

Fast Semantic Attribute-Role-Based Access

Control (ARBAC) in a Collaborative Environment

Leo Obrst
a
, Dru McCandless

b
, David Ferrell

a

The MITRE Corporation
aMcLean, VA

bColorado Springs, CO

{lobrst, mccandless, ferrell}@mitre.org

Abstract—This paper is an early report of our continuing effort

to provide a platform-independent framework so that

information originators and security administrators can specify

access rights to information consistently and completely, and that

this specification is then rigorously enforced. To accomplish this

objective it is necessary to link a security policy model to a policy

language with sufficient expressive power to ensure logical

consistency. For the purposes of this research we are using a

modified Attribute-Role-Based Access Control (ARBAC) security

model and the Web Ontology Language (OWL) with additional

rules in a logic programming framework to express access policy,

going beyond the limitations of previous attempts in this vein. In

addition we are developing a mechanism using knowledge

compilation techniques that allows access policy constraint

checking to be implemented in real-time, via a bit-vector
encoding that can be used for rapid run-time reasoning.

Index Terms—access control policy, attribute-based, role-

based, Semantic Web, logic programming, knowledge
compilation, social network, ontology, rule-based reasoning

I. INTRODUCTION

This paper is an early report of our continuing effort to
provide a platform-independent framework so that information
originators and security administrators can specify access rights
to information consistently and completely, and that this
specification can then be rigorously enforced.

Information sharing cannot be totally open for numerous
sensitivity, privacy, and proprietary concerns. In an open and
dynamic environment , it is difficult to specify and enforce a
coherent and consistent security policy that spans multiple
organizations, diverse computing environments and data
systems, multiple dissemination platforms, and potentially
thousands of people with complex and overlapping roles and
responsibilities, and multiple group memberships.

Furthermore, it is difficult to enforce access rights
consistently and coherently: the originator must be able to state
the access rights clearly and unambiguously; a security
administrator must implement the correct matching rules for a
given computing environment; and the system must enforce the
access rules correctly and efficiently.

Access control of information protecting privacy, security,
and also enabling a complex range of policy respecting those
requirements, in a collaborative social environment is difficult.

To accomplish these objectives it is necessary to link a
security policy model to a policy language with sufficient

expressive power to ensure logical consistency. For the
purposes of this research we are using a modified Attribute-
Role-Based Access Control (ARBAC) security model and the
Web Ontology Language (OWL) with additional rules in a
logic programming framework to express access policy, going
beyond the limitations of previous attempts in this vein. In
addition we are developing a mechanism using knowledge
compilation techniques that allows access policy constraint
checking to be implemented in real-time, via a bit-vector
encoding that can be used for rapid run-time reasoning.

We have focused on three aspects: expressivity,
adaptability, and efficiency. To this point, we have developed
an architecture and concept of operations document, an overall
design, a semantic policy model expressed in OWL and its
instantiation, and are currently working to transform the policy
model instance into a logic programming execution
environment that includes rules. The latter itself is embedded in
a Java program that interfaces with external services, e.g.,
obtaining identity and access tokens (and their specific attribute
information) from the authentication service, and passing that
information to the underlying logic programming execution.
We expect soon to address optimization issues and integration
of the access policy enforcer into the larger emerging
collaborative environment and its processes and services. We
intend to develop a mechanism that allows access policy
constraint checking to be implemented in real-time via a bit-
vector encoding that can be used for rapid run-time reasoning.

Our access control regime is one component of a larger
effort (dubbed the MITRE Partnership Network (MPN)) to
develop a large-scale collaborative environment for group-
based (social network) information sharing among disparate
governmental, commercial, academic, and other communities.

II. PROPOSED SYSTEM ARCHITECTURE

The proposed system architecture of the semantic ARBAC
system is represented in Figure 1. It consists of three processes
which flow from left to right. The three processes are: 1) the
Development time process; 2) the Transformation time process;
and 3) the Execution (runtime) process.

The Development time process involves: 1) the creation (or
update) of the ARBAC policy ontology, represented in OWL
and RDF, i.e., the semantic policy model SPM; and 2) the
instantiation of the specific ARBAC policy (policies) to be
transformed and deployed, i.e., the semantic policy instance
(SPI).

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250750

The Transformation time process involves developing
and/or generating in Prolog and Java: 1) the transformer
interpreter that will take the SPI and generate the runtime
semantic policy instance (RSPI), which is the bit-vector
representation of the policy + rules; the attribute signature
assignment engine (ASAE) which generates and updates the
resource access registry (RAR); and the RAR, which captures
the attributes of the resources in bit-vector representation,
indexed by resource URI; 2) the runtime user access routine
(RUAR); 3) the runtime inference engine (RTIE) which will
execute the RSPI using the RUAR. The Transformation time
process can thus be considered a knowledge compilation
process, where source semantic models and their interpreting
engines get transformed to efficient Execution time process
objects.

The Execution time process thus includes the RAR, ASAE,
RTIE, and the RUAR, in addition to access to the Development
and Transformation models and data.

Fig. 1. Proposed Fast Semantic ARBAC System Architecture Proposed

Fast Semantic ARBAC System Architecture

III. FAST SEMANTIC ARBAC RUNTIME SYSTEM COMPONENTS

This section briefly describes the proposed runtime system
components of the Fast Semantic ARBAC system, as depicted
in Figure 2. The runtime system components view represents
most components of the system architecture modules displayed
in Figure 1, but focuses on their relationships at runtime only.

Fig. 2. ARBAC Runtime System Components

A. Semantic Policy Module (SPM)

The SPM consists of the OWL ontology classes, object
properties, and data properties. The major classes will consist
of: Subject (the person, organization, software that requests

specific access to a resource), Action (the kind of access
requested, e.g., read, write, create, delete, execute, etc.),
Resource (the object needing to be accessed by a subject:
executable, graphic, text, sound, video, hardware, etc.),
Environment (salient aspects of the space or session’s
environment, e.g., risk or alert level, initial access vector (e.g.,
entry network domain), Role (traditional roles such as
administrator, expert, end user, developer, etc., that are also
related to groups), and related notions: Authentication,
Security, ClassificationLevel, Identity, Time, etc.

In addition, rules are a very important component of the
SPM. Rules exist outside of the OWL ontology per se, but are
based on the classes and properties specified in the ontology.
Rules are expressed in a logic programming language such as
Prolog. Rules are potentially recursive and express logical
constraints among and across class and property values
(instances). Some examples are given below.

The SPM represents a set of generic semantic components
for ARBAC policy, and thus constitutes a family of potential
specific ARBAC instantiations.

B. Semantic Policy Instance (SPI)

The SPI is a specific instantiation of the SPM. It consists of
those classes, object properties, and data properties deemed
needed for a specific ARBAC policy, populated with instances
of those, e.g., specific Resources (specific executables, files,
hardware, etc.), specific Subjects (specific persons,
organizations, registered consumer executables, etc.), specific
Groups (specific communities of interests + their inter-linkings
or hierarchies, user-defined friendships groups, topic
subscribers, etc.), and specific Environment objects and
constraints (specific authenticity or identity standards, network
entry points, etc.), and specific rules to be in effect.

Note that there could be multiple SPIs created, e.g., one for
normal-risk/normal-alert global situations, one for high-
risk/high-alert global situations, etc. In addition, it is probable
that the high-level ARBAC controller (the Java application that
controls the runtime components in Figure 2, above) could
detect or be instructed to change to a high-risk/high-alert
situation and swap the SPI in effect, by switching to a different
runtime semantic policy instance (RSPI).

C. Runtime Semantic Policy Instance (RSPI)

The RSPI is the bit-vector-based optimized runtime model

generated from the SPI. Because there are potentially multiple

SPIs, there are respectively multiple RSPI. Each RSPI is
generated by the access transformer interpreter (ATI),

consisting of Prolog and Java code, into a bit-vector

representation of the specific portions (classes, properties,

values) of the OWL and RDF model, along with the specific

instances and rules, that constitutes the SPI.

The RSPI is the optimized model executed by the Runtime

Inference Engine (RTIE), the latter of which also uses the

Resource Access Registry (RAR), which in turn has bit-vector

representation (instances of resources and their access

attributes). An important point is: the RSPI, RTIE, and the

RAR all use the same, consistent bit-vector-based

representation, because they were all generated or transformed
by the same optimization scheme in the Transformation time

process.

D. Resource Access Registry (RAR)

The RAR is the runtime data structure for resources, with

individual resources indexed by URI/IRI and each resource

having a bit-representation of its access attributes.

Conceptually (notionally), the RAR is depicted in Figure 3.

The primary elements are the URI (which can be considered a

unique identifier, and possibly also the address of the

resource), a short description in English of the resource, and

the bit-vector encoding of access attributes. The latter are

simply notionally given at this point, since the actual encoding

scheme is not yet worked out. It is possible that the bit-

encoding could be segmented, with distinct segments for class,
group, environmental, and risk attributes, etc.

Still to be determined are issues such as how the RAR is

implemented, e.g., whether a hash scheme for the identifier is

used, and the separation of human-usable and machine-usable

elements.

Fig. 3. Resource Access Registry (RAR)

E. Attribute Signature Assignment Engine (ASAE)

The ASAE is the module that assigns the attributes to the

resources and is responsible for maintaining the bit-

representation of the attributes. It must do so in a fashion

consistent with the runtime inference engine (RTIE), the RAR,

and typically is at least partially generated by the

Transformation time processes that provide the consistent bit-

encoding of all runtime bit-representations.

F. Runtime Inference Engine (RIE)

The RTIE is the main knowledge component of the

ARBAC system: it enforces the prospectively multiple, bit-

represented RSPIs, which are the actual runtime policy

instances in effect, provides efficient rule-based reasoning

over the bit-represented RAR, and interacts with the RUAR,

by which users interact with the runtime policy instances,

resources, and the inference engine. Typically, the RTIE will

also interact with the ASAE to update the RAR. The RTIE
may invoke the SPI directly and other components.

G. Runtime User Access Routine (RUAR)

The RUAR is the primary component responsible for

interaction at runtime with the user. It is invoked by the

runtime controller, which is the encapsulating java application

that also controls the external service interface. The RUAR is

the internal API to the ARBAC.

H. Parser

The parser consists of the parser of OWL/RDF and related

formats, the set of translation routines (XSLT or otherwise,

from OWL/RDF to logic programming, XML, and service

syntaxes such as SOAP, WSDL, etc.)

I. Encapsulating Java Application and External Service

Interface

The encapsulating Java application (with external service

interface) controls the external interaction with the ARBAC

system, providing an API for external services. This

component also invokes the parser and related services

required for transformation time and execution time processes.

IV. ACCESS DECISION PROCESS FLOW

The following depicts the access decision process flow
involved.

 Initially, the Policy/Rules KB is read and loaded
(including any general rules that apply to all
circumstances) by the inference engine.

 Then a request comes in containing the Subject,
Resource, Action, and Environment.

 The Subject’s Group membership is looked up and
formed.

 An initial Resource/Group/Access may be performed.

 For some common accesses these may be cached, or
may require no further processing if a quick decision
can be made.

 Otherwise, the appropriate rule set is generated and
populated with: any referenced access rule (pre-filtered
to keep the KB small and fast), all facts about the
Subject, Resource, Groups, and Environment, and
General (generally applicable) rules.

 The rule set is passed to a runtime inference engine
which evaluates the truth of the permission statement
(something along the lines of allow(Subject, Access,
Resource)).

 The Inference Engine passes back the permission
decision.

V. WALKTHROUGH

The Semantic Policy Model (SPM) is the holder of much of

the underlying knowledge. Its contents include:

 Data Model and Ontology

 Access Rules

 Group Membership Rules

 General Rules

The Access Rules ultimately determine whether an action
can be performed on a resource – we will retain the use of the

term ‘Privilege’ to denote the pairing of actions and resources;

each rule can be thought of as consisting of 3 parts:

1. The head, or consequence, which is always a

privilege (e.g., hasPrivilege(subject22,

read,medicalRecord66)). This leaves the body of the

rule which for convenience is broken into 2 parts:

2. The Group membership required to obtain the
privilege, and

3. Any additional requirements, expressed in terms of

environment variables.

Example:

hasPrivilege(Subject, Action, Resource)

 agent(Subject), member(Subject, Group),
environmentalConstraints(Group, Action, Resource,

Environment), groupWithPrivilege(Group, Action,

Resource, Environment).

Premises:

 All access decisions can be expressed as a

privilege requirements rule.

 All role or subject attribute requirements for access

can ultimately be expressed as group membership.

 Group membership is both dynamic and contextual.

 Resources and their attributes are known a priori

(otherwise, we couldn’t reason about them except in

the most general sense); therefore it is possible to

extensionalize much of the access constraints about

them.

o Definition of Extensionalize: bind all rule

variables to concrete values (instances) in

advance.

o Note that if resources and attributes can change

arbitrarily dynamically, then we will have to

factor this in, and it will contribute to lesser
performance.

o In general, any variable at run-time (i.e.,

evaluated dynamically) will decrease

performance.

Knowledge of four things is used to resolve a permission

question:

1. The Subject (the entity requesting the permission)

2. The Resource that the Subject is requesting

permission about

3. The Action that the Subject wishes to perform

4. The Environment, which is a set of facts/assertions
that the rules may take into account in order to make

a permission determination.

The result will be either a yes or no answer as to whether

permission is granted (i.e., the privilege is allowed to the

Subject).

The overall process for determining whether to grant the

permission is as follows:

 The Subject’s Group Membership is determined and

generated (possibly using knowledge about the

Resource and the Environment).

 All of the Access Rules applicable to the privilege are
identified.

 The Group Membership and Environment assertions

are combined with the Access Rules and passed to the

Inference Engine, which is then queried for the

privilege.

 If the query is satisfied, then permission is granted.

Because group membership is both dynamic and

independent of other decisions in this process, it is possible to

isolate it as a separate function. By doing this we can build a
more efficient and scalable ARBAC system.

The access rules can have fairly complicated group

membership conditions (e.g., a doctor who is an associate of a

patient’s primary care physician can have read access to that

patient’s medical record). Therefore, determining group

membership may rely on a number of General Rules to help

resolve the inferences (e.g., a doctor may be a member of a

group; if another doctor is also a member of that group, then

that doctor is an associate of the first doctor, etc.). By making

group membership dynamic we can keep the access rules

general (i.e., the extensionalized access rule would only be

fired if the dynamic assertion of group membership was
generated by the Policy Instance and passed to the Inference

Engine – which would only happen if the Subject were found

to be an associate doctor based on the rules). As will be seen,

this allows Subject/Resource relations to be extensionalized,

but prevents having to extensionalize every possible

combination of Subject and Privilege.

A. Example

To illustrate all of this, suppose that Dr. Nick Riviera (an

associate of Dr. Hibbert) wants to read Homer Simpson’s

medical record (id: medicalRecord66); Homer’s primary care

physician is Dr. Hibbert. The request would come in to the

RUAR. The RUAR would pass the Resource ID to the RTIE

that would access the RAR to obtain all of the attributes (the

attribute signature), which would then, along with the

Subject’s ID (for Dr. Nick, his ID is person002) be returned to

the RTIE which would compute all of the Subject’s group

memberships based on the RSPI. The RTIE would infer that
Dr. Nick is an associate of Dr. Hibbert, and then invoke the

RAR to check to see which access rules apply to the resource

and the requested action, and pass them back to the RTIE. The

RTIE would (if required) modify the RSPI to update the

runtime rules containing the requested privilege

(read,medicalRecord66), and the Subject’s group membership,

plus any environment assertions, and return them to the RTIE.

It would then query the RTIE whether the privilege

(read,medicalRecord66) was satisfiable by the runtime engine,

and upon receiving a positive answer, would grant permission.

In more detail, the SPM contains the following access
rules:

Rule 1: A doctor has Write access to a medical record if

they are the patient’s primary care physician

Rule 2: A doctor who is an associate of a patient’s primary

care physician has Read access to that patient’s medical

record

Rule 3: A person may access any printer in the Springfield

Medical Center if they are a member of the medical staff,

and they are accessing the printer from inside the center

(i.e., no external print jobs allowed).

It also contains the following facts:

TABLE I. SEMANTIC POLICY MODEL FACTS

person001 hasName Homer
Simpson

person002 hasName Julius Hibbert

person003 hasName Nick Riviera

medicalRecord66 type Medical record

printer23 type Printer

printer23 location facility21

facility21 hasName Springfield

Medical

Center

medicalRecord66 about person001

medicalRecord66 primaryCarePhysician person002

person002 occupation Physician

person002 hasAssociate person003

person002 employedBy facility21

person003 employedBy facility21

The SPM also contains the following inference rules,

which associate a Subject with a Resource (for the purpose of

Group Membership):

isPrimaryPhysician(X,Y) type(X,Medical record) &
primaryCarePhysician(X,Y).

hasAssociatePhysicianGroupMember(X,Y) type(X,Medical
record) & occupation(Y,Physician) &

primaryCarePhysician(X,Z) & hasAssociate(Z,Y).

isMedicalStaffGroupMember(X,Y) type(X,Printer) &

location(X,Z) & employedBy(Y,Z).

Using these General Rules many of the Subject/Resource

relations can be extensionalized and stored in a bit vector.

Each predicate, whether from a relational property in the SPI

or the head of a rule, is captured in a table that assigns a bit

position to it:

TABLE II. ASSIGNMENT OF BIT REPRESENTATION

predicateID predicate

1 hasName

2 type

3 location

4 about

5 primaryCarePhysician

6 occupation

7 hasAssociate

8 employedBy

9 hasAssociatePhysician

10 isMedicalStaffGroupMember

The predicateID corresponds to the bit position in the next

table, which captures (some) of the Subject/Resource

Relations:

TABLE III. PREDICATE-ID BIT POSITION OF SUBJECT/RESOURCE

RELATIONS

Resource Subject Vector

medicalRecord66 person001 0001000000

medicalRecord66 person002 0000100000

medicalRecord66 person003 0000000010

printer23 Facility21 0010000000

So the third table row contains the fact that person003 (Dr.

Nick Riviera) and medicalRecord66 (Homer’s medical record)

are in fact associated by predicate 9 (hasAssociatePhysician).

This relationship would be passed to the RTIE.

The RAR has the following bit vectors mapping Resources

to Access Rules:

medicalRecord66 1 1 0

printer23 0 0 1

This means that privileges associated with the resource

‘medicalRecord66’ can be obtained (but aren’t necessarily

guaranteed to be granted) by calling Access Rules 1 and 2.

Similarly, privileges associated with the resource ‘printer23’

can be obtained by calling Access Rule 3. These bit vectors

are built a-priori by the system – the information needed to

build them is contained in the model (e.g., printer23 is of type
Printer, and Access Rule 3 only applies to resources of type

Printer, etc.).

The RAR also has the following bit vectors mapping

Actions to Access Rules:

Read 1 1 0

Write 1 0 0

Print 0 0 1

This means that the Read privilege is granted by rules 1

and 2 (Write subsumes Read, so Read is automatically granted

if Write is granted – this would be a General Rule), Write is
granted by rule 1, and Print is granted by rule 3.

The complete set of associations between privileges and

rules can then be built by comparing each row vector for each

Resource and Action, and for each Rule (position) where both

values are 1, then that corresponding rule would get passed to

the RTIE. So if the requested privilege were (Read,

medicalRecord66), the RTIE would get passed rules 1 and 2.

If the requested privilege were (Write, medicalRecord66) the

RTIE would get passed rule 1. If the requested privilege were

(Print, printer23) the RTIE would get passed rule 3. All other

privilege combinations would result in an empty set of access
rules (meaning it would be impossible to obtain permission for

the requested privilege).

The RTIE already contains the relation

hasAssociatePhysicianGroupMember(medicalRecord66,perso

n003) based on the inference from the General Rules

described above. by calling the rules to compute Group

Membership for the Subject. The Therefore, the RTIE has

assembled the following knowledge base:

Privilege(Read,medicalRecord66)
isPrimaryPhysician(medicalRecord66,Y).

Privilege(Read,medicalRecord66)
hasAssociatePhysicianGroupMember(medicalRecord66,Y).

hasAssociatePhysicianGroupMember(medicalRecord66,perso

n003).

The knowledge base would be passed to the runtime

portion of the RTIE, which would then be queried whether the

assertion Privilege(Read,medicalRecord66) was satisfiable.
Since it is, the permission for Dr. Riviera to read Homer’s

medical file would be granted.

Since all of the consequents in the knowledge base are

ground (no variables), the resolution of the query should be

extremely fast. Also, the privileges themselves should be

formed very quickly since they are the product of comparing

bit matrices. Group membership is the potential bottleneck,

since a number of inferences (and potential calls to outside

sources) must be made before all of the group determinations

can be made.

Extending the example, suppose Dr. Nick wanted to now

print something on printer23, but he is working from his office
across town (and not in the Springfield Medical Facility). The

requested privilege would be (Print,printer23), so the RAR

would only pass rule 3 to the RSPI. Dr. Nick’s group

membership for printer23 would be computed as

isMedicalStaffGroupMember(printer23,person003) from the

inference rules, but the RTIE would get passed the following

knowledge base:

Privilege(Print,printer23)
isMedicalStaffGroupMember(printer23,X) &

accessType(X,local).

isMedicalStaffGroupMember(printer23,person003).
accessType(person23,remote).

The query whether Privilege(Print,printer23) is satisfiable

would return false, since the accessType is remote rather than

local. Here the predicate ‘accessType’ represents an

environment condition, which must be preserved in the Access

Rule directly. Its value would be computed by the ASAE, and

passed (along with the other model information) to the RTIE.

VI. RELATED WORK

There is much previous related research across multiple

dimensions (access control regimes, policy languages and
approaches, specialized languages (and logics) vs. ontology

approaches, knowledge compilation issues, bit-vector and

other optimization approaches, social network approaches,

privacy vs. security issues and approaches, etc.) that have

influenced our current and impending work.

In order to accomplish our objectives it was necessary to

link a security policy model to a policy language with

sufficient expressive power to ensure logical consistency. We

extend the NIST Role-Based Access Control (RBAC) security

model [22] and related approaches [25-26], as have many

other researchers to include attributes, and extend the Web

Ontology Language (OWL) with additional rules to express

access policy using logic programming, and beyond the

limitations of [29]. Unfortunately, given our own space

limitations here, we cannot do an extensive comparison of our

approach across the multiples dimensions with other

approaches, nor justly describe those other approaches.
In addition, there is extensive research in more general

policy-based approaches that could be employed also for

access control [6-7, 28-29].

There are other Semantic Web-based approaches (including

[29]), some of which address more specifically social network

types of applications [30-42].

For implementation in real-time, via a bit-vector or other

efficient encodings that can be used for rapid run-time

reasoning, we’ve looked at [1-5, 8-12, 24]. Much of the

research for efficient taxonomic and type encodings that can

be applied to ontologies and RDF graph structures go back

many years, to the mid-19980s at the minimum. For bit-vector
representation to support RDF triples, we investigated [14-20].

Our own previous work addressed issues in translating

OWL/RDF ontologies and Semantic Web Rule Language

Rules (SWRL) [43], now generally superseded by the Rule

Interchange Formal (RIF) standard [44], into logic

programming for efficient runtime reasoning, and employing

knowledge compilation techniques [45-49], which we also

generalized to address services using first-order logic theorem

provers and for ontology alignment [50-51].

VII. IMPENDING WORK

Our effort shortly will be to address the following tasks.

A. Optimization of the Reasoning Engine

Although we will shortly have some optimizations done –

e.g., extensionalization (solving rules in advance as much as

possible and tabling the results, which is much like relational

database tabling done by deductive database engines), and

delayed rule evaluation (partially instantiating rules, then
delaying their further instantiation until the requisite

information is received) – we will not have made substantial

implementation of the second-level of optimization we intend,

i.e., the bit-representation execution at runtime.

B. Dynamically Swapping Out Policy Models

We need the ability to swap out policy models, their
instantiations, and the reasoning engines that enforce those

policies on the fly based on changing environmental

constraints. The paradigmatic environmental situation will be

if there is a global change of threat level, e.g., we go to high-

threat from normal-threat. In a case like this, the policy must

be able to change on the fly, based on communication of the

increased threat level to the engine from elsewhere. This will

allow a spectrum of more conservative policies to be enforced,

enabling limited, defined access by specific groups or

individuals, rather than just throttling shut access to the

collaborative space (which could always be done if needed at a
higher level).

C. Integration

We need to integrate the fast semantic ARBAC component

with the other components of the emerging MITRE

Partnership Network (MPN) portal. Currently we are working

towards integration by building in expected quasi-service/data

access to other MPN components, primarily authentication,

but real integration must still be done. In addition, we desire to

explore closer collaboration with non-MITRE, external

researchers, implementers, and standards groups, who are

working in the access control policy area.

ACKNOWLEDGMENT

© 2012, The MITRE Corporation. All Rights Reserved.
The views expressed in this paper are those of the authors

alone and do not reflect the official policy or position of The

MITRE Corporation or any other company or individual.

REFERENCES

[1] Abadi, Daniel J. , Adam Marcus, Samuel Madden, Katherine J.

Hollenbach. 2007. Scalable Semantic Web Data Management Using
Vertical Partitioning. In Proceedings of VLDB, pages 411~422,

September 2007.

[2] Ait-Kaci, Hassan. 1984. A Lattice-Theoretic Approach to Computation
Based on a Calculus of Partially-Ordered Type Structures. Ph.D thesis,

Computer and Information Science Dept., Univ. of Pennsylvania,
Philadelphia, PA.

[3] Ait-Kaci, Hassan; Robert Boyer; Patrick Lincoln; Roger Nasr. 1989.
Efficient Implementation of Lattice Operations. TOPLAS 11-1-1989.

http://www.csl.sri.com/users/lincoln/papers/toplas89.ps.gz.

[4] Blandford, D. K., Blelloch, G. E., and Kash, I. A. 2003. Compact
representations of separable graphs. In Proceedings of the Fourteenth

Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore,
Maryland, January 12 - 14, 2003). Symposium on Discrete Algorithms.

Society for Industrial and Applied Mathematics, Philadelphia, PA, 679-
688. http://portal.acm.org/citation.cfm?id=644219#.

[5] Blandford, D. K., Blelloch, G. E., and Kash, I. A. 2004. An

Experimental Analysis of a Compact Graph Representation. In
Proceedings of ALENEX04.

http://people.seas.harvard.edu/~kash/papers/BBK04.pdf.

[6] Bradshaw, J. M., Beautement, P., Breedy, M. R., Bunch, L., Drakunov,
S. V., Feltovich, P., Hoffman, R. R., Jeffers, R., Johnson, M., Kulkarni,

S., Raj, A. K., Suri, N., & Uszok, A. (2003). Making agents acceptable
to people. In N. Zhong & J. Liu (Ed.), Handbook of Intelligent

Information Technology. IOS Press.

[7] Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D. (1997).
KAoS: Toward an industrial-strength generic agent architecture. In J. M.

Bradshaw (Ed.), Software Agents. (pp. 375-418). Cambridge, MA:
AAAI Press/The MIT Press.

[8] Caseau, Y. ; M. Habib; L. Nourine; O. Raynaud. 1999. Encoding of

multiple inheritance hierarchies and partial orders. Computational
Intelligence 15 (1) (1999) 50-62.

[9] Dershowitz, Nachum. 2008. Bit Inference. Workshop on Practical
Aspects of Automated Reasoning, August, 2008, Sydney, Australia, pp.

26-35.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.341.

[10] Fall, A. 1995. Heterogeneous Encoding. In Proceedings of International

KRUSE Symposium: Knowledge Retrieval, Use, and Storage for
Efficiency, Gerard Ellis, Robert Levinson, Andrew Fall, Veronica Dahl,

eds., Santa Cruz, CA, Aug. 11-13, pp. 134-146 (1995).

[11] Krall, A., Vitek, J., Horspool, N.1997. Near optimal hierarchical
encoding of types. 11th European Conference on Object Oriented

Programming (ECOOP’97). Springer (1997).

[12] Li, N., B. N. Grosof, and J. Feigenbaum. 2000. A practically
implementable and tractable delegation logic. In Proc. of IEEE Symp. on

Security and Privacy, Oakland, CA, USA, May 2000.

[13] Li, N., J. Mitchell, and W. Winsborough. 2002. Design of a role-based

trust-management framework. Security and Privacy, 2002. Proceedings.
2002 IEEE Symposium, pages 114–130.

[14] McGlothlin, James P., Latifur Khan, Bhavani Thuraisingham. 2011.
RDFKB: A Semantic Web Knowledge Base. Twenty-Second

International Joint Conference on Artificial Intelligence (IJCAI) 2011.

[15] McGlothlin, James P., Latifur Khan. 2008. RDFVector: A Scalable Data
Model for Efficient Querying of RDF Datasets. http://

www.utdallas.edu/~jpm083000/ssDBM.pdf.

[16] McGlothlin, James P.; Latifur Khan. 2009. RDFKB: efficient support for
RDF inference queries and knowledge management. In Proceedings of

IDEAS, pages 259-266, September 2009.

[17] McGlothlin, James P.; Latifur Khan. 2010b. Efficient RDF data
management including provenance and uncertainty. In Proceedings of

IDEAS, pages 193-198, August 2010.

[18] McGlothlin, James P.; Latifur Khan. 2010c. A Semantic Web
Repository for Managing and Querying Aligned Knowledge. In

Proceedings of ISWC, November 2010.

[19] McGlothlin, James P.; Latifur R. Khan. 2010a. Materializing Inferred
and Uncertain Knowledge in RDF Datasets. In Proceedings of AAAI,

pages 1405-1412, July 2010.

[20] McGlothlin, James. 2010. RDFVector: An Efficient and Scalable

Schema for Semantic Web Knowledge Bases. PhD Symposium, 7th
Extended Semantic Web Conference (ESWC 2010), Heraklion, Greece.

May 30 – June 3, 2010. http:// www.utdallas.edu/~jpm083000/eswc.pdf.

[21] Moses, T. et al. 2005. eXtensible Access Control Markup Language
(XACML) Version 2.0. OASIS Standard, 200502. http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf.

[22] http://csrc.nist.gov/groups/SNS/rbac/.

[23] Neumann, Thomas, Gerhard Weikum. 2009. RDF-3X: a RISC-style
engine for RDF. In Proc. of VLDB, pages 647-659, September 2009.

[24] Preuveneers, D., Berbers, Y., 2006. Prime numbers considered useful:

Ontology encoding for efficient subsumption testing, Tech. Rep.
CW464. http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW464.

Department of Computer Science, Katholieke Universiteit Leuven,
Belgium (October 2006).

[25] Sandhu, R. 1998. Role-based access control. In M. Zerkowitz, editor,

Advances in Computers, volume 48. Academic Press.

[26] Sandhu, R., E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based

access control models. 1996. IEEE Computer, 29(2):38–47, February
1996.

[27] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and B.

Thuraisingham. 2008. ROWLBAC: representing role based access
control in OWL. In Proceedings of the 13th ACM symposium on Access

control models and technologies (SACMAT '08). ACM, New York, NY,
USA, 73-82. DOI=10.1145/1377836.1377849

http://doi.acm.org/10.1145/1377836.1377849.

[28] Tonti, G., J. M. Bradshaw, R. Jeffers, R. Montanar, N. Suri, and A.
Uszok. 2003. Semantic web languages for policy representation and

reasoning: A comparison of kaos, rei, and ponder. In Proceedings of the
2nd International Semantic Web Conference (ISWC2003). Springer-

Verlag.

[29] Uszok, Andrzej, Jeffrey M. Bradshaw, James Lott, Maggie Breedy,
Larry Bunch, Paul Feltovich, Matthew Johnson, Hyuckchul Jung. 2008.

New Developments in Ontology-Based Policy Management: Increasing
the Practicality and Comprehensiveness of KAoS, Policies for

Distributed Systems and Networks, IEEE International Workshop on,
pp. 145-152, 2008 IEEE Workshop on Policies for Distributed Systems

and Networks, 2008.

[30] H. C. Choi, “D-FOAF: Distributed identity management with access
rights delegation,” in Proc. 1st Asian Semantic Web Conference.

Springer, 2006, pp. 140–154.

[31] B. Carminati, E. Ferrari, and A. Perego, “Rule-based access control for
social networks,” in Proc. OTM 2006 Workshops, ser. LNCS, vol. 4278.

Springer, Oct 2006, pp. 1734–1744.

[32] W. Villegas, B. Ali, and M. Maheswaran, “An access control scheme for

protecting personal data,” in Proc. 6th Annual Conference on Privacy,
Security and Trust, 2008, pp. 24–35.

[33] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B.

Thuraisingham, “A semantic web based framework for social network
access control,” in Proc. 14th ACM Symposium on Access Control

Models and Technologies. ACM, 2009, pp. 177–186.

[34] T. Ryutov, T. Kichkaylo, and R. Neches, “Access control policies for

semantic networks,” July 2009, pp. 150–157.

[35] E. Barka and R. S. Sandhu, “Framework for role-based delegation
models,” in Proc. 16th Annual Computer Security Applications

Conference. IEEE Computer Society, Dec 2000, pp. 168–176.

[36] M. Shehab, A. Squicciarini, and G.-J. Ahn, “Beyond user-to-user access
control for online social networks,” in ICICS ’08: Proceedings of the

10th International Conference on Information and Communications
Security. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 174–189.

[37] P. Reddivari, T. Finin, and A. Joshi, “Policy-based access control for an

RDF store,” in Workshop on Policy Management for the Web, 2005, pp.
78–81.

[38] S. Dietzold and S. Auer, “Access control on RDF triple stores from a

semantic wiki perspective,” in Scripting for the Semantic Web
Workshop at 3rd European Semantic Web Conference (ESWC), June

2006.

[39] A. Dersingh, R. Liscano, A. Jost, J. Finnson, and R. Senthilnathan,
“Utilizing semantic knowledge for access control in pervasive and

ubiquitous systems,” Mobile Networks and Applications.

[40] M. Liu, D. Xie, P. Li, X. Zhang, and C. Tang, “Semantic access control

for web services,” vol. 2, April 2009, pp. 55–58.

[41] A. Jain and C. Farkas, “Secure resource description framework: an
access control model,” in SACMAT ’06: Proceedings of the eleventh

ACM symposium on Access control models and technologies. New
York, NY, USA: ACM, 2006, pp. 121–129.

[42] Masoumzadeh, Amirreza; James Joshi. 2010. OSNAC: An Ontology-

Based Access Control Model for Social Networking Systems. : Social
Computing (SocialCom), 2010 IEEE Second International Conference

on Social Computing, 20-22 Aug. 2010, Minneapolis, MN, pp. 751 –
759.

[43] Horrocks Ian. Patel-Schneider, Peter F. Boley, Harold. Tabet, Said.

Grosof, Benjamin. Dean, Mike. 2004. SWRL: A Semantic Web Rule

Language Combining OWL and RuleML.

http://www.w3.org/Submission/SWRL/ .

[44] Rule Interchange Format (RIF).

http://www.w3.org/2005/rules/wiki/RIF_Working_Group.

[45] Samuel, Ken; Leo Obrst; Suzette Stoutenberg; Karen Fox; Paul

Franklin; Adrian Johnson; Ken Laskey; Deborah Nichols; Steve Lopez;
and Jason Peterson. 2008. Applying Prolog to Semantic Web Ontologies

& Rules: Moving Toward Description Logic Programs. The Journal of
the Theory and Practice of Logic Programming (TPLP), Massimo

Marchiori, ed., Cambridge University Press, Volume 8, Issue 03, May
2008, pp. 301-322.

[46] Ken Samuel; Leo Obrst. 2007. Answer Set Programming: Final Report

on a Comparison Between ASP and Prolog for Semantic Web Ontology
and Rule Reasoning. October, 2007. MITRE Technical Report

MTR090069.

[47] Obrst, L; Stoutenburg, S; D. McCandless; D. Nichols; P. Franklin; M.
Prausa; R. Sward. Chapter 5: Ontologies for Rapid Integration of

Heterogeneous Data for Command, Control, & Intelligence. Chapter in:
Obrst, Leo; Terry Janssen; Werner Ceusters, eds. 2010 Ontologies and

Semantic Technologies for the Intelligence Community. Amsterdam,
The Netherlands: IOS Press. IOS Press book series: Volume 213

Frontiers in Artificial Intelligence and Applications. August, 2010.

[48] Obrst, Leo; Dru McCandless; Suzette Stoutenburg; Karen Fox;
Deborah Nichols; Mike Prausa; Rick Sward. 2007. Evolving Use of

Distributed Semantics to Achieve Net-centricity. Regarding the
“Intelligence” in Distributed Intelligent Systems, AAAI Fall

Symposium, Arlington VA, Nov. 8-11, 2007.

[49] Stoutenburg, Suzette; Leo Obrst; Deborah Nichols; Paul Franklin; Ken
Samuel; Michael Prausa. 2007. Ontologies and Rules for Rapid

Enterprise Integration and Event Aggregation. Vocabularies, Ontologies
and Rules for the Enterprise (VORTE 07), EDOC 2007, Annapolis, MD,

Oct. 15-19, 2007.

[50] McCandless, Dru; Leo Obrst. 2009. Dynamic Web Service Chaining
using OWL and a Theorem Prover. Third IEEE International Conference

on Semantic Computing, Berkeley, CA, USA - September 14-16, 2009.

[51] McCandless, Dru; Leo Obrst. 2009. Using Ontology Alignment to

Dynamically Chain Web Services. Ontology Matching Workshop,
poster, International Semantic Web Conference (ISWC) 2009, Oct. 25-

29, 2009, Chantilly, VA.

