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Abstract—In this paper we propose a novel workflow definition 

language—called the CLWfDL (Cloud Collaboration Workflow 

Definition Language)—for defining workflow in the working 

model of cloud collaboration. The language enables the 

distributed definition and concurrent revision of a workflow by 

multiple users from different places in the cloud. Users who 

participate in defining a workflow can use the language to specify 

their own requirements for the workflow execution. Each user 

can selectively contribute to part of the workflow definition. Any 

conflicts between the requirements of different users can be 

detected automatically. A single flow-control construct such as 

AND-join or OR-split can incorporate the requirements of 

multiple users. We have also implemented a translator of the 

proposed language that can translate the requirements collected 

from multiple users into other workflow definition languages. 

Keywords-Workflow Management System; WfMS; Workflow 

definition language; Cloud; Cloud collaboration 

I.  INTRODUCTION 

WfMSs (workflow management systems) are software 
systems that support coordination and cooperation among 
members of an organization when they are performing complex 
business processes [1]; these processes are modeled as 
workflow processes that are automated by the WfMS. The 
workflow model (also referred to as the workflow process 
definition) is the computerized representation of the business 
process that defines its starting conditions, stopping conditions, 
activities, and control and data flows among the involved 
activities. An activity is a logic step within a workflow that 
includes information about the starting and stopping conditions, 
the users who are allowed to participate (the participants), the 
tools and/or data needed to complete the activity, and the 
constraints on how the activity should be completed. The 
activities in a process are usually organized into a directed 
graph that defines the order of their execution, where nodes and 
edges in the graph represent activities and control flow, 
respectively. A workflow process instance represents the state 
of execution of a workflow process definition by the WfMS, 
and is usually controlled by the workflow engine. 

A workflow process definition is usually presented in a 
workflow definition (or description) language that is used to 
express the causal or temporal dependencies among activities 
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in the workflow process. There are several workflow definition 
languages, including XML (Extensible Markup Language) 
Process Definition Language (XPDL) [2], Business Process 
Execution Language (BPEL) [3], and “Yet Another Workflow 
Language” (YAWL) [4]. A workflow designer traditionally 
develops a workflow process definition using a graphical 
workflow editor, which provides an interface for defining and 
modifying workflows by arranging and connecting activities. It 
is possible to view and edit the workflow process definition, 
which the workflow editor stores in a workflow definition 
language. For example, the Enhydra JaWE is a graphical 
workflow editor that implements XPDL specification V2.1 
using the Business Process Model and Notation (BPMN) 
graphical notation [5][6]; while the BPEL Designer project, a 
graphical editor, adds comprehensive support to Eclipse for the 
definition, authoring, editing, deploying, testing, and 
debugging of BPEL 2.0 [7]. Generally speaking, these 
graphical workflow editors consider a workflow as a directed 
graph that illustrates the execution sequence of the activities. 
Activities and flow-control constructs

1
 are represented by the 

nodes, and transitions are represented by the edges in a directed 
graph. 

Cloud collaboration is an emerging way of sharing and co-
authoring documents through the use of cloud computing, 
whereby documents or objects are uploaded to central cloud 
servers, where they can be accessed by others (e.g., Google 
Docs and Google Calendar [8][9]). Cloud collaboration 
technologies allow users to upload and edit documents or 
objects within the cloud. Businesses are now increasingly 
switching to the use of cloud collaboration. New advances in 
cloud computing and collaboration are being prompted by the 
increasing need for firms to operate in an increasingly 
globalized world. Collaboration in this context refers to the 
ability of workers in a company to work together 
simultaneously on a particular task. With cloud collaboration 
users do not have to be in the same room or even the same 
country to effectively work together toward a common goal. In 
today’s globalized society, having the capability to work 
together effectively is important to the productivity of an 
organization, and cloud collaboration tools are ideal for 
fostering this. In the past, most collaborations involving the 
production and editing of documents would have to be 
completed face to face. However, collaboration has become 
more complex, now involving working with people all over the 

                                                           
1

 Common flow-control constructs of workflow process include “IF”, 
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world in real time on a variety of different types of documents 
or objects, and using different devices. 

This paper addresses the issue for defining the workflow 
process by cloud collaboration, which we show is not possible 
using a traditional workflow definition language. We propose a 
new workflow process definition language and framework 
targeting a collaborative definition of the workflow process. 
One of the main features of cloud collaboration is that multiple 
people work together simultaneously on a particular task. 
Consider the situation that multiple users from one or more 
organizations are working on defining a workflow process. 
Referring to Figure 1, the traditional way for n users (u0, u1, 
u2, …,un–1) to define a workflow process collaboratively is for 
the users to specify their requirements [RQ(u0), RQ(u1), …, 
RQ(un–1)] about the execution of a workflow process, which 
contain the proposed activities and the causal or temporal 
relationships between them in a workflow process. A workflow 
administrator then analyzes these requirements and employs a 
graphic workflow editor to make a workflow definition that 
will be saved in a specific workflow definition language. 
Finally, a workflow engine can read the workflow definition to 
control the execution of this workflow process. Sometimes the 
requirements [RQ(u0), RQ(u1), …, RQ(un–1)] may conflict with 
each other. For example, RQ(ui) contains the requirement that 
activity E can be started only when both activities A and B are 
finished and RQ(uj) contains the requirement that activity E 
should be started immediately when either activity C or D is 
finished. The workflow administrator should report all the 
conflicts to users after performing the system analysis in order 
for users to revise their requirements so as to remove these 
conflicts. If multiple users revise an existing workflow 
definition, the workflow administrator should read the revised 
requirements and then modify the workflow definition in a 
graphical workflow editor. Users are generally not allowed to 
edit an existing definition directly, and especially not edit it 
concurrently. 
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Figure 1. Traditional way to define a workflow process by multiple users 

In the follows, we use a scenario to demonstrate that the 
traditional working model is inappropriate if we want to define 
a workflow process by cloud collaboration. Assume that there 
are four persons, Alice, Peter, John, and Bruce, who are 
chairmen from four communities in different universities. They 
are going to jointly organize a party for members in their 
communities. They want to define a workflow process which 
prepares this party so that they can use a WfMS to coordinate 
their works. Because their universities are located in different 
cities, they try to reduce the cost by defining a workflow 
process without meeting in the same location. They decide to 
employ the Google Docs to define this workflow process 
collaboratively. First, the four persons share a Google 
document. This document summarizes all the necessary 
activities in the workflow. They collaboratively edit this 

document. Assume that it results in a document as shown in 
Table 1. The workflow process has twelve activities. 

TABLE 1. THE ACTIVITIES OF THE WORKFLOW 

Activities Description  

Start Workflow starts 

End Workflow ends 

A1 Estimate the number of participants 

A2 Book a place and decide the party time 

A3 Reserve facilities and food 

A4 Make Promotional materials  

A5 Book a rain shelter 

A6 Make and deliver  propaganda posters 

A7 Build a home page 

A8 Participants make registration 

A9 Book accessibility equipment 

A10 Reserve food for vegetarians 

Second, Alice, Peter, John, and Bruce need to define the 
causal or temporal relationships between these activities. To 
avoid the concurrent revision problem, they decide to use the 
form tool in Google Docs to collect their workflow 
requirements [11]. It is a tool to collect information quickly 
from multiple persons. Each person submits his own forms and 
the system will collect all the submitted forms and produce a 
report which is a table. The involved people can read the table 
which is composed of submitted forms before they submit their 
own forms. Assume that their submission of forms generates 
Table 2. Note that the submission time of a form and ID of the 
submitter are also shown in the table. Actually, Alice and 
Bruce submitted two forms. 

TABLE 2. THE WORKFLOW REQUIREMENTS OF ALICE, PETER, JOHN, AND 

BRUCE 

Timestamp User User Requirements 

T1 Alice 

A1 should be started after workflow starts. 

A1 should be finished before starting A2. 

A2 should be finished before starting A4. 

A4 should be finished before starting A6 and A8. 

T2 Peter 

A2 should be started after workflow starts. 

A2 should be finished before starting A3. 

A3 should be finished before starting A4. 

T3 John 
A8 should be finished before starting A9 

A9 should be finished before workflow ends. 

T4 Bruce 

If the probability of precipitation is bigger than 60% on 

the party date, A5 should be started after A2 finished. 

A4 should be finished before starting A7 and A8. 

T5 Alice 
A8 should be finished before starting A10. 

A10 should be finished before workflow ends. 

T6 Bruce A6 and A7 should be finished before workflow ends. 

 
Finally, Alice, Peter, John, and Bruce need to hire a person 

to analyze the requirements shown in Table 2. That person 
plays a role of the workflow administrator. In the working 
model shown in Figure 1, all editing of the workflow definition 
should be performed by the workflow administrator. The 
workflow requirement in a natural language usually has to be 
analyzed by a human because no tool is available to 
automatically translate the numerous requirements into a 
workflow process definition. In this situation, whenever any 
user updates his or her workflow requirement or supplies a new 
requirement, the workflow definition cannot be amended 
automatically. The working model therefore does not fit the 
working model of cloud collaboration. 



One of the solutions that addresses the inadequacy of the 
workflow model shown in Figure 1 is to give each user the 
privileges necessary to revise the workflow definition in a 
graphical workflow editor. Without loss of generality, we 
assume that multiple users are allowed to edit a directed graph 
simultaneously, because a workflow definition is usually 
modeled as a directed graph [2][3][4]. Consider a simple 
workflow definition of a workflow process that consists of 
three activities as shown in Figure 2A. In this example, user ui 
is going to add an activity D after activity A, as shown in 
Figure 2B, and user uj is going to remove activity B, as shown 
in Figure 2C. It is obvious that the final workflow process 
should be the one shown in Figure 2D. Users ui and uj can 
revise the workflow definition shown in Figure 2A 
concurrently. User ui would employ a graphical workflow 
editor to perform the following operations: OPi,1—remove edge 
(A, B), OPi,2—add node D, OPi,3—add edge (A, D), and 
OPi,4—add edge (D, B); while user uj issues the following 
operations: OPj,1—remove edge (A, B), OPj,2—remove edge (B, 
C), OPj,3—remove node B, and OPj,4—add edge (A, C). Since 
the two users are working concurrently, they read the same 
definition and their operations will interleave. It seems 
impossible to find a suitable interleaving that would allow their 
operations to execute properly. For example, if we execute 
operations in the order (OPj,1, OPj,2, OPj,3, OPj,4, OPi,1, OPi,2, 
OPi,3, OPi,4), operations OPi,1 and OPi,4 cannot be executed 
because activity B does not exist after the execution of 
operations OPj,1, OPj,2, OPj,3, and OPj,4. This kind of concurrent 
editing error occurs when multiple users are trying to alter 
specific data items simultaneously [12]. It can be prevented by 
the restriction of allowing only a single user to edit the 
workflow definition at a time, which can be implemented by a 
lock mechanism [13]. However, employing a lock mechanism 
to prevent concurrent editing has two drawbacks: (1) it may 
result in inefficiency, since a user might lock a workflow 
definition for editing for too long, resulting in a bottleneck; and 
(2) there is no mechanism to prevent a user from modifying the 
requirements of other users. 
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Figure 2. A sample workflow definition 
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Figure 3. Cloud collaboration of the workflow definition 

This paper proposes a working model for cloud 
collaboration in workflow definition. Referring to Figure 3, 
consider n users (u0, u1, u2, …, un–1) who are wanting to define 
a workflow process collaboratively. These users specify their 
requirements for workflow executions [RQ(u0), RQ(u1), …, 
RQ(un–1)], and a translator, which could be a computer 

program, reads these requirements and translates them into a 
workflow definition that defines an appropriate workflow 
process. A human is not needed to analyze the workflow 
requirements, and each user contributes to part of the workflow 
definition. Whenever a user ui revises his/her own requirement, 
RQ(ui), the translator updates the workflow definition 
accordingly. It is possible that multiple users will submit their 
requirements concurrently, in which case the translator can still 
generate the revised workflow definition as long as there is no 
conflict within RQ(u0), RQ(u1), …, and RQ(un–1). In cases 
where there is a conflict, the translator informs the involved 
users immediately, who then need to revise their requirements 
and submit them accordingly. This process is repeated until an 
agreed workflow definition is finally obtained from multiple 
users. 

We propose a workflow definition language to support 
collaborative workflow definition in the cloud. Consider n 

users (u0, u1, u2, …, un–1), where each user ui (0i<n) specifies 
his/her workflow requirement RQ(ui) distributively. RQ(ui) 

(0i<n) is part of the definition of a workflow process. A 
translator can read all the requirements [RQ(u0), RQ(u1), …, 
RQ(un–1)] to construct a complete workflow process definition. 
The translator can also determine if there is any conflict 
between these workflow requirements. Users are allowed to 
revise their workflow requirement concurrently, but they are 
not able to modify the requirements of other users. A human 
does not need to analyze the workflow requirements. 

This paper is organized as follows. Section II proposes a 
novel definition language that supports workflow definition by 
cloud collaboration. Section III discusses how to deal with the 
situation when there is conflict among the requirements of 
different users. Section IV summarizes the capability for 
distributed definition and concurrent revision provided by the 
proposed definition language. Section V presents an API to 
support the implementation of the translator shown in Figure 3 
based on the proposed definition language. Section VI surveys 
previous work, and conclusions are drawn in Section VII. 

II. A DEFINITION LANGUAGE FOR COLLABORATION 

WORKFLOW DEFINITION 

This section presents a workflow definition language that 
fits the working model of cloud collaboration, which is called 
the CLWfDL (Cloud Collaboration Workflow Definition 

Language). As we have mentioned, each user ui (0i<n) 
specifies his/her workflow requirement RQ(ui) distributively. 
In the CLWfDL, RQ(ui) consists of a set of rules, where each 

rule  is either (x ⊱{, f(z)} y) or (x ⊰{, f(z)} y), defined as follows: 

 “x” and “y” are activities in the defined workflow 
process, which are called the antecedent and consequent 

activities of , respectively.  

  “μ” specifies the relationship between “x” and “y”. f(z) 
is a Boolean predicate, where “z” represents the set of 
parameters for evaluating the predicate. f(z) can be 

absent, in which case the rule is either (x ⊱ y) or (x ⊰ y).  

  “⊱” and “⊰” are used to specify the type of “μ”, being 
join and split, respectively.  



We now describe the abstract meaning of the two different 
types of rules. First, we consider using the CLWfDL to define 
the AND-join relationship between multiple activities. 
Referring to Figure 4, the rule (x ⊱AND-join y) means that activity 
x is one of the activities that enables the AND-join transition to 
make activity y start (Figure 4A), while (x ⊱OR-join y) means that 
activity x is one of the activities that enables the OR-join 
transition to make activity y start (Figure 4B). Similarly, (x 
⊰OR-split y) indicates an OR-split construct (Figure 4C). These 
three types of rules can be associated with a Boolean predicate, 
as shown in Figure 4D, E, and F.  
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…
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Figure 4. Example CLWfDL rules 

In the CLWfDL, a single flow-control construct such as 
AND-join, OR-join, or OR-split can comprise rules from 
different users. For example, consider the situation where the 
requirements of Alice, John, and Bruce are RQ(Alice) = {…, 
A10 ⊱AND-join End, …}, RQ(John) = { …, A9 ⊱AND-join End,…}, 
and RQ(Bruce) = { …, A6 ⊱AND-join End, A7 ⊱AND-join End,…}, 
respectively. This requires the workflow definition to contain 
the AND-join flow-control construct involving activities A6, 
A7, A9, A10, and End, as shown in Figure 5. This construct 
means that activities A6, A7, A9, and A10 have finished if and 
only if End has started. Also, we can employ the AND-join 
construct to define a sequence relationship between activities. 
For example, the two rules (A ⊱AND-join B) and (B ⊱AND-join C) 
define the sequence relationship of A, B, and C as shown in 
Figure 2A. 

End

A6

AND-
join

A7

A9

A10

…

…
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…

…

 
Figure 5. An AND-join construct 

To show the defining power of CLWfDL rules, we first 
demonstrate how to use them to define all the flow-control 
constructs defined in BPEL that contain <sequence>, <if>, 
<while>, <repeatUntil>, <flow>, <pick>, sequential 
<forEach>, and parallel <forEach>. In [14], Appendix A 
shows illustrative directed graphs and the corresponding 
CLWfDL rules that implement these constructs. Appendix B 
discusses how to use CLWfDL rules to define other advanced 
flow-control constructs. 

We now discuss how to make a translator for CLWfDL 
rules as shown in Figure 3. Our idea is to design an algorithm 
that can translate a set of CLWfDL rules into a directed graph 
in which nodes are activities and flow-control constructs and 
edges are transitions. The workflow definitions for existing 
workflow description languages can then be generated 
according to the directed graph so that we can employ an 
existing workflow engine to provide the workflow enactment 
service (see Figures 1 and 2). 

Consider n users (u0, u1, u2, …,un–1), where each user ui 

(0i<n) specifies his/her workflow requirement RQ(ui). The 
workflow enactment service should satisfy RQ(u0), RQ(u1), …, 
and RQ(un–1). Assume that RQ(ui) consists of a set of CLWfDL 
rules. A system is needed that controls the execution of the 
workflow process according to rules in RQ(u0) ⋃ RQ(u1) ⋃ … 
⋃ RQ(un–1). We employ the following notations to explain our 
idea: 

 Γ is the set of all rules from all users in the workflow 
definition; that is, Γ = RQ(u0) ⋃ RQ(u1) ⋃… ⋃ RQ(un–1).  

 Φa,μ(Γ) denotes a set of join rules in Γ that have the ⊱ 
type of “μ” and an identical consequent activity “a”. 

Thus, we have Φa,μ(Γ) = {  |  = (x ⊱ a) or  = (x ⊱,f(z) 

a),   Γ }. 

 Ψa,μ(Γ) denotes a set of split rules in Γ that have the ⊰ 
type of “μ” and an identical antecedent activity “a”. 

Therefore, we have Ψa,μ(Γ) = {  |  = (a ⊰ y) or  = (a 

⊰,f(z) y),   Γ }. 

 The set of antecedent activities of a set of rules ℝ, 
denoted AAS(ℝ), consists of the union of the antecedent 
activities of rules in ℝ. If the rule has a Boolean 
predicate, the activity is associated with this predicate. 

Thus, we have AAS(ℝ) = { x | (x ⊱ a)  ℝ } ⋃ { xf(z) | 

(x ⊱,f(z) a)  ℝ } ⋃ { x | (x ⊰ a)  ℝ } ⋃ { xf(z) | (x ⊰,f(z) 

a)  ℝ }. 

 The set of consequent activities of a set of rules ℝ, 
denoted CAS(ℝ), consists of the union of the consequent 
activities of rules in ℝ. If the rule has a Boolean 
predicate, the activity is associated with this predicate. 

Thus, we have CAS(ℝ) = { y | (a ⊱ y)  ℝ } ⋃ { yf(z) | (a 

⊱,f(z) y)  ℝ } ⋃ { y | (a ⊰ y)  ℝ } ⋃ { yf(z) | (a ⊰,f(z) y) 

 ℝ }. 

For example, if we have Γ1 = { Start ⊱AND-join A1, A1 ⊱AND-

join A2, A2 ⊱AND-join A4, A4 ⊰AND-split A6, A4 ⊰AND-split A8, A8 
⊰AND-split A10, A10 ⊱AND-join End, Start ⊱AND-join A2, A2 ⊰AND-split 

A3, A3 ⊱AND-join A4, A8 ⊰AND-split A9, A9 ⊱AND-join End, A2 ⊰AND-

split,f(z) A5, A4 ⊰AND-split A7, A6 ⊱AND-join End, A7 ⊱AND-join End }, 
then we have (1) ΦA4,AND-join(Γ1) = { A2 ⊱AND-join A4, A3 ⊱AND-

join A4 }, (2) ΨStart,AND-join(Γ1) = { Start ⊱AND-join A1, Start ⊱AND-

join A2 }, (3) AAS(Γ1) = { Start, A1, A2, A2f(z), A3, A4, A6, A7, 
A8, A9, A10 }, (4) AAS(ΦA4,AND-join(Γ1)) = { A2, A3 }, (5) 
CAS(Γ1) = { A1, A2, A3, A4, A5f(z), A6, A7, A8, A9, A10, 
End }, and (6) CAS(ΦA4,AND-join(Γ1)) = { A4 }. 

Given Γ = RQ(u0) ⋃ RQ(u1) ⋃ … ⋃ RQ(un–1), the 
workflow enactment service should fit the following 
requirements according to rules in Γ. An activity derived from 



AAS() or CAS() might or might not be associated with a 
Boolean predicate. We define an activity that is not associated 
with a Boolean function as being finished if its execution is 
finished, while an activity that is associated with a Boolean 
predicate (e.g., Bf(z)) is finished when its execution is finished 
and the associated Boolean predicate is True. Similarly, an 
activity that is associated with a Boolean predicate f(z) can be 
started only if f(z) is True. We define that a set ℝ of rules is 
satisfied, denoted Satisfy(ℝ), if the predicates P1 and P2 are 

True. Assume that  is the set of all activities that are referred 
in ℝ, then 

 P1:  A in  and   in ℝ, the execution of A and 

activities in AAS(ΦA,(ℝ)) should be controlled 

according to . 

 P2:  A in  and   in ℝ, the execution of A and 

activities in CAS(ΨA,(ℝ)) should be controlled 

according to . 

For example, if  is an AND-join construct, then all 
activities in AAS(ΦA,AND-join(ℝ)) are finished if and only if A 

has started; if  is an OR-join construct, then one of the 
activities in AAS(ΦA,OR-join(ℝ)) is finished if and only if A has 

started; and if  is an OR-split construct, then A is finished if 
and only if one of the activities in CAS(ΨA,OR-split(ℝ)) has 
started. Note that we assume that there is no conflict between 
rules—in section III we discuss how to deal with such conflicts. 
Predicates P1 and P2 define the causal or temporal relationship 
between activities from a set of rules. The fulfillment of 
Satisfy(Γ) obeys the causal or temporal relationship between 
activities defined by all the users. Algorithm 1 shows how to 
generate a directed graph from a set of CLWfDL rules, Γ. 
Actually, steps (4) and (5) ensure that the generated directed 
graph satisfy predicates P1 and P2, respectively. The generated 
directed graph G represents a workflow definition that fulfills 
Satisfy(Γ). 

Algorithm 1: 

Generate a directed graph from a set of CLWfDL rules.  

Input: A set of CLWfDL rules, Γ. 

Output: A directed graph, G. 

GenerateDG(Γ) 

(1) Construct a directed graph G = (V, E) with no node (V = 2) or 

edge (E = ). 

(2) Let  be the set of all activities involved in Γ. 

(3) For each activity in , create an activity node that is named by 

the ID of the activity, and add this node to V.  

(4) FOR EACH activity  in  and  in Γ 

// To satisfy predicate P1 

 IF Φ,(Γ) ≠  THEN 

 Add a node named "_" to V. 

 Add edge (_, ) to E. 

 FOR EACH activity  in AAS(Φ,(Γ)) 

 IF  is associated with a Boolean predicate f(z) 

 IF there is not a node "IF_fz" in V 

 Add an IF-ELSE node named "IF_fz" to V. 

 Add edge (, IF_fz) to E. 

 Add edge (IF_fz, _) to E. 

                                                           
2
 “” is the empty set. 

 ELSE IF  is not associated with a Boolean 

predicate f(z) 

 Add edge (, _) to E. 

 END FOR 

END FOR 

(5) FOR EACH activity  in  and  in Γ 

// To satisfy predicate P2 

 IF Ψ,(Γ) ≠  THEN 

 Add a node named "_" to V. 

 Add edge (, _) to E. 

 FOR EACH activity  in CAS(Ψ,(Γ)) 

 IF  is associated with a Boolean predicate f(z) 

 IF there is not a node "IF_fz" in V 

 Add an IF-ELSE node named "IF_fz" to V. 

 Add edge (IF_fz, ) to E. 

 Add edge (_, IF_fz) to E. 

 ELSE IF  is not associated with a Boolean 

predicate f(z) 

 Add edge (_, ) to E. 

 END FOR 

END FOR 

(6) Remove all the unnecessary control nodes, which are nodes with 

only one in-edge and out-edge in V. 

(7) Return G. 
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Figure 6. Illustration of Algorithm 1  

We now employ our motivating example to demonstrate 
Algorithm 1. Referring to Table 2, Alice, Peter, John, and 
Bruce can use CLWfDL to specify their requirements as 
follows:  

 RQ(Alice) = { Start ⊱AND-join A1, A1 ⊱AND-join A2, A2 
⊱AND-join A4, A4 ⊰AND-split A6, A4 ⊰AND-split A8, A8 ⊰AND-split 

A10, A10 ⊱AND-join End }.  

 RQ(Peter) = { Start ⊱AND-join A2, A2 ⊰AND-split A3, A3 
⊱AND-join A4 }. 

 RQ(John) = { A8 ⊰AND-split A9, A9 ⊱AND-join End }. 

 RQ(Bruce) = { A2 ⊰AND-split,f(z) A5, A4 ⊰AND-split A7, A4 
⊰AND-split A8, A6 ⊱AND-join End, A7 ⊱AND-join End }, where 
f(z) is a Boolean predicate which returns True if the 



probability of precipitation is bigger than 60% on the 
party date.  

In step (2) we have  = { Start, End, A1, A2, A3, A4, A5, 
A6, A7, A8, A9, A10 }, and after step (3) we have G, as shown 
in Figure 6A. In step (4), we add some AND-join nodes to 
satisfy predicate P1, which results in Figure 6B. Figure 6C 
results from step (5) by adding some AND-split nodes to 
satisfy predicate P2. In step (6) we remove all the unnecessary 
control nodes (i.e., AND-join, or AND-split nodes that have 
only a single in-edge and out-edge), finally yielding G = (V,E) 
as shown in Figure 6D.  

Note that we have two special activities, “Start” and “End”, 
which indicate the start and end of the workflow process. 
Actually, the CLWfDL can also be used to define workflow 
exceptions [15]. For example, we can use the rule 
“ExceptionRaise(X) ⊱OR-join A1” to define when a workflow 
exception X occurs and we have to execute A1. 

III. CONFLICTS BETWEEN CLWFDL RULES 

A workflow definition could contain some errors such as 
the existence of unreachable activities, deadlock, and a poorly 
well-defined structure [16]. The traditional way to handle 
errors in a workflow definition is to discover them before the 
workflow process is executed. The rules in the CLWfDL 
usually come from many people, including some who might 
not communicate, which increases the likelihood of conflicts 
between rules. For example, if r1 = (A ⊱AND-join E), r2 = (B 
⊱AND-join E), r3 = (C ⊱OR-join E), and r4 = (D ⊱OR-join E), then there 
exists a conflict for Satisfy(Γ), where Γ contains r1, r2, r3, and 
r4. According to the semantics of the AND-join construct, 
activity E is started after both activities A and B are finished 
due to r1 and r2. According to the semantics of the OR-join 
construct, activity E should be started immediately when either 
C or D is finished. Thus, when activity C is finished and A is 
not finished, we cannot satisfy r1, r2, r3, and r4 at the same 
time. This situation is referred to as a rule conflict. It is possible 
to have different types of conflict between a set Γ of CLWfDL 
rules: 

 If (a ⊱1,f(z) x) ∈ Γ and (b ⊱2,f(z) x) ∈ Γ, where a ≠ b and 

1≠2, then Satisfy(Γ) is not possible because 1 and 2 
cannot be satisfied at the same time.  

 If (a ⊰1,f(z) x) ∈ Γ and (b ⊰2,f(z) x) ∈ Γ, and a ≠ b and 

1≠2, then Satisfy(Γ) is not possible because 1 and 2 
cannot be satisfied at the same time.  

 If (a ⊰1,f(z) x) ∈ Γ and (b ⊱2,f(z) x) ∈ Γ, and a ≠ b and 

1≠2, then Satisfy(Γ) is not possible because 1 and 2 
cannot be satisfied at the same time.  

When there are conflicts in Γ, there is no way for the 
workflow enactment service to control the execution of 
activities so as to satisfy all the rules in Γ. An intuitive 
approach is that the system should report conflicts to users as 
shown in Figure 3. The users read the conflict report and revise 
their rules accordingly. 

Another solution is to associate priorities with rules. The 
use of priority can alleviate the conflicts between rules. A rule 

with a priority is either (x ⊱ a)p or (x ⊱,f(z) a)p, where p is an 
integer number greater than or equal to zero. We abbreviate a 

rule with the lower priority “0” [e.g., (x ⊱ a)0] as x ⊱ a. 
Referring to Algorithm 2, by removing rules that conflict with 
other rules and have a lower priority, we can derive a set of 
rules, Γ', that includes rules with a higher priority. Note that it 
is still possible that rules in Γ' conflict with each other, since 
rules with the same priority will not be removed by Algorithm 
2. If such conflicting rules exist in Γ', we should inform the 
involved users. 

Algorithm 2: Removing conflicts from a set of CLWfDL rules 

according to the rule priorities  

Input: A set of CLWfDL rules, Γ. 

Output: A set of CLWfDL rules, Γ'. 

RemovingConflict(Γ) 

(1) Let  be the set of all activities involved in Γ. 

(2) FOR EACH rule pair (ri, rj) in Γ 

 IF ri and rj are in conflict and Priority(ri) < Priority(rj) 

THEN 

 Γ' = Γ – { ri }. 

END FOR 

Return Γ'. 

Referring to Figure 6, if Peter changes his requirement to 
RQ(Peter)' = { Start ⊱AND-join A2, A2 ⊰AND-split A3, A3 ⊱AND-join 

A4, A3 ⊱AND-join A9 }. There is a conflict between RQ(Peter)', 
and RQ(John). Because (A3 ⊱AND-join A9) and (A8 ⊰AND-split A9) 
∈ Γ, A3 ≠ A8, and AND-join ≠ AND-split. If Peter assigns 
priority one to his rule: (A3 ⊱AND-join A9)1, than Priority(A3 
⊱AND-join A9) is greater than Priority(A8 ⊰AND-split A9). Thus we 
can get Γ' = Γ – { A8 ⊰AND-split A9 } by Algorithm 2. We 
therefore input Γ' when executing Algorithm 1. The result is 
shown in Figure 7. If there is no conflict between rules in Γ' 
after the applying of Algorithm 2, we can create a directed 
graph G by applying Algorithm 1.  

Start

A1

A2

A4

A6

A5

AND_split_A2

A3 IF_f(z)

A8A7

A9

AND_split_A4

AND_join_A4
T

AND_join_END

End

AND_join_A2

A10

 

Figure 7. The result of applying Algorithm 1 to Γ' 



IV. DISTRIBUTED DEFINITION AND CONCURRENT REVISION 

IN THE CLWFDL 

In this section we summarize the definition and revision 
model that the CLWfDL can support. First, the CLWfDL 
supports a kind of distributed definition of workflow processes 
(see Theorem 1). Assuming that there are n users (u0, u1, u2, …, 
and un–1), in this paper we say that these n users can 
distributively define a workflow process if there exists a 
program tool that can translate their requirements [RQ(u0), 
RQ(u1), …, RQ(un–1)] into a representative form of a workflow 
definition that is aware of some workflow engine without 
assistance from humans, and can identify conflicts between the 
requirements of different users. Also, a single flow-control 
construct that involves multiple activities can be determined 
from the diverse requirements of multiple users. 

Theorem 1: The CLWfDL can support a distributed 

definition of workflow processes. 

Proof: First, the CLWfDL supports rules for users to construct 

their requirements, and these rules can define all the possible 

flow-control structures as shown in [14]. Second, there exist 

algorithms to construct a directed graph from users’ 

requirements and identify conflicts as shown in Algorithm 1 

and section III, respectively. QED 

The CLWfDL supports a revision model that is appropriate 
for cloud collaboration, which we call concurrent revision (see 
Theorem 2). Assume that a workflow definition D is defined 
distributively by n users, which is denoted as D = RQ(u0) ⋃ 
RQ(u1) ⋃ …⋃ RQ(un–1). A concurrent revision of D to D′ 

involves each user ui (0i<n,) revising his/her own requirement 
RQ(ui) independently and simultaneously without referring to 

the requirements of other users. If user ui (0i<n) revises RQ(ui) 
to RQ′(ui), then D′ = RQ′(u0) ⋃ RQ′(u1) ⋃ …⋃ RQ′(un–1). 

Theorem 2: The CLWfDL can support the concurrent 

revision of workflow processes. 

Proof: Since there exists an algorithm (i.e., Algorithm 1) that 

can generate a directed graph for a workflow, the 

requirements of users [i.e., RQ(u0), RQ(u1), …, RQ(un–1)] can 

be stored in their original form. The users simply revise their 

requirements concurrently and then submit them to Algorithm 

1. Also, a user cannot modify the requirements of others. QED 

BA CAND-join
 

(A) 

DA CAND-join
 

(B) 

Figure 8. The directed graph generated by revised CLWfDL rules 

We employ the example presented in Figure 2 to 
demonstrate how the CLWfDL rules support concurrent 
revision. Assume that two users, ui and uj, are making a 
workflow definition using CLWfDL rules. The original 
requirements are RQ(ui) = { A ⊱AND-join C } and RQ(uj) = { A 
⊱AND-join B, B ⊱AND-join C }. Submitting RQ(ui) ⋃ RQ(uj) to 
Algorithm 1 yields the directed graph shown in Figure 8A. 
According to the scenario, user ui is going to add an activity D 
after activity A, and user uj is going to remove activity B. 

Therefore, ui and uj revise their original requirements to RQ(ui) 

= { A ⊱AND-join D, D ⊱AND-join C } and RQ(uj) = { A ⊱AND-join C }. 

Applying Algorithm 1 to RQ(ui) ⋃ RQ (uj) obtains the 
directed graph shown in Figure 8B. Although the directed 
graphs in Figure 2D and Figure 8B are different, they are 
semantically equivalent because the AND-join construct in 
Figure 8B limits activity C to start after both A and D have 
finished, and D should be started after A has finished. Users ui 
and uj do not encounter the problem of concurrent revision 
because they do not have to deal with edges and nodes while 
they are revising the workflow definition. While it is possible 
that the revised requirements contain CLWfDL rules that 
conflict with each other, the translator will also detect this 
situation and report it to the users. 

V. THE CLWFDL DOCUMENT AND API 

In this section we define how to represent CLWfDL rules in 
XML documents and a CLWfDL API. Developers can 
implement collaborative workflow definition systems in 
CLWfDL API. Figure 9 shows the syntax of a CLWfDL 
document (we specify syntax definitions in the Backus-Naur 
Form

3
 [17] in this paper), which consists of the following two 

sections: 

 The header section. Since a CLWfDL document is also 
an XML document, it begins with an XML declaration 
that specifies the version of XML being used (e.g., 
<?xml version="1.0"?>). This section also contains 
required namespace declarations.  

 The CLWfDL section. This section contains CLWfDL 
rules. Each rule is composed of elements. The <priority> 
element specifies the priority of the rule, and is an 
integer. The <ruleType> element specifies the type of 
rules, which can be either “join” or “split”. The 
<antecedent> and <consequent> elements are used to 
specify the antecedent and consequent activities of the 
rule.  

CLWfDL → 
 <CLWfDL id="id"> 
  rule {rule} 
 </CLWfDL > 
 
 rule → 
  <rule user="user"> 
   <priority> priority </priority> 

   <ruleID>  </ruleID> 
   <ruleType> join|split </ruleType> 
   <antecedent> activityID </antecedent> 
   <consequent> activityID </consequent> 
   [<ifElse> predicate </ifElse>] 
  </rule> 
 
id → string , user → string 

priority → integer ,  → string 

activityID → string , predicate → string 

*string represents a character string. 

Figure 9. Syntax of the CLWfDL document 

                                                           
3
 Conventionally, a nonterminal symbol in Backus-Naur form is delimited by 

< and >. To prevent confusion with XML elements, nonterminal symbols are 
underscored in this paper. 



Figure 10 shows two CLWfDL documents that are 
definitions from two users as shown in Figure 8B. We also 
propose the CLWfDL API in order to make it easy to 
implement the translator shown in Figure 3. The CLWfDL API 
was developed in the JAVA programming language and dom4j 
library [18], and can construct a directed graph G = (V, E) from 
some CLWfDL rules according to Algorithm 1 and Algorithm 
2. We can then generate a workflow definition based on G for a 
specific workflow engine. The core classes are theCLWfDL, 
theTools, checkConflict, edge, node, and rule. A rule object 
corresponds to a single CLWfDL rule. The theCLWfDL and 
checkConflict classes implement Algorithm 1 and Algorithm 2, 
respectively. 

<?xml version="1.0" 

encoding="UTF-8"?> 
<CLWfDL> 

 <rule user=" ui "> 

  <priority>0</priority> 
  <ruleID>AND-join</ruleID> 

  <ruleType>join</ruleType> 

  <antecedent>A</antecedent> 
 <consequent>D</consequent> 

 </rule> 

 <rule user=" ui "> 
  <priority>0</priority> 

  <ruleID>AND-join</ruleID> 

  <ruleType>join</ruleType> 
  <antecedent>D</antecedent> 

 <consequent>C</consequent> 

 </rule> 
</CLWfDL> 

<?xml version="1.0" 

encoding="UTF-8"?> 
<CLWfDL> 

 <rule user=" uj "> 

  <priority>0</priority> 
  <ruleID>AND-join</ruleID> 

  <ruleType>join</ruleType> 

  <antecedent>A</antecedent> 
 <consequent>C</consequent> 

 </rule> 

</CLWfDL> 

(A) (B) 

Figure 10. Two example CLWfDL documents 

/* Invoke CLWfDL API to input CLWfDL documents and output 

corresponding sets : Γ, Γ, V and E. */ 
 
/* Step 1: create a CLWfDL object for process some CLWfDL 
documents */ 
TheCLWfDL theCLWfDL = new TheCLWfDL(); 
 
// Step 2: read some CLWfDL document files from some users. 
theCLWfDL.readXML(“U_John.xml”); 
theCLWfDL.readXML(“U_Alice.xml”); 

 
 
// Step 3: Create the Γ set defined in section II. 
theCLWfDL.createGamma();  
 

/* Step 4: Create the Γ set by check the CLWfDL definition 
conflicts and try to eliminate them in Γ according to 
Algorithm 2. */ 
theCLWfDL.removeConflict();  
 

/* Step 5: We check if there are still rules in Γ which 
conflict. */ 
if (theCLWfDL.checkConflict()) { 
  RuleVector rV=theCLWfDL.getConflictedRules(); 
  For (rv) 
{ rv.show();} 
} 
 
/* Step 6: Create the V set and E set of the CLWfDL directed 
graph according to Algorithm 1. */ 
theCLWfDL.createDG(); 
 
// Obtain the created V set. 
NodeVector nV=theCLWfDL.getNodeList(); 
 
// Obtain the created E set. 
edgeVector eV=theCLWfDL.getEdgeList(); 

Figure 11. Codes invoking the CLWfDL API 

Figure 11 demonstrates how to use the CLWfDL API to 
process a set of CLWfDL documents. When the main program 
starts, it first instantiates a CLWfDL object in step 1. In step 2, 
this object inputs some CLWfDL documents, and step 3 
invokes the createGamma() method to construct a set Γ of 
CLWfDL rules from the input documents. Before creating the 
directed graph it is necessary to invoke removeConflict() in 

step 4 which is actually Algorithm 2. This creates the Γ set. If 
there are still conflicting rules, they can be checked using the 
checkConflict() method in step 5. The processing of the 
CLWfDL documents should be stopped if some rules are 
conflicting, and the corresponding users should be informed. 
Finally, step 6 invokes the createDG() method to create a set 
E of edges and a set V of nodes of a directed graph G according 
to Algorithm 1. The node and edge sets of the generated 
directed graph can be obtained by getNodeList() and 
getEdgeList(), respectively. Figure 12 shows the node and 
edge sets obtained by processing the CLWfDL documents in 
Figure 10. Directed graph G can be used to translate the 
workflow definition into another definition language. Table 3 
shows the running time required for the CLWfDL API to 
process some documents with more rules. The CLWfDL API 
can be downloaded from 
http://www.csie.ntnu.edu.tw/~ghhwang/CLWfDL/CLWfDL_A
PI_1_5.jar. 

Node list Edge list 

[D]: activity node 

[A]: activity node 

[C]: activity node 

[AND_join_C]: AND-join node 

[A] -> [D] 

[AND_join_C] -> [C] 

[D] -> [AND_join_C] 

[A] -> [AND_join_C] 

Figure 12. Node and edge sets obtained by processing the CLWfDL 

documents in Figure 10 

TABLE 3. RUNNING TIMES FOR PROCESSING SOME CLWFDL DOCUMENTS 

Experimental Results 

11 rules 529 ms 

12 rules with conflict 631 ms 

32 rules with conflict 901 ms 

VI. RELATED WORK 

There are numerous popular workflow definition languages, 
including FDL [19], jPDL [20], XPDL [2], and BPEL [3], and 
they have corresponding graphical editors. A workflow editor 
presents a defined workflow as a directed graph; such editors 
include the IBM FlowMark workflow manager [19], JBoss 
jBPM [20], Enhydra JaWE [5], and BPEL Designer project [7]. 
Aalst and ter Hofstede proposed the YAWL [4] workflow 
language, and demonstrated that it can be used to define all the 
flow-control constructs existing in “workflow patterns” [10]. 
The YAWL system is still under development, but it already 
provides a graphical editor [21]. Since these workflow 
definition languages all employ a directed-graph-based editor 
to edit workflow definitions, we can consider them as directed-
graph-based workflow definition languages. As mentioned in 
section I, a graphical workflow editor suffers from the 
concurrent-revision problem and does not provide an effective 
mechanism to implementing workflow definition by cloud 
collaboration. 



The most famous application of cloud collaboration is 
Google Docs [8], which allows multiple users to edit a shared 
document in the cloud concurrently and distributively. Many 
researchers have recently proposed approaches for various 
applications that involve cloud collaboration. Vegesna 
proposed various concepts related to online collaboration and a 
specific online application called Zoho Notebook [22] that aims 
to effectively illustrate the advantages of online collaboration. 
It supports fine-grain access control and locking at the 
individual object level rather than the page level in 
collaborative document editing. Mikkonen and Nieminen 
discussed three major topics related to implementing a revision 
control system in the cloud collaborative development 
environment [23]. Their prototype system, called “Cored”, 
allows users to edit codes concurrently and also communicate 
using means that are familiar from social media, which 
facilitates its development. This differs from a traditional 
version-control system because it reconsiders the role of 
version management based on the assumption that the 
background system can determine when a complete, runnable 
system exists by relying on compilation, testing, and 
integration capabilities available in the cloud. However, to the 
best of our knowledge, the present paper is the first to address 
the issue of defining a workflow process by cloud collaboration. 

Stephenson et al. used a scenario to demonstrate an 
integrated environment for the development of business 
processes in the cloud [24]. They provided a collaborative 
model editor to model the activities of all the available experts. 
They proposed four basic experts—responsible for business, 
service, security, and the target platform—to develop and 
execute a business process complementarily. Each expert can 
create a BPMN model and share it with other experts. However, 
their model still has limitations. For example, if the business 
process is updated by one of the experts, this will impact on the 
other experts; this problem is very similar to the concurrent-
revision problem that we describe in section I. In order to solve 
this problem, those authors suggested having a single person 
perform more than one role. 

Jørgensen proposed a design guide for an interactive WfMS 
and described the challenges for interactive workflow modeling 
[25]. His goal was to use an interaction framework to help 
users to reinterpret the use of explicit process representations 
and the roles of models and components in WfMS architectures. 
That framework is based on the WORKWARE model language, 
which was inspired by the Action Port Model (APM), but it 
was simplified and had interactive enactment semantics added 
to it [26][27]. The basic assumptions are that the model only 
reflects parts of a socially constructed reality, and that it can be 
changed at any time. The users can interact with the system to 
redefine the workflow process. The APM uses a visualization 
editor to construct the model. The decision connectors (i.e., 
control nodes) of the APM cover AND/OR fork/joins. 
However, the framework cannot support concurrent revision 
from multiple users and thus is inappropriate for cloud-based 
cooperation. 

A non-directed-graph-based workflow definition language 
has also been proposed. Glance et al. used generalized process 
structure grammars (GPSG) to generate flexible representations 
of collaborative processes and feature constraints to represent 

the artifacts of complex process [28][29]. They proposed 
writing constraints in GPSG rules to define the causal 
dependency between activities. Examples of the constraints 
mentioned in their paper include “precede”, “<”, “<=”, “>”, 
and “>=”. They claimed that GPSG are more flexible than a 
traditional workflow definition language, since new rules can 
be added without needing to change the original rules, and 
rules can be revised independently of other rules. Our 
CLWfDL also has these advantages, and it seems that GPSG 
could be used in a cloud collaboration environment since the 
GPSG rules could be collected from different users to form the 
definition of a workflow. However, GPSG do not provide the 
ability to detect and solve conflicts between rules. Also, Glance 
et al. did not show whether GPSG rules can implement popular 
flow-control constructs and if it is possible to translate GPSG 
rules into directed graphs. 

VII. CONCLUSION 

Applying the working model of cloud collaboration to 
define a workflow in the CLWfDL can reduce the cost, since 
collaborating users do not have to be in the same space and 
human intervention is not needed to analyze the requirements 
of users. We believe that this approach has considerable 
potential in today’s globalized society. The CLWfDL supports 
distributed definition and concurrent revision. Despite having 
only two types of rules, this new language can implement 
almost all flow-control constructs, as shown in [14]. After users 
learn the meaning of the two types of rules, they can use them 
to specify their requirements for workflow execution. A 
translator can detect if there is any conflict between the rules 
from multiple users. If conflicts exist, the involved users can be 
informed and then they can communicate and negotiate 
amongst themselves so as to revise their rules until there is no 
conflict. Each user maintains and is responsible for his/her own 
rules. We have proposed algorithms that can translate rules 
from multiple users into a directed graph, which can 
subsequently be transformed into any workflow definition 
language. This means that existing workflow engines can 
provide the workflow enactment service for workflows defined 
by CLWfDL rules. Since each user only specifies rules, we can 
design a home page for him/her to edit his/her own rules, and 
the system can present the final workflow definition in the form 
of a directed graph. 

REFERENCES 

[1] D. Georgakopoulos, M. Hornick and A. Sheth, “An overview of 
workflow management: from process modeling to workflow automation 
infrastructure,” Distributed and Parallel Databases, vol. 3, issue 2, pp. 
119–153, April 1995. 

[2] WFMC, “Workflow Management Coalition Workflow Standard: 
Workflow Process Definition Interface – XML Process Definition 
Language (XPDL) (WFMCTC- 1025),” Technical report, Workflow 
Management Coalition, Lighthouse Point, Florida, USA, 2002. 

[3] OASIS, “Web Services Business Process Execution Language 
(WSBPEL),” http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html, OASIS Standard, April 2007. 

[4] W.M.P. van der Aalst, and A.H.M. ter Hofstede, “YAWL: yet another 
workflow language,” Information Systems, vol. 30, issue 4, pp. 245–275, 
2005. 

[5] “JaWE - Java Workflow Editor,” http://www.together.at/prod/workflow/twe. 



[6] OMG “Business Process Model And Notation (BPMN),” 
http://www.omg.org/spec/BPMN/2.0/, Object Management Group, 
January 2011. 

[7] “Eclipse BPEL Designer Project,” http://www.eclipse.org/bpel/. 

[8] “Google Docs,” https://docs.google.com/. 

[9] “Google Calendar,” https://calendar.google.com/. 

[10] “Workflow Patterns Home Page,” http://www.workflowpatterns.com. 

[11] “Google Forms,” https://docs.google.com/forms/. 

[12] P. M. Sant, “Exclusive read, exclusive write,” in Dictionary of 
Algorithms and Data Structures, Paul E. Black, ed., U.S. National 
Institute of Standards and Technology. December 17, 2004. 

[13] F. Casati, S. Ceri, S. Paraboschi, and G. Goodman, “Concurrency 
Control and Recovery in Database Systems,” Addison Wesley 
Publishing Company, 1987, ISBN 0-201-10715-5. 

[14] Chi Wu-Lee and Gwan-Hwan Hwang, “Workflow Definition by Cloud 
Collaboration,” Chi Wu-Lee and Gwan-Hwan Hwang, Technical Report, 
National Taiwan Normal University, 2013. 
http://www.csie.ntnu.edu.tw/~ghhwang/TR/CLWfDL_Technical_Report
_2013_08_06.pdf 

[15] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and 
implementation of exceptions in workflow management systems,” ACM 
Transactions on Database Systems, 24(3): 405-451, 1999. 

[16] B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler, “On Structured 
Workflow Modelling,” The 12th International Conference on Advanced 
Information Systems Engineering (CAiSE), LNCS 1789, pp. 431-445, 
2000. 

[17] Control Data Corporation, “ALGOL-60 version 5 reference manual,” 
CDC, 1979,  Appendix D, Available at: 
<http://www.lrz.de/~bernhard/Algol-BNF.html>. 

[18] “dom4j,” http://dom4j.sourceforge.net/. 

[19] “IBM FlowMark: Modeling Workflow,” Version 2 Release 2. Publ. No. 
SH-19-8241-01, 1996. 

[20] “JBoss, jBPM, jPDL,” http://www.jboss.org/jbpm/. 

[21]  “YAWL System,” http://www.yawlfoundation.org/. 

[22] R. Vegesna, “Collaboration in Context: From the Desktop to the Cloud,” 
The 2012 45th Hawaii International Conference on System Science 
(HICSS), pp. 669-673, January 2012. 

[23] T. Mikkonen and A. Nieminen, “Elements for a cloud-based 
development environment: online collaboration, revision control, and 
continuous integration,” The 10th Working IEEE/IFIP Conference on 
Software Architecture & 6th European Conference on Software 
Architecture (WICSA/ECSA), pp. 14-20, August 2012. 

[24] B. Stephenson, J. Li, F. Lins, R. Medeiros, B. Silva, A. Souza, D. 
Aragao, J. Damasceno, P. Maciel and N. Rosa, “SSC4Cloud Tooling: 
An Integrated Environment for the Development of Business Processes 
with Security Requirements in the Cloud,” The 7th IEEE 2011 World 
Congress on Services, pp. 53-60, July 2011. 

[25] H. D. Jørgensen, “Interaction as a Framework for Flexible Workflow 
Modelling,” Proceedings of the International ACM SIGGROUP 
Conference on Supporting Group Work 2001, pp. 32-41, October 2001. 

[26] S. Carlsen, “Action Port Model: A Mixed Paradigm Conceptual 
Workflow Modeling Language,” CoopIS '98, New York, 1998. 

[27] H. D. Jørgensen and S. Carlsen, “Emergent Workflow: Integrated 
Planning and Performance of Process Instances,” Workflow 
Management '99, Münster, Germany, 1999. 

[28] N. S. Glance, D. S. Pagani, and R. Pareschi, “Generalized process 
structure grammars GPSG for flexible representations of work,” 
Proceedings of the 1996 ACM conference on Computer supported 
cooperative work, pp. 180-189, November 1996. 

[29] N. Glance, Pagani, D., and Pareschi, R. “Generalized Process Structure 
Grammars for Modeling Collaborative Writing,” Rank Xerox Research 
Centre, Grenoble, Technical Report March 1996. 

 


