formed very quickly since they are the product of comparing 

bit matrices.  Group membership is the potential bottleneck, 

since a number of inferences (and potential calls to outside 

sources) must be made before all of the group determinations 

can be made. 

Extending the example, suppose Dr. Nick wanted to now 

print something on printer23, but he is working from his office 
across town (and not in the Springfield Medical Facility).  The 

requested privilege would be (Print,printer23), so the RAR 

would only pass rule 3 to the RSPI. Dr. Nick’s group 

membership for printer23 would be computed as 

isMedicalStaffGroupMember(printer23,person003) from the 

inference rules, but the RTIE would get passed the following 

knowledge base: 

 

Privilege(Print,printer23)  
isMedicalStaffGroupMember(printer23,X) & 

accessType(X,local). 

 

isMedicalStaffGroupMember(printer23,person003). 
accessType(person23,remote). 

 

The query whether Privilege(Print,printer23) is satisfiable 

would return false, since the accessType is remote rather than 

local.  Here the predicate ‘accessType’ represents an 

environment condition, which must be preserved in the Access 

Rule directly.  Its value would be computed by the ASAE, and 

passed (along with the other model information) to the RTIE. 

VI. RELATED WORK 

There is much previous related research across multiple 

dimensions (access control regimes, policy languages and 
approaches, specialized languages (and logics) vs. ontology 

approaches, knowledge compilation issues, bit-vector and 

other optimization approaches, social network approaches, 

privacy vs. security issues and approaches, etc.) that have 

influenced our current and impending work.   

In order to accomplish our objectives it was necessary to 

link a security policy model to a policy language with 

sufficient expressive power to ensure logical consistency. We 

extend the NIST Role-Based Access Control (RBAC) security 

model [22] and related approaches [25-26], as have many 

other researchers to include attributes, and extend the Web 

Ontology Language (OWL) with additional rules to express 

access policy using logic programming, and beyond the 

limitations of [29]. Unfortunately, given our own space 

limitations here,  we cannot do an extensive comparison of our 

approach across the multiples dimensions with other 

approaches, nor justly describe those other approaches.  
In addition, there is extensive research in more general 

policy-based approaches that could be employed also for 

access control [6-7, 28-29].  

There are other Semantic Web-based approaches (including 

[29]), some of which address more specifically social network 

types of applications [30-42]. 

For implementation in real-time, via a bit-vector or other 

efficient encodings that can be used for rapid run-time 

reasoning, we’ve looked at [1-5, 8-12, 24]. Much of the 

research for efficient taxonomic and type encodings that can 

be applied to ontologies and RDF graph structures go back 

many years, to the mid-19980s at the minimum. For bit-vector 
representation to support RDF triples, we investigated [14-20].  

Our own previous work addressed issues in translating 

OWL/RDF ontologies and Semantic Web Rule Language 

Rules (SWRL) [43], now generally superseded by the Rule 

Interchange Formal (RIF) standard [44], into logic 

programming for efficient runtime reasoning, and employing 

knowledge compilation techniques [45-49], which we also 

generalized to address services using first-order logic theorem 

provers and for ontology alignment [50-51]. 

VII. IMPENDING WORK 

Our effort shortly will be to address the following tasks. 

A. Optimization of the  Reasoning Engine 

Although we will shortly have some optimizations done – 

e.g., extensionalization (solving rules in advance as much as 

possible and tabling the results, which is much like relational 

database tabling done by deductive database engines), and 

delayed rule evaluation (partially instantiating rules, then 
delaying their further instantiation until the requisite 

information is received) – we will not have made substantial 

implementation of the second-level of optimization we intend, 

i.e., the bit-representation execution at runtime. 

B. Dynamically Swapping Out Policy Models 

We need the ability to swap out policy models, their 
instantiations, and the reasoning engines that enforce those 

policies on the fly based on changing environmental 

constraints. The paradigmatic environmental situation will be 

if there is a global change of threat level, e.g., we go to high-

threat from normal-threat. In a case like this, the policy must 

be able to change on the fly, based on communication of the 

increased threat level to the engine from elsewhere. This will 

allow a spectrum of more conservative policies to be enforced, 

enabling limited, defined access by specific groups or 

individuals, rather than just throttling shut access to the 

collaborative space (which could always be done if needed at a 
higher level).  



 

 

C. Integration 

We need to integrate the fast semantic ARBAC component 

with the other components of the emerging MITRE 

Partnership Network (MPN) portal. Currently we are working 

towards integration by building in expected quasi-service/data 

access to other MPN components, primarily authentication, 

but real integration must still be done. In addition, we desire to 

explore closer collaboration with non-MITRE, external 

researchers, implementers, and standards groups, who are 

working in the access control policy area. 
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