
Workflow Definition by Cloud Collaboration

Chi Wu-Lee and Gwan-Hwan Hwang

Department of Computer Science and Information Engineering

National Taiwan Normal University

Taipei, Taiwan

rekiwu@std.ntnu.edu.tw, ghhwang@csie.ntnu.edu.tw

Abstract—In this paper we propose a novel workflow definition

language—called the CLWfDL (Cloud Collaboration Workflow

Definition Language)—for defining workflow in the working

model of cloud collaboration. The language enables the

distributed definition and concurrent revision of a workflow by

multiple users from different places in the cloud. Users who

participate in defining a workflow can use the language to specify

their own requirements for the workflow execution. Each user

can selectively contribute to part of the workflow definition. Any

conflicts between the requirements of different users can be

detected automatically. A single flow-control construct such as

AND-join or OR-split can incorporate the requirements of

multiple users. We have also implemented a translator of the

proposed language that can translate the requirements collected

from multiple users into other workflow definition languages.

Keywords-Workflow Management System; WfMS; Workflow

definition language; Cloud; Cloud collaboration

I. INTRODUCTION

WfMSs (workflow management systems) are software
systems that support coordination and cooperation among
members of an organization when they are performing complex
business processes [1]; these processes are modeled as
workflow processes that are automated by the WfMS. The
workflow model (also referred to as the workflow process
definition) is the computerized representation of the business
process that defines its starting conditions, stopping conditions,
activities, and control and data flows among the involved
activities. An activity is a logic step within a workflow that
includes information about the starting and stopping conditions,
the users who are allowed to participate (the participants), the
tools and/or data needed to complete the activity, and the
constraints on how the activity should be completed. The
activities in a process are usually organized into a directed
graph that defines the order of their execution, where nodes and
edges in the graph represent activities and control flow,
respectively. A workflow process instance represents the state
of execution of a workflow process definition by the WfMS,
and is usually controlled by the workflow engine.

A workflow process definition is usually presented in a
workflow definition (or description) language that is used to
express the causal or temporal dependencies among activities

The corresponding author is Gwan-Hwan Hwang (e-mail:

ghhwang@csie.ntnu.edu.tw). C.Wu-Lee and G.H.Hwang's

work was supported in part by Republic of China National

Science Council under grant NSC 102-2219-E-003-002-.

in the workflow process. There are several workflow definition
languages, including XML (Extensible Markup Language)
Process Definition Language (XPDL) [2], Business Process
Execution Language (BPEL) [3], and “Yet Another Workflow
Language” (YAWL) [4]. A workflow designer traditionally
develops a workflow process definition using a graphical
workflow editor, which provides an interface for defining and
modifying workflows by arranging and connecting activities. It
is possible to view and edit the workflow process definition,
which the workflow editor stores in a workflow definition
language. For example, the Enhydra JaWE is a graphical
workflow editor that implements XPDL specification V2.1
using the Business Process Model and Notation (BPMN)
graphical notation [5][6]; while the BPEL Designer project, a
graphical editor, adds comprehensive support to Eclipse for the
definition, authoring, editing, deploying, testing, and
debugging of BPEL 2.0 [7]. Generally speaking, these
graphical workflow editors consider a workflow as a directed
graph that illustrates the execution sequence of the activities.
Activities and flow-control constructs

1
 are represented by the

nodes, and transitions are represented by the edges in a directed
graph.

Cloud collaboration is an emerging way of sharing and co-
authoring documents through the use of cloud computing,
whereby documents or objects are uploaded to central cloud
servers, where they can be accessed by others (e.g., Google
Docs and Google Calendar [8][9]). Cloud collaboration
technologies allow users to upload and edit documents or
objects within the cloud. Businesses are now increasingly
switching to the use of cloud collaboration. New advances in
cloud computing and collaboration are being prompted by the
increasing need for firms to operate in an increasingly
globalized world. Collaboration in this context refers to the
ability of workers in a company to work together
simultaneously on a particular task. With cloud collaboration
users do not have to be in the same room or even the same
country to effectively work together toward a common goal. In
today’s globalized society, having the capability to work
together effectively is important to the productivity of an
organization, and cloud collaboration tools are ideal for
fostering this. In the past, most collaborations involving the
production and editing of documents would have to be
completed face to face. However, collaboration has become
more complex, now involving working with people all over the

1

 Common flow-control constructs of workflow process include “IF”,

“SEQUENCE”, “WHILE”, “REPEAT UNTIL”, “AND-join”, “OR-join”,
“AND-split”, and “OR-split” [10].

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254050

world in real time on a variety of different types of documents
or objects, and using different devices.

This paper addresses the issue for defining the workflow
process by cloud collaboration, which we show is not possible
using a traditional workflow definition language. We propose a
new workflow process definition language and framework
targeting a collaborative definition of the workflow process.
One of the main features of cloud collaboration is that multiple
people work together simultaneously on a particular task.
Consider the situation that multiple users from one or more
organizations are working on defining a workflow process.
Referring to Figure 1, the traditional way for n users (u0, u1,
u2, …,un–1) to define a workflow process collaboratively is for
the users to specify their requirements [RQ(u0), RQ(u1), …,
RQ(un–1)] about the execution of a workflow process, which
contain the proposed activities and the causal or temporal
relationships between them in a workflow process. A workflow
administrator then analyzes these requirements and employs a
graphic workflow editor to make a workflow definition that
will be saved in a specific workflow definition language.
Finally, a workflow engine can read the workflow definition to
control the execution of this workflow process. Sometimes the
requirements [RQ(u0), RQ(u1), …, RQ(un–1)] may conflict with
each other. For example, RQ(ui) contains the requirement that
activity E can be started only when both activities A and B are
finished and RQ(uj) contains the requirement that activity E
should be started immediately when either activity C or D is
finished. The workflow administrator should report all the
conflicts to users after performing the system analysis in order
for users to revise their requirements so as to remove these
conflicts. If multiple users revise an existing workflow
definition, the workflow administrator should read the revised
requirements and then modify the workflow definition in a
graphical workflow editor. Users are generally not allowed to
edit an existing definition directly, and especially not edit it
concurrently.

Workflow
requirement
documents

Workflow
enactment service
(workflow engine)

Workflow
definition

Workflow
administrator

…
…

User u0

User u1

User un-1

Workflow analysis modeling & definition

Graphical
workflow
editor

Conflicts report

Figure 1. Traditional way to define a workflow process by multiple users

In the follows, we use a scenario to demonstrate that the
traditional working model is inappropriate if we want to define
a workflow process by cloud collaboration. Assume that there
are four persons, Alice, Peter, John, and Bruce, who are
chairmen from four communities in different universities. They
are going to jointly organize a party for members in their
communities. They want to define a workflow process which
prepares this party so that they can use a WfMS to coordinate
their works. Because their universities are located in different
cities, they try to reduce the cost by defining a workflow
process without meeting in the same location. They decide to
employ the Google Docs to define this workflow process
collaboratively. First, the four persons share a Google
document. This document summarizes all the necessary
activities in the workflow. They collaboratively edit this

document. Assume that it results in a document as shown in
Table 1. The workflow process has twelve activities.

TABLE 1. THE ACTIVITIES OF THE WORKFLOW

Activities Description

Start Workflow starts

End Workflow ends

A1 Estimate the number of participants

A2 Book a place and decide the party time

A3 Reserve facilities and food

A4 Make Promotional materials

A5 Book a rain shelter

A6 Make and deliver propaganda posters

A7 Build a home page

A8 Participants make registration

A9 Book accessibility equipment

A10 Reserve food for vegetarians

Second, Alice, Peter, John, and Bruce need to define the
causal or temporal relationships between these activities. To
avoid the concurrent revision problem, they decide to use the
form tool in Google Docs to collect their workflow
requirements [11]. It is a tool to collect information quickly
from multiple persons. Each person submits his own forms and
the system will collect all the submitted forms and produce a
report which is a table. The involved people can read the table
which is composed of submitted forms before they submit their
own forms. Assume that their submission of forms generates
Table 2. Note that the submission time of a form and ID of the
submitter are also shown in the table. Actually, Alice and
Bruce submitted two forms.

TABLE 2. THE WORKFLOW REQUIREMENTS OF ALICE, PETER, JOHN, AND

BRUCE

Timestamp User User Requirements

T1 Alice

A1 should be started after workflow starts.

A1 should be finished before starting A2.

A2 should be finished before starting A4.

A4 should be finished before starting A6 and A8.

T2 Peter

A2 should be started after workflow starts.

A2 should be finished before starting A3.

A3 should be finished before starting A4.

T3 John
A8 should be finished before starting A9

A9 should be finished before workflow ends.

T4 Bruce

If the probability of precipitation is bigger than 60% on

the party date, A5 should be started after A2 finished.

A4 should be finished before starting A7 and A8.

T5 Alice
A8 should be finished before starting A10.

A10 should be finished before workflow ends.

T6 Bruce A6 and A7 should be finished before workflow ends.

Finally, Alice, Peter, John, and Bruce need to hire a person

to analyze the requirements shown in Table 2. That person
plays a role of the workflow administrator. In the working
model shown in Figure 1, all editing of the workflow definition
should be performed by the workflow administrator. The
workflow requirement in a natural language usually has to be
analyzed by a human because no tool is available to
automatically translate the numerous requirements into a
workflow process definition. In this situation, whenever any
user updates his or her workflow requirement or supplies a new
requirement, the workflow definition cannot be amended
automatically. The working model therefore does not fit the
working model of cloud collaboration.

One of the solutions that addresses the inadequacy of the
workflow model shown in Figure 1 is to give each user the
privileges necessary to revise the workflow definition in a
graphical workflow editor. Without loss of generality, we
assume that multiple users are allowed to edit a directed graph
simultaneously, because a workflow definition is usually
modeled as a directed graph [2][3][4]. Consider a simple
workflow definition of a workflow process that consists of
three activities as shown in Figure 2A. In this example, user ui
is going to add an activity D after activity A, as shown in
Figure 2B, and user uj is going to remove activity B, as shown
in Figure 2C. It is obvious that the final workflow process
should be the one shown in Figure 2D. Users ui and uj can
revise the workflow definition shown in Figure 2A
concurrently. User ui would employ a graphical workflow
editor to perform the following operations: OPi,1—remove edge
(A, B), OPi,2—add node D, OPi,3—add edge (A, D), and
OPi,4—add edge (D, B); while user uj issues the following
operations: OPj,1—remove edge (A, B), OPj,2—remove edge (B,
C), OPj,3—remove node B, and OPj,4—add edge (A, C). Since
the two users are working concurrently, they read the same
definition and their operations will interleave. It seems
impossible to find a suitable interleaving that would allow their
operations to execute properly. For example, if we execute
operations in the order (OPj,1, OPj,2, OPj,3, OPj,4, OPi,1, OPi,2,
OPi,3, OPi,4), operations OPi,1 and OPi,4 cannot be executed
because activity B does not exist after the execution of
operations OPj,1, OPj,2, OPj,3, and OPj,4. This kind of concurrent
editing error occurs when multiple users are trying to alter
specific data items simultaneously [12]. It can be prevented by
the restriction of allowing only a single user to edit the
workflow definition at a time, which can be implemented by a
lock mechanism [13]. However, employing a lock mechanism
to prevent concurrent editing has two drawbacks: (1) it may
result in inefficiency, since a user might lock a workflow
definition for editing for too long, resulting in a bottleneck; and
(2) there is no mechanism to prevent a user from modifying the
requirements of other users.

BA C

(A)

DA B C

(B)

CA

(C)

DA C

(D)

Figure 2. A sample workflow definition

Workflow
requirement
documents

Workflow
enactment service
(Workflow engine)

Workflow
Definition…

…

User u0

User u1

User un-1

Translator

Conflicts report
Figure 3. Cloud collaboration of the workflow definition

This paper proposes a working model for cloud
collaboration in workflow definition. Referring to Figure 3,
consider n users (u0, u1, u2, …, un–1) who are wanting to define
a workflow process collaboratively. These users specify their
requirements for workflow executions [RQ(u0), RQ(u1), …,
RQ(un–1)], and a translator, which could be a computer

program, reads these requirements and translates them into a
workflow definition that defines an appropriate workflow
process. A human is not needed to analyze the workflow
requirements, and each user contributes to part of the workflow
definition. Whenever a user ui revises his/her own requirement,
RQ(ui), the translator updates the workflow definition
accordingly. It is possible that multiple users will submit their
requirements concurrently, in which case the translator can still
generate the revised workflow definition as long as there is no
conflict within RQ(u0), RQ(u1), …, and RQ(un–1). In cases
where there is a conflict, the translator informs the involved
users immediately, who then need to revise their requirements
and submit them accordingly. This process is repeated until an
agreed workflow definition is finally obtained from multiple
users.

We propose a workflow definition language to support
collaborative workflow definition in the cloud. Consider n

users (u0, u1, u2, …, un–1), where each user ui (0i<n) specifies
his/her workflow requirement RQ(ui) distributively. RQ(ui)

(0i<n) is part of the definition of a workflow process. A
translator can read all the requirements [RQ(u0), RQ(u1), …,
RQ(un–1)] to construct a complete workflow process definition.
The translator can also determine if there is any conflict
between these workflow requirements. Users are allowed to
revise their workflow requirement concurrently, but they are
not able to modify the requirements of other users. A human
does not need to analyze the workflow requirements.

This paper is organized as follows. Section II proposes a
novel definition language that supports workflow definition by
cloud collaboration. Section III discusses how to deal with the
situation when there is conflict among the requirements of
different users. Section IV summarizes the capability for
distributed definition and concurrent revision provided by the
proposed definition language. Section V presents an API to
support the implementation of the translator shown in Figure 3
based on the proposed definition language. Section VI surveys
previous work, and conclusions are drawn in Section VII.

II. A DEFINITION LANGUAGE FOR COLLABORATION

WORKFLOW DEFINITION

This section presents a workflow definition language that
fits the working model of cloud collaboration, which is called
the CLWfDL (Cloud Collaboration Workflow Definition

Language). As we have mentioned, each user ui (0i<n)
specifies his/her workflow requirement RQ(ui) distributively.
In the CLWfDL, RQ(ui) consists of a set of rules, where each

rule is either (x ⊱{, f(z)} y) or (x ⊰{, f(z)} y), defined as follows:

 “x” and “y” are activities in the defined workflow
process, which are called the antecedent and consequent

activities of , respectively.

 “μ” specifies the relationship between “x” and “y”. f(z)
is a Boolean predicate, where “z” represents the set of
parameters for evaluating the predicate. f(z) can be

absent, in which case the rule is either (x ⊱ y) or (x ⊰ y).

 “⊱” and “⊰” are used to specify the type of “μ”, being
join and split, respectively.

We now describe the abstract meaning of the two different
types of rules. First, we consider using the CLWfDL to define
the AND-join relationship between multiple activities.
Referring to Figure 4, the rule (x ⊱AND-join y) means that activity
x is one of the activities that enables the AND-join transition to
make activity y start (Figure 4A), while (x ⊱OR-join y) means that
activity x is one of the activities that enables the OR-join
transition to make activity y start (Figure 4B). Similarly, (x
⊰OR-split y) indicates an OR-split construct (Figure 4C). These
three types of rules can be associated with a Boolean predicate,
as shown in Figure 4D, E, and F.

(A)

(x ⊱AND-join y)

y
x AND

-
join

…
…

(D)

(x ⊱AND-join,f(z) y)

y
x AND

-
join

…
…

f(z) True

(B)

(x ⊱OR-join y)

yOR-
join

x

…
…

(E)

(x ⊱OR-join,f(z) y)

y
x

OR-
join…

…

f(z) True

(C)

(x ⊰OR-split y)

y
x OR-

split …
…

(F)

(x ⊰OR-split,f(z) y)

y
x OR-

split …
…

f(z) True

Figure 4. Example CLWfDL rules

In the CLWfDL, a single flow-control construct such as
AND-join, OR-join, or OR-split can comprise rules from
different users. For example, consider the situation where the
requirements of Alice, John, and Bruce are RQ(Alice) = {…,
A10 ⊱AND-join End, …}, RQ(John) = { …, A9 ⊱AND-join End,…},
and RQ(Bruce) = { …, A6 ⊱AND-join End, A7 ⊱AND-join End,…},
respectively. This requires the workflow definition to contain
the AND-join flow-control construct involving activities A6,
A7, A9, A10, and End, as shown in Figure 5. This construct
means that activities A6, A7, A9, and A10 have finished if and
only if End has started. Also, we can employ the AND-join
construct to define a sequence relationship between activities.
For example, the two rules (A ⊱AND-join B) and (B ⊱AND-join C)
define the sequence relationship of A, B, and C as shown in
Figure 2A.

End

A6

AND-
join

A7

A9

A10

…

…

…

…

…

Figure 5. An AND-join construct

To show the defining power of CLWfDL rules, we first
demonstrate how to use them to define all the flow-control
constructs defined in BPEL that contain <sequence>, <if>,
<while>, <repeatUntil>, <flow>, <pick>, sequential
<forEach>, and parallel <forEach>. In [14], Appendix A
shows illustrative directed graphs and the corresponding
CLWfDL rules that implement these constructs. Appendix B
discusses how to use CLWfDL rules to define other advanced
flow-control constructs.

We now discuss how to make a translator for CLWfDL
rules as shown in Figure 3. Our idea is to design an algorithm
that can translate a set of CLWfDL rules into a directed graph
in which nodes are activities and flow-control constructs and
edges are transitions. The workflow definitions for existing
workflow description languages can then be generated
according to the directed graph so that we can employ an
existing workflow engine to provide the workflow enactment
service (see Figures 1 and 2).

Consider n users (u0, u1, u2, …,un–1), where each user ui

(0i<n) specifies his/her workflow requirement RQ(ui). The
workflow enactment service should satisfy RQ(u0), RQ(u1), …,
and RQ(un–1). Assume that RQ(ui) consists of a set of CLWfDL
rules. A system is needed that controls the execution of the
workflow process according to rules in RQ(u0) ⋃ RQ(u1) ⋃ …
⋃ RQ(un–1). We employ the following notations to explain our
idea:

 Γ is the set of all rules from all users in the workflow
definition; that is, Γ = RQ(u0) ⋃ RQ(u1) ⋃… ⋃ RQ(un–1).

 Φa,μ(Γ) denotes a set of join rules in Γ that have the ⊱
type of “μ” and an identical consequent activity “a”.

Thus, we have Φa,μ(Γ) = { | = (x ⊱ a) or = (x ⊱,f(z)

a), Γ }.

 Ψa,μ(Γ) denotes a set of split rules in Γ that have the ⊰
type of “μ” and an identical antecedent activity “a”.

Therefore, we have Ψa,μ(Γ) = { | = (a ⊰ y) or = (a

⊰,f(z) y), Γ }.

 The set of antecedent activities of a set of rules ℝ,
denoted AAS(ℝ), consists of the union of the antecedent
activities of rules in ℝ. If the rule has a Boolean
predicate, the activity is associated with this predicate.

Thus, we have AAS(ℝ) = { x | (x ⊱ a) ℝ } ⋃ { xf(z) |

(x ⊱,f(z) a) ℝ } ⋃ { x | (x ⊰ a) ℝ } ⋃ { xf(z) | (x ⊰,f(z)

a) ℝ }.

 The set of consequent activities of a set of rules ℝ,
denoted CAS(ℝ), consists of the union of the consequent
activities of rules in ℝ. If the rule has a Boolean
predicate, the activity is associated with this predicate.

Thus, we have CAS(ℝ) = { y | (a ⊱ y) ℝ } ⋃ { yf(z) | (a

⊱,f(z) y) ℝ } ⋃ { y | (a ⊰ y) ℝ } ⋃ { yf(z) | (a ⊰,f(z) y)

 ℝ }.

For example, if we have Γ1 = { Start ⊱AND-join A1, A1 ⊱AND-

join A2, A2 ⊱AND-join A4, A4 ⊰AND-split A6, A4 ⊰AND-split A8, A8
⊰AND-split A10, A10 ⊱AND-join End, Start ⊱AND-join A2, A2 ⊰AND-split

A3, A3 ⊱AND-join A4, A8 ⊰AND-split A9, A9 ⊱AND-join End, A2 ⊰AND-

split,f(z) A5, A4 ⊰AND-split A7, A6 ⊱AND-join End, A7 ⊱AND-join End },
then we have (1) ΦA4,AND-join(Γ1) = { A2 ⊱AND-join A4, A3 ⊱AND-

join A4 }, (2) ΨStart,AND-join(Γ1) = { Start ⊱AND-join A1, Start ⊱AND-

join A2 }, (3) AAS(Γ1) = { Start, A1, A2, A2f(z), A3, A4, A6, A7,
A8, A9, A10 }, (4) AAS(ΦA4,AND-join(Γ1)) = { A2, A3 }, (5)
CAS(Γ1) = { A1, A2, A3, A4, A5f(z), A6, A7, A8, A9, A10,
End }, and (6) CAS(ΦA4,AND-join(Γ1)) = { A4 }.

Given Γ = RQ(u0) ⋃ RQ(u1) ⋃ … ⋃ RQ(un–1), the
workflow enactment service should fit the following
requirements according to rules in Γ. An activity derived from

AAS() or CAS() might or might not be associated with a
Boolean predicate. We define an activity that is not associated
with a Boolean function as being finished if its execution is
finished, while an activity that is associated with a Boolean
predicate (e.g., Bf(z)) is finished when its execution is finished
and the associated Boolean predicate is True. Similarly, an
activity that is associated with a Boolean predicate f(z) can be
started only if f(z) is True. We define that a set ℝ of rules is
satisfied, denoted Satisfy(ℝ), if the predicates P1 and P2 are

True. Assume that is the set of all activities that are referred
in ℝ, then

 P1: A in and in ℝ, the execution of A and

activities in AAS(ΦA,(ℝ)) should be controlled

according to .

 P2: A in and in ℝ, the execution of A and

activities in CAS(ΨA,(ℝ)) should be controlled

according to .

For example, if is an AND-join construct, then all
activities in AAS(ΦA,AND-join(ℝ)) are finished if and only if A

has started; if is an OR-join construct, then one of the
activities in AAS(ΦA,OR-join(ℝ)) is finished if and only if A has

started; and if is an OR-split construct, then A is finished if
and only if one of the activities in CAS(ΨA,OR-split(ℝ)) has
started. Note that we assume that there is no conflict between
rules—in section III we discuss how to deal with such conflicts.
Predicates P1 and P2 define the causal or temporal relationship
between activities from a set of rules. The fulfillment of
Satisfy(Γ) obeys the causal or temporal relationship between
activities defined by all the users. Algorithm 1 shows how to
generate a directed graph from a set of CLWfDL rules, Γ.
Actually, steps (4) and (5) ensure that the generated directed
graph satisfy predicates P1 and P2, respectively. The generated
directed graph G represents a workflow definition that fulfills
Satisfy(Γ).

Algorithm 1:

Generate a directed graph from a set of CLWfDL rules.

Input: A set of CLWfDL rules, Γ.

Output: A directed graph, G.

GenerateDG(Γ)

(1) Construct a directed graph G = (V, E) with no node (V = 2) or

edge (E =).

(2) Let be the set of all activities involved in Γ.

(3) For each activity in , create an activity node that is named by

the ID of the activity, and add this node to V.

(4) FOR EACH activity in and in Γ

// To satisfy predicate P1

 IF Φ,(Γ) ≠ THEN

 Add a node named "_" to V.

 Add edge (_,) to E.

 FOR EACH activity in AAS(Φ,(Γ))

 IF is associated with a Boolean predicate f(z)

 IF there is not a node "IF_fz" in V

 Add an IF-ELSE node named "IF_fz" to V.

 Add edge (, IF_fz) to E.

 Add edge (IF_fz, _) to E.

2
 “” is the empty set.

 ELSE IF is not associated with a Boolean

predicate f(z)

 Add edge (, _) to E.

 END FOR

END FOR

(5) FOR EACH activity in and in Γ

// To satisfy predicate P2

 IF Ψ,(Γ) ≠ THEN

 Add a node named "_" to V.

 Add edge (, _) to E.

 FOR EACH activity in CAS(Ψ,(Γ))

 IF is associated with a Boolean predicate f(z)

 IF there is not a node "IF_fz" in V

 Add an IF-ELSE node named "IF_fz" to V.

 Add edge (IF_fz,) to E.

 Add edge (_, IF_fz) to E.

 ELSE IF is not associated with a Boolean

predicate f(z)

 Add edge (_,) to E.

 END FOR

END FOR

(6) Remove all the unnecessary control nodes, which are nodes with

only one in-edge and out-edge in V.

(7) Return G.

Start

A1

A2

A4

A6

A5

A3

A8A7

A9

End

A10

(A)

Start

A1

A2

A4

A6

A5

A3

A8A7

A9

AND_join_A4

AND_join_END

End

AND_join_A2

A10

AND_join_A1

(B)

Start

A1

A2

A4

A6

A5

AND_split_A2

A3 IF_f(z)

A8A7

A9

AND_split_A4

AND_join_A4

AND_split_A8

T

AND_join_END

End

AND_join_A2

A10

AND_join_A1

(C)

Start

A1

A2

A4

A6

A5

AND_split_A2

A3 IF_f(z)

A8A7

A9

AND_split_A4

AND_join_A4

AND_split_A8

T

AND_join_END

End

AND_join_A2

A10

(D)

Figure 6. Illustration of Algorithm 1

We now employ our motivating example to demonstrate
Algorithm 1. Referring to Table 2, Alice, Peter, John, and
Bruce can use CLWfDL to specify their requirements as
follows:

 RQ(Alice) = { Start ⊱AND-join A1, A1 ⊱AND-join A2, A2
⊱AND-join A4, A4 ⊰AND-split A6, A4 ⊰AND-split A8, A8 ⊰AND-split

A10, A10 ⊱AND-join End }.

 RQ(Peter) = { Start ⊱AND-join A2, A2 ⊰AND-split A3, A3
⊱AND-join A4 }.

 RQ(John) = { A8 ⊰AND-split A9, A9 ⊱AND-join End }.

 RQ(Bruce) = { A2 ⊰AND-split,f(z) A5, A4 ⊰AND-split A7, A4
⊰AND-split A8, A6 ⊱AND-join End, A7 ⊱AND-join End }, where
f(z) is a Boolean predicate which returns True if the

probability of precipitation is bigger than 60% on the
party date.

In step (2) we have = { Start, End, A1, A2, A3, A4, A5,
A6, A7, A8, A9, A10 }, and after step (3) we have G, as shown
in Figure 6A. In step (4), we add some AND-join nodes to
satisfy predicate P1, which results in Figure 6B. Figure 6C
results from step (5) by adding some AND-split nodes to
satisfy predicate P2. In step (6) we remove all the unnecessary
control nodes (i.e., AND-join, or AND-split nodes that have
only a single in-edge and out-edge), finally yielding G = (V,E)
as shown in Figure 6D.

Note that we have two special activities, “Start” and “End”,
which indicate the start and end of the workflow process.
Actually, the CLWfDL can also be used to define workflow
exceptions [15]. For example, we can use the rule
“ExceptionRaise(X) ⊱OR-join A1” to define when a workflow
exception X occurs and we have to execute A1.

III. CONFLICTS BETWEEN CLWFDL RULES

A workflow definition could contain some errors such as
the existence of unreachable activities, deadlock, and a poorly
well-defined structure [16]. The traditional way to handle
errors in a workflow definition is to discover them before the
workflow process is executed. The rules in the CLWfDL
usually come from many people, including some who might
not communicate, which increases the likelihood of conflicts
between rules. For example, if r1 = (A ⊱AND-join E), r2 = (B
⊱AND-join E), r3 = (C ⊱OR-join E), and r4 = (D ⊱OR-join E), then there
exists a conflict for Satisfy(Γ), where Γ contains r1, r2, r3, and
r4. According to the semantics of the AND-join construct,
activity E is started after both activities A and B are finished
due to r1 and r2. According to the semantics of the OR-join
construct, activity E should be started immediately when either
C or D is finished. Thus, when activity C is finished and A is
not finished, we cannot satisfy r1, r2, r3, and r4 at the same
time. This situation is referred to as a rule conflict. It is possible
to have different types of conflict between a set Γ of CLWfDL
rules:

 If (a ⊱1,f(z) x) ∈ Γ and (b ⊱2,f(z) x) ∈ Γ, where a ≠ b and

1≠2, then Satisfy(Γ) is not possible because 1 and 2
cannot be satisfied at the same time.

 If (a ⊰1,f(z) x) ∈ Γ and (b ⊰2,f(z) x) ∈ Γ, and a ≠ b and

1≠2, then Satisfy(Γ) is not possible because 1 and 2
cannot be satisfied at the same time.

 If (a ⊰1,f(z) x) ∈ Γ and (b ⊱2,f(z) x) ∈ Γ, and a ≠ b and

1≠2, then Satisfy(Γ) is not possible because 1 and 2
cannot be satisfied at the same time.

When there are conflicts in Γ, there is no way for the
workflow enactment service to control the execution of
activities so as to satisfy all the rules in Γ. An intuitive
approach is that the system should report conflicts to users as
shown in Figure 3. The users read the conflict report and revise
their rules accordingly.

Another solution is to associate priorities with rules. The
use of priority can alleviate the conflicts between rules. A rule

with a priority is either (x ⊱ a)p or (x ⊱,f(z) a)p, where p is an
integer number greater than or equal to zero. We abbreviate a

rule with the lower priority “0” [e.g., (x ⊱ a)0] as x ⊱ a.
Referring to Algorithm 2, by removing rules that conflict with
other rules and have a lower priority, we can derive a set of
rules, Γ', that includes rules with a higher priority. Note that it
is still possible that rules in Γ' conflict with each other, since
rules with the same priority will not be removed by Algorithm
2. If such conflicting rules exist in Γ', we should inform the
involved users.

Algorithm 2: Removing conflicts from a set of CLWfDL rules

according to the rule priorities

Input: A set of CLWfDL rules, Γ.

Output: A set of CLWfDL rules, Γ'.

RemovingConflict(Γ)

(1) Let be the set of all activities involved in Γ.

(2) FOR EACH rule pair (ri, rj) in Γ

 IF ri and rj are in conflict and Priority(ri) < Priority(rj)

THEN

 Γ' = Γ – { ri }.

END FOR

Return Γ'.

Referring to Figure 6, if Peter changes his requirement to
RQ(Peter)' = { Start ⊱AND-join A2, A2 ⊰AND-split A3, A3 ⊱AND-join

A4, A3 ⊱AND-join A9 }. There is a conflict between RQ(Peter)',
and RQ(John). Because (A3 ⊱AND-join A9) and (A8 ⊰AND-split A9)
∈ Γ, A3 ≠ A8, and AND-join ≠ AND-split. If Peter assigns
priority one to his rule: (A3 ⊱AND-join A9)1, than Priority(A3
⊱AND-join A9) is greater than Priority(A8 ⊰AND-split A9). Thus we
can get Γ' = Γ – { A8 ⊰AND-split A9 } by Algorithm 2. We
therefore input Γ' when executing Algorithm 1. The result is
shown in Figure 7. If there is no conflict between rules in Γ'
after the applying of Algorithm 2, we can create a directed
graph G by applying Algorithm 1.

Start

A1

A2

A4

A6

A5

AND_split_A2

A3 IF_f(z)

A8A7

A9

AND_split_A4

AND_join_A4
T

AND_join_END

End

AND_join_A2

A10

Figure 7. The result of applying Algorithm 1 to Γ'

IV. DISTRIBUTED DEFINITION AND CONCURRENT REVISION

IN THE CLWFDL

In this section we summarize the definition and revision
model that the CLWfDL can support. First, the CLWfDL
supports a kind of distributed definition of workflow processes
(see Theorem 1). Assuming that there are n users (u0, u1, u2, …,
and un–1), in this paper we say that these n users can
distributively define a workflow process if there exists a
program tool that can translate their requirements [RQ(u0),
RQ(u1), …, RQ(un–1)] into a representative form of a workflow
definition that is aware of some workflow engine without
assistance from humans, and can identify conflicts between the
requirements of different users. Also, a single flow-control
construct that involves multiple activities can be determined
from the diverse requirements of multiple users.

Theorem 1: The CLWfDL can support a distributed

definition of workflow processes.

Proof: First, the CLWfDL supports rules for users to construct

their requirements, and these rules can define all the possible

flow-control structures as shown in [14]. Second, there exist

algorithms to construct a directed graph from users’

requirements and identify conflicts as shown in Algorithm 1

and section III, respectively. QED

The CLWfDL supports a revision model that is appropriate
for cloud collaboration, which we call concurrent revision (see
Theorem 2). Assume that a workflow definition D is defined
distributively by n users, which is denoted as D = RQ(u0) ⋃
RQ(u1) ⋃ …⋃ RQ(un–1). A concurrent revision of D to D′

involves each user ui (0i<n,) revising his/her own requirement
RQ(ui) independently and simultaneously without referring to

the requirements of other users. If user ui (0i<n) revises RQ(ui)
to RQ′(ui), then D′ = RQ′(u0) ⋃ RQ′(u1) ⋃ …⋃ RQ′(un–1).

Theorem 2: The CLWfDL can support the concurrent

revision of workflow processes.

Proof: Since there exists an algorithm (i.e., Algorithm 1) that

can generate a directed graph for a workflow, the

requirements of users [i.e., RQ(u0), RQ(u1), …, RQ(un–1)] can

be stored in their original form. The users simply revise their

requirements concurrently and then submit them to Algorithm

1. Also, a user cannot modify the requirements of others. QED

BA CAND-join

(A)

DA CAND-join

(B)

Figure 8. The directed graph generated by revised CLWfDL rules

We employ the example presented in Figure 2 to
demonstrate how the CLWfDL rules support concurrent
revision. Assume that two users, ui and uj, are making a
workflow definition using CLWfDL rules. The original
requirements are RQ(ui) = { A ⊱AND-join C } and RQ(uj) = { A
⊱AND-join B, B ⊱AND-join C }. Submitting RQ(ui) ⋃ RQ(uj) to
Algorithm 1 yields the directed graph shown in Figure 8A.
According to the scenario, user ui is going to add an activity D
after activity A, and user uj is going to remove activity B.

Therefore, ui and uj revise their original requirements to RQ(ui)

= { A ⊱AND-join D, D ⊱AND-join C } and RQ(uj) = { A ⊱AND-join C }.

Applying Algorithm 1 to RQ(ui) ⋃ RQ (uj) obtains the
directed graph shown in Figure 8B. Although the directed
graphs in Figure 2D and Figure 8B are different, they are
semantically equivalent because the AND-join construct in
Figure 8B limits activity C to start after both A and D have
finished, and D should be started after A has finished. Users ui
and uj do not encounter the problem of concurrent revision
because they do not have to deal with edges and nodes while
they are revising the workflow definition. While it is possible
that the revised requirements contain CLWfDL rules that
conflict with each other, the translator will also detect this
situation and report it to the users.

V. THE CLWFDL DOCUMENT AND API

In this section we define how to represent CLWfDL rules in
XML documents and a CLWfDL API. Developers can
implement collaborative workflow definition systems in
CLWfDL API. Figure 9 shows the syntax of a CLWfDL
document (we specify syntax definitions in the Backus-Naur
Form

3
 [17] in this paper), which consists of the following two

sections:

 The header section. Since a CLWfDL document is also
an XML document, it begins with an XML declaration
that specifies the version of XML being used (e.g.,
<?xml version="1.0"?>). This section also contains
required namespace declarations.

 The CLWfDL section. This section contains CLWfDL
rules. Each rule is composed of elements. The <priority>
element specifies the priority of the rule, and is an
integer. The <ruleType> element specifies the type of
rules, which can be either “join” or “split”. The
<antecedent> and <consequent> elements are used to
specify the antecedent and consequent activities of the
rule.

CLWfDL →
 <CLWfDL id="id">
 rule {rule}
 </CLWfDL >

 rule →
 <rule user="user">
 <priority> priority </priority>

 <ruleID> </ruleID>
 <ruleType> join|split </ruleType>
 <antecedent> activityID </antecedent>
 <consequent> activityID </consequent>
 [<ifElse> predicate </ifElse>]
 </rule>

id → string , user → string

priority → integer , → string

activityID → string , predicate → string

*string represents a character string.

Figure 9. Syntax of the CLWfDL document

3
 Conventionally, a nonterminal symbol in Backus-Naur form is delimited by

< and >. To prevent confusion with XML elements, nonterminal symbols are
underscored in this paper.

Figure 10 shows two CLWfDL documents that are
definitions from two users as shown in Figure 8B. We also
propose the CLWfDL API in order to make it easy to
implement the translator shown in Figure 3. The CLWfDL API
was developed in the JAVA programming language and dom4j
library [18], and can construct a directed graph G = (V, E) from
some CLWfDL rules according to Algorithm 1 and Algorithm
2. We can then generate a workflow definition based on G for a
specific workflow engine. The core classes are theCLWfDL,
theTools, checkConflict, edge, node, and rule. A rule object
corresponds to a single CLWfDL rule. The theCLWfDL and
checkConflict classes implement Algorithm 1 and Algorithm 2,
respectively.

<?xml version="1.0"

encoding="UTF-8"?>
<CLWfDL>

 <rule user=" ui ">

 <priority>0</priority>
 <ruleID>AND-join</ruleID>

 <ruleType>join</ruleType>

 <antecedent>A</antecedent>
 <consequent>D</consequent>

 </rule>

 <rule user=" ui ">
 <priority>0</priority>

 <ruleID>AND-join</ruleID>

 <ruleType>join</ruleType>
 <antecedent>D</antecedent>

 <consequent>C</consequent>

 </rule>
</CLWfDL>

<?xml version="1.0"

encoding="UTF-8"?>
<CLWfDL>

 <rule user=" uj ">

 <priority>0</priority>
 <ruleID>AND-join</ruleID>

 <ruleType>join</ruleType>

 <antecedent>A</antecedent>
 <consequent>C</consequent>

 </rule>

</CLWfDL>

(A) (B)

Figure 10. Two example CLWfDL documents

/* Invoke CLWfDL API to input CLWfDL documents and output

corresponding sets : Γ, Γ, V and E. */

/* Step 1: create a CLWfDL object for process some CLWfDL
documents */
TheCLWfDL theCLWfDL = new TheCLWfDL();

// Step 2: read some CLWfDL document files from some users.
theCLWfDL.readXML(“U_John.xml”);
theCLWfDL.readXML(“U_Alice.xml”);

// Step 3: Create the Γ set defined in section II.
theCLWfDL.createGamma();

/* Step 4: Create the Γ set by check the CLWfDL definition
conflicts and try to eliminate them in Γ according to
Algorithm 2. */
theCLWfDL.removeConflict();

/* Step 5: We check if there are still rules in Γ which
conflict. */
if (theCLWfDL.checkConflict()) {
 RuleVector rV=theCLWfDL.getConflictedRules();
 For (rv)
{ rv.show();}
}

/* Step 6: Create the V set and E set of the CLWfDL directed
graph according to Algorithm 1. */
theCLWfDL.createDG();

// Obtain the created V set.
NodeVector nV=theCLWfDL.getNodeList();

// Obtain the created E set.
edgeVector eV=theCLWfDL.getEdgeList();

Figure 11. Codes invoking the CLWfDL API

Figure 11 demonstrates how to use the CLWfDL API to
process a set of CLWfDL documents. When the main program
starts, it first instantiates a CLWfDL object in step 1. In step 2,
this object inputs some CLWfDL documents, and step 3
invokes the createGamma() method to construct a set Γ of
CLWfDL rules from the input documents. Before creating the
directed graph it is necessary to invoke removeConflict() in

step 4 which is actually Algorithm 2. This creates the Γ set. If
there are still conflicting rules, they can be checked using the
checkConflict() method in step 5. The processing of the
CLWfDL documents should be stopped if some rules are
conflicting, and the corresponding users should be informed.
Finally, step 6 invokes the createDG() method to create a set
E of edges and a set V of nodes of a directed graph G according
to Algorithm 1. The node and edge sets of the generated
directed graph can be obtained by getNodeList() and
getEdgeList(), respectively. Figure 12 shows the node and
edge sets obtained by processing the CLWfDL documents in
Figure 10. Directed graph G can be used to translate the
workflow definition into another definition language. Table 3
shows the running time required for the CLWfDL API to
process some documents with more rules. The CLWfDL API
can be downloaded from
http://www.csie.ntnu.edu.tw/~ghhwang/CLWfDL/CLWfDL_A
PI_1_5.jar.

Node list Edge list

[D]: activity node

[A]: activity node

[C]: activity node

[AND_join_C]: AND-join node

[A] -> [D]

[AND_join_C] -> [C]

[D] -> [AND_join_C]

[A] -> [AND_join_C]

Figure 12. Node and edge sets obtained by processing the CLWfDL

documents in Figure 10

TABLE 3. RUNNING TIMES FOR PROCESSING SOME CLWFDL DOCUMENTS

Experimental Results

11 rules 529 ms

12 rules with conflict 631 ms

32 rules with conflict 901 ms

VI. RELATED WORK

There are numerous popular workflow definition languages,
including FDL [19], jPDL [20], XPDL [2], and BPEL [3], and
they have corresponding graphical editors. A workflow editor
presents a defined workflow as a directed graph; such editors
include the IBM FlowMark workflow manager [19], JBoss
jBPM [20], Enhydra JaWE [5], and BPEL Designer project [7].
Aalst and ter Hofstede proposed the YAWL [4] workflow
language, and demonstrated that it can be used to define all the
flow-control constructs existing in “workflow patterns” [10].
The YAWL system is still under development, but it already
provides a graphical editor [21]. Since these workflow
definition languages all employ a directed-graph-based editor
to edit workflow definitions, we can consider them as directed-
graph-based workflow definition languages. As mentioned in
section I, a graphical workflow editor suffers from the
concurrent-revision problem and does not provide an effective
mechanism to implementing workflow definition by cloud
collaboration.

The most famous application of cloud collaboration is
Google Docs [8], which allows multiple users to edit a shared
document in the cloud concurrently and distributively. Many
researchers have recently proposed approaches for various
applications that involve cloud collaboration. Vegesna
proposed various concepts related to online collaboration and a
specific online application called Zoho Notebook [22] that aims
to effectively illustrate the advantages of online collaboration.
It supports fine-grain access control and locking at the
individual object level rather than the page level in
collaborative document editing. Mikkonen and Nieminen
discussed three major topics related to implementing a revision
control system in the cloud collaborative development
environment [23]. Their prototype system, called “Cored”,
allows users to edit codes concurrently and also communicate
using means that are familiar from social media, which
facilitates its development. This differs from a traditional
version-control system because it reconsiders the role of
version management based on the assumption that the
background system can determine when a complete, runnable
system exists by relying on compilation, testing, and
integration capabilities available in the cloud. However, to the
best of our knowledge, the present paper is the first to address
the issue of defining a workflow process by cloud collaboration.

Stephenson et al. used a scenario to demonstrate an
integrated environment for the development of business
processes in the cloud [24]. They provided a collaborative
model editor to model the activities of all the available experts.
They proposed four basic experts—responsible for business,
service, security, and the target platform—to develop and
execute a business process complementarily. Each expert can
create a BPMN model and share it with other experts. However,
their model still has limitations. For example, if the business
process is updated by one of the experts, this will impact on the
other experts; this problem is very similar to the concurrent-
revision problem that we describe in section I. In order to solve
this problem, those authors suggested having a single person
perform more than one role.

Jørgensen proposed a design guide for an interactive WfMS
and described the challenges for interactive workflow modeling
[25]. His goal was to use an interaction framework to help
users to reinterpret the use of explicit process representations
and the roles of models and components in WfMS architectures.
That framework is based on the WORKWARE model language,
which was inspired by the Action Port Model (APM), but it
was simplified and had interactive enactment semantics added
to it [26][27]. The basic assumptions are that the model only
reflects parts of a socially constructed reality, and that it can be
changed at any time. The users can interact with the system to
redefine the workflow process. The APM uses a visualization
editor to construct the model. The decision connectors (i.e.,
control nodes) of the APM cover AND/OR fork/joins.
However, the framework cannot support concurrent revision
from multiple users and thus is inappropriate for cloud-based
cooperation.

A non-directed-graph-based workflow definition language
has also been proposed. Glance et al. used generalized process
structure grammars (GPSG) to generate flexible representations
of collaborative processes and feature constraints to represent

the artifacts of complex process [28][29]. They proposed
writing constraints in GPSG rules to define the causal
dependency between activities. Examples of the constraints
mentioned in their paper include “precede”, “<”, “<=”, “>”,
and “>=”. They claimed that GPSG are more flexible than a
traditional workflow definition language, since new rules can
be added without needing to change the original rules, and
rules can be revised independently of other rules. Our
CLWfDL also has these advantages, and it seems that GPSG
could be used in a cloud collaboration environment since the
GPSG rules could be collected from different users to form the
definition of a workflow. However, GPSG do not provide the
ability to detect and solve conflicts between rules. Also, Glance
et al. did not show whether GPSG rules can implement popular
flow-control constructs and if it is possible to translate GPSG
rules into directed graphs.

VII. CONCLUSION

Applying the working model of cloud collaboration to
define a workflow in the CLWfDL can reduce the cost, since
collaborating users do not have to be in the same space and
human intervention is not needed to analyze the requirements
of users. We believe that this approach has considerable
potential in today’s globalized society. The CLWfDL supports
distributed definition and concurrent revision. Despite having
only two types of rules, this new language can implement
almost all flow-control constructs, as shown in [14]. After users
learn the meaning of the two types of rules, they can use them
to specify their requirements for workflow execution. A
translator can detect if there is any conflict between the rules
from multiple users. If conflicts exist, the involved users can be
informed and then they can communicate and negotiate
amongst themselves so as to revise their rules until there is no
conflict. Each user maintains and is responsible for his/her own
rules. We have proposed algorithms that can translate rules
from multiple users into a directed graph, which can
subsequently be transformed into any workflow definition
language. This means that existing workflow engines can
provide the workflow enactment service for workflows defined
by CLWfDL rules. Since each user only specifies rules, we can
design a home page for him/her to edit his/her own rules, and
the system can present the final workflow definition in the form
of a directed graph.

REFERENCES

[1] D. Georgakopoulos, M. Hornick and A. Sheth, “An overview of
workflow management: from process modeling to workflow automation
infrastructure,” Distributed and Parallel Databases, vol. 3, issue 2, pp.
119–153, April 1995.

[2] WFMC, “Workflow Management Coalition Workflow Standard:
Workflow Process Definition Interface – XML Process Definition
Language (XPDL) (WFMCTC- 1025),” Technical report, Workflow
Management Coalition, Lighthouse Point, Florida, USA, 2002.

[3] OASIS, “Web Services Business Process Execution Language
(WSBPEL),” http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html, OASIS Standard, April 2007.

[4] W.M.P. van der Aalst, and A.H.M. ter Hofstede, “YAWL: yet another
workflow language,” Information Systems, vol. 30, issue 4, pp. 245–275,
2005.

[5] “JaWE - Java Workflow Editor,” http://www.together.at/prod/workflow/twe.

[6] OMG “Business Process Model And Notation (BPMN),”
http://www.omg.org/spec/BPMN/2.0/, Object Management Group,
January 2011.

[7] “Eclipse BPEL Designer Project,” http://www.eclipse.org/bpel/.

[8] “Google Docs,” https://docs.google.com/.

[9] “Google Calendar,” https://calendar.google.com/.

[10] “Workflow Patterns Home Page,” http://www.workflowpatterns.com.

[11] “Google Forms,” https://docs.google.com/forms/.

[12] P. M. Sant, “Exclusive read, exclusive write,” in Dictionary of
Algorithms and Data Structures, Paul E. Black, ed., U.S. National
Institute of Standards and Technology. December 17, 2004.

[13] F. Casati, S. Ceri, S. Paraboschi, and G. Goodman, “Concurrency
Control and Recovery in Database Systems,” Addison Wesley
Publishing Company, 1987, ISBN 0-201-10715-5.

[14] Chi Wu-Lee and Gwan-Hwan Hwang, “Workflow Definition by Cloud
Collaboration,” Chi Wu-Lee and Gwan-Hwan Hwang, Technical Report,
National Taiwan Normal University, 2013.
http://www.csie.ntnu.edu.tw/~ghhwang/TR/CLWfDL_Technical_Report
_2013_08_06.pdf

[15] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and
implementation of exceptions in workflow management systems,” ACM
Transactions on Database Systems, 24(3): 405-451, 1999.

[16] B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler, “On Structured
Workflow Modelling,” The 12th International Conference on Advanced
Information Systems Engineering (CAiSE), LNCS 1789, pp. 431-445,
2000.

[17] Control Data Corporation, “ALGOL-60 version 5 reference manual,”
CDC, 1979, Appendix D, Available at:
<http://www.lrz.de/~bernhard/Algol-BNF.html>.

[18] “dom4j,” http://dom4j.sourceforge.net/.

[19] “IBM FlowMark: Modeling Workflow,” Version 2 Release 2. Publ. No.
SH-19-8241-01, 1996.

[20] “JBoss, jBPM, jPDL,” http://www.jboss.org/jbpm/.

[21] “YAWL System,” http://www.yawlfoundation.org/.

[22] R. Vegesna, “Collaboration in Context: From the Desktop to the Cloud,”
The 2012 45th Hawaii International Conference on System Science
(HICSS), pp. 669-673, January 2012.

[23] T. Mikkonen and A. Nieminen, “Elements for a cloud-based
development environment: online collaboration, revision control, and
continuous integration,” The 10th Working IEEE/IFIP Conference on
Software Architecture & 6th European Conference on Software
Architecture (WICSA/ECSA), pp. 14-20, August 2012.

[24] B. Stephenson, J. Li, F. Lins, R. Medeiros, B. Silva, A. Souza, D.
Aragao, J. Damasceno, P. Maciel and N. Rosa, “SSC4Cloud Tooling:
An Integrated Environment for the Development of Business Processes
with Security Requirements in the Cloud,” The 7th IEEE 2011 World
Congress on Services, pp. 53-60, July 2011.

[25] H. D. Jørgensen, “Interaction as a Framework for Flexible Workflow
Modelling,” Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work 2001, pp. 32-41, October 2001.

[26] S. Carlsen, “Action Port Model: A Mixed Paradigm Conceptual
Workflow Modeling Language,” CoopIS '98, New York, 1998.

[27] H. D. Jørgensen and S. Carlsen, “Emergent Workflow: Integrated
Planning and Performance of Process Instances,” Workflow
Management '99, Münster, Germany, 1999.

[28] N. S. Glance, D. S. Pagani, and R. Pareschi, “Generalized process
structure grammars GPSG for flexible representations of work,”
Proceedings of the 1996 ACM conference on Computer supported
cooperative work, pp. 180-189, November 1996.

[29] N. Glance, Pagani, D., and Pareschi, R. “Generalized Process Structure
Grammars for Modeling Collaborative Writing,” Rank Xerox Research
Centre, Grenoble, Technical Report March 1996.

