
Toward Energy Efficient Multistream Collaborative
Compression in Wireless Sensor Networks

Tommy Szalapski and Sanjay Madria
Department of Computer Science, Missouri S&T, Rolla, MO 65401, USA

T.M.Szalapski@mst.edu and madrias@mst.edu

Abstract -Wireless sensor networks possess significant limitations
in storage, bandwidth, and power. This has led to the
development of several compression algorithms designed for
sensor networks. Many of these methods exploit the correlation
often present between the data on different sensor nodes in the
network; however, correlation can also exist between different
sensing modules on the same sensor node. Exploiting this
correlation can improve compression ratios and reduce energy
consumption without the cost of increased traffic in the network.
We investigate and analyze approaches for compression utilizing
collaboration between separate sensing modules on the same
sensor node. The compression can be lossless or lossy with a
parameter for maximum tolerable error. Performance
evaluations over real world sensor data show increased energy
efficiency and bandwidth utilization with a decrease in latency
compared to some recent approaches for both lossless and loss
tolerant compression.

Keywords - wireless sensor network; real-time; collaborative;
compression;

I. INTRODUCTION

Wireless sensors are used to collect and transmit data in a
wide variety of applications. Many such applications utilize
sensor nodes that collect several different streams of data on
different sensing modules on the same sensor node. For
example, sensor nodes in the Great Duck Island project [1] and
an Intel Berkeley Labs experiment [2] were used to collect
temperature, humidity, light intensity, and more. Even
applications that primary just sense one thing often send
multiple streams of data from the same sensor. For example,
ZebraNet [3] tracked locations of zebras sending two streams
of data for the GPS readings (easting and northing) and some
metadata such as voltage and count of satellites in range of the
GPS sensor.

It is well known that wireless sensor networks possess
significant limitations in processing, storage, bandwidth, and
power. This has, naturally, led to the development of many
compression algorithms specific to sensor networks. Many of
these algorithms rely on the data readings from a single sensor
being correlated to previous readings on that same sensor
(temporal locality) [4][5][6]. Others rely on correlations
between similar data streams on other sensor nodes (spatial
locality) [7][8][9][10]. Correlation can also exist between
different streams of data collected on the same sensor node;
however, very little work has yet been done which exploits this
correlation.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2000 4000 6000 8000 10000 12000

Sequence number
R

aw
 s

en
se

d
 v

al
u

e

Humidity

Temperature

Light

Figure 1 Multistream sensor readings

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

Sequence number

R
aw

 s
en

se
d

 v
al

u
e

Humidity

Temperature

Light

Figure 2 Scaled multistream sensor readings

To illustrate this correlation, Figure 1 shows values from
12,000 readings of temperature, humidity, and light intensity
sensors on a single sensing node taken from the Intel Lab
dataset. Figure 2 shows those same values scaled with the
simple linear transformations shown in Equation 1 where hn is
the nth humidity reading and hn' is the scaled value. Similarly,
tn and ln are for the temperature and light intensity, respectively
along with their scaled notation. Clearly some benefits could be
gained by leveraging the correlation between the different data
streams.

nn

nn

nn

ll

tt

hh

5.11800'

'

5.04000'

+=
=

−=
 (1)

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257289

In this paper, we present TinyPack-Collaborative
(TinyPack-C), a lightweight compression algorithm leveraging
the temporal correlation within each stream and the correlation
between multiple streams of data on an individual sensing
node. TinyPack-C is based on the initial code set presented in
[6] and extended to include collaboration between the multiple
streams from the various sensors on the same sensing node.
Collaboration is computed based on a rolling linear regression
scheme requiring constant time memory use and processing for
each correlated pair of sensed values.

If some loss is tolerable in the data, compression is
enhanced by first performing a modified version of the jumping
baseline transformation introduced in [11] which converts the
stream into a step function. The rolling linear regression is then
applied to the flattened streams. The maximum tolerable error
can be configured low for simply removing noise from the data
or high if the application is not concerned with low variation in
the data.

We present and analyze compression schemes for both
lossless compression and loss tolerant compression with a
configurable maximum error. We compare both varieties
against state of the art compression methods. For the lossless
case, we compare against the original TinyPack algorithm,
LEC [5] and S-LEC[12]. We compare our lossy compressor
with LTC [13] and the single sensor jumping baseline approach
[11]. Simulations using TOSSIM [18] were done over several
real life datasets covering a wide variety of sensor applications.

In summary, this paper makes the following contributions:

• Novel algorithms for lossless compression leveraging
collaboration across multiple streams on a single sensor
node

• Additional algorithms for lossy compression with a
configurable upper bound for error

• Lightweight mechanisms for computing correlation
between signals

• Detailed analysis over several real world datasets

• Methods for performing mathematical operations and
aggregation on the compressed data without first
decompressing the data

• Analysis of effects of a simple signal reconstruction
method on measured error

II. RELATED WORK

A. S-LEC

S-LEC, a lossless data compression scheme, is proposed in
[12]. S-LEC begins with the static set of codes used in LEC [5]
to represent delta values in a data stream. In LEC, each reading,
the previous value is subtracted from the current value and the
resulting delta value is coded based on a static table of codes
derived from those used in JPEG compression. Smaller delta
values have shorter codes. For S-LEC, codes that are the same
length are said to be in the same group and two bits are
prepended to each value noting whether the current delta value
is in the same, one higher, one lower, or any other group as the

previous delta value. This enables reducing the size of the
prefix come and improves the compression ratio when data is
changing in a consistent fashion.

B. TinyPack

Another lossless method is presented in [6], TinyPack
initially uses a similar set of static codes for its compression,
but the codes were optimized for wireless sensor data instead of
JPEGs. Those codes are then dynamically modified either by
counting the frequency of each value or by approximating
those frequencies using a rolling average and standard
deviation. The initial set of codes used in TinyPack-Init is
shown in Table I and forms the basis on which the compression
in this work is built.

Table I STATIC CODES

prefix suffix range values

1 n/a 0
01 0...1 -1.1
001 00...11 -3,-2,2,3
0001 000...111 -7,...,-4,4,...,7
00001 0000...1111 -15,...,-8,8,...,15
000001 00000...11111 -31,...,-16,16,...,31
0000001 000000...111111 -62,...,-32,32,...,63
00000001 0000000...1111111 -127,...,-64,64,...,127

Except in the case of 0, the last bit of the suffix is the sign
bit. For example, if the current reading was 3 higher than the
previous reading, a delta value of +3 would be transmitted as
00110. A delta value of -4 would be encoded as 0001001. Note
that in [6] the sign bit was at the beginning of the prefix, but
computing mathematical operations on the compressed data is
easier if the sign bit is moved to the end.

C. LTC

In [13] a lossy compression scheme is introduced that
approximates the data stream by a sequence of linear segments.
As the data is collected by the sensor, the algorithm fits a line
to the data as long as the line can be defined such that no point
in the transformed data exceeds a maximum error bound. When
a data point is sensed that cannot be fit to the line without
exceeding the allowed error, that line is transmitted and a new
line starts. The algorithm is effective but does introduce
additional latency since the data is not transmitted until the
sensed reading that necessitates a new line.

D. Jumping Baselines

The jumping baseline approach in [11] approximates the
data stream as a discrete step function which can be
reconstructed to a linear function similar to the one generated
by LTC at the sink. Any time a sensed value is outside the
maximum tolerable error away from the current baseline, a new
baseline is selected. The possible candidate baselines are
selected from multiples of the maximum error such that the
new value can be expressed as the number of baseline jumps
above or below the previous baseline. The new baseline is also
selected as far in the direction the data has been trending as
possible without violating the maximum tolerable error. This
process is described in more detail in section 0 and forms the
basis on which our lossy compression is built.

III. BACKGROUND

A. Temporal locality

Data from wireless sensor networks generally exhibits
temporal locality (data values from the same stream are
correlated to values that are close together in time). Any type of
data stream which changes in a continuous fashion will be
temporally located such as humidity, position, light intensity,
water level, etc. In fact, it can be demonstrated that any sensor
stream sampled at non-random intervals will either generate
temporally located data or random noise.

Consider an arbitrary sensor sensing a stream of values {v1,
v2, …, v2N} sensed at times {t1, t2, …, t2N} where N is an
integer. Assume that the values are not correlated. Then
sampling at {t1, t3, …, t2N-1} and {t2, t4, …, t2N} would yield
completely different values. Thus, offsetting the sample period
would generate entirely different data. Therefore, application
with time-based sampling which did not exhibit temporal
locality must be sampling random noise. Excluding such
applications we can assume that successive readings at each
sensor will be correlated. Delta compression (storing the data
as the change in value from the previous reading) would then
increase the frequency of certain values thus increasing the
compressibility of the data.

Naturally this does not apply to event driven sampling
(where time between samples is random) such as a sensor that
measures the speed once for each passing automobile. These
applications do not necessarily exhibit temporal locality and
were not included in this study.

The previously sensed value in each sensed stream can then
be used as a baseline for compressing the value of the next
sample in the stream. For lossless compression, the value can
be transmitted as the difference between the current sensed
value and the previous value (the baseline value). For lossy
compression, the data can be approximated using the baseline
value until the current value differs from the baseline value by
more than the upper limit for tolerated error.

B. Collaborative compression

In the case of collaborative compression, one sensed stream
serves as the baseline for one or more of the other sensed
streams on the same sensor. The data from this baseline stream
is compressed leveraging temporal locality as discussed in the
previous section and the data from the correlated streams are
encoded based on the difference from some linear function of
the baseline stream referred to as the baseline function. As with
the single stream compression of the baseline stream, the
lossless case would require that a delta value be sent every time
the sensor samples data while the lossy case can use the
baseline function as the approximated values for the
compressed stream until the value is above or below the
baseline function by more than the maximum tolerable error.
The algorithm is shown in more detail section 0.

C. Measuring error

For the lossy compression, we consider a parameterized
maximum tolerable error percentage Emax. Instead of reporting
every value exactly as sensed, if a value deviates from its
baseline less than Emax, the baseline value can be used instead.

This allows for much greater compression while keeping the
error bound by the tunable maximum. This parameter can be
adjusted based on the application need, i.e., in real-time, but
can tolerate some error (lossy), or non-lossy, but can tolerate
some latency.

A common method of measuring error, E, between a
reported value, VR, and the actual value VA, is shown in
Equation 2.

A

RA

V

VV
E

−
= (2)

Unfortunately, that measure does not work well for many
kinds of sensor data when introducing error because the error
varies wildly when working with values near zero.

Consider a sensor which reported relative humidity
readings with a maximum error of +/- 1. Table II shows several
possible actual readings and their approximated values within 1
of the actual value. Also shown is the calculated error using the
formula shown in Equation 2.

Table II INCONSISTENT ERROR MEASURE

actual
value

approximated
value

calculated
error

48 49 2.08%
14 15 7.14%
2 3 50%
0 1 undefined

In practice, the best way to set an upper bound for error
would be to explicitly set the bounds in terms of the scale. For
example, when set by the end user, the tolerable error for a
temperature reading could be +/- 1°C. For analysis, however, it
is useful to have a method of normalizing the error to a
percentage. Another common method of measuring error is to
divide the difference by the maximum range. The formula
could use the maximum range of the sensor; however, since
this range can be very large compared to the actual sensed
range, the error percentages would be artificially low. For our
analysis we use the maximum range of actual sensed values as
the denominator for the error normalization (see Equation 3).

MINMAX

RA

VV

VV
E

−
−

= (3)

 Table III shows the calculated error for the same data
assuming the humidity measurements ranged from 0 to 49.
This is a much better error measure for the work presented in
this paper.

Table III CONSISTENT ERROR MEASURE

actual
value

approximated
value

calculated
error

48 49 2.00%
14 15 2.00%
2 3 2.00%
0 1 2.00%

D. Jumping baseline compression

For our lossy compression algorithm, we begin with the
jumping baseline compression introduced in [11]. The values in
the stream are compressed to a step function by choosing a
baseline value for a sensed value and only changing the
baseline when the current sensed value differs from the
baseline by more than the maximum tolerable error. The values
selected as baselines are in the form kE where k is any integer
and E is the maximum integer error that can be tolerated in a
stream while remaining within the maximum error percentage
Emax.

The initial baseline is selected by choosing the candidate
baseline closest to the first value sensed in a stream. So for a
sensed value v the baseline B would be selected as shown in
Equation 4. Adding 0.5 and truncating with the floor function is
done as an efficient method of rounding.

kEb

E

v
k

=

 += 5.0
 (4)

 When a sensed value differs from the current baseline by
more than E, a new baseline must be selected. Note that there
will be two candidate baselines that would be within E of the
new value. The algorithm chooses the baseline based on which
direction the data is trending. A data stream can be in one of
three states: trending up, trending down, or staying somewhat
constant. If data is trending either up or down, then the next
baseline should be selected as far in the direction the data is
trending as it can be within the error bounds. If the data is
remaining relatively constant, then the next baseline should be
selected as close to the current value as possible. The state is
determined by tracking whether the new baseline is above or
below the previous baseline for two jumps. If both jumps were
in the same direction, the data is trending either up or down
depending on the direction of the jumps. All that needs to be
cached is the previous value and the previous jump direction.
The additional computation is also trivial. For example, Table
IV shows an example of a light sensor with a maximum error
set at +/- 10 lux.

Table IV BASELINE COMPRESSION EXAMPLE

Seq no Sensed
value

Last
value

Last
jump

This
jump

Baseline

1 242 -- -- -- 240
2 253 242 -- up 250
3 261 253 up up 270
4 276 261 up -- 270
5 284 261 up up 290

Initially, the baseline is selected as close as possible to the
actual sensed value. When the upward trend is established at
sequence number 3, the baseline is selected as high as possible
while remaining within the error tolerance of +/- 10. Then as
the data continues to trend upward, the baseline does not
require as many jumps while remaining within the maximum
tolerable error. This process is shown in detail in Algorithm 1.

Algorithm 1 CheckReading(v, p, S, d)
Objective: Check current reading, select next baseline
Input: Sensed value v, previous baseline B, max difference E,
 previous jump direction d
Output: New baseline (reported value) B
 If |p – v| > E
 B := floor(v/E + 0.5)
 If v > B And d == UP
 B := B + E
 Else if v < r And d == DOWN
 B := B – E
 End If
 If v > p
 d := UP
 Else
 d := DOWN
 End If
 p := B
 Else
 B := p
 End If

IV. OUR MULTISTREAM COMPRESSION APPROACH

A. Rolling correlation

A common simple method of approximating one data
stream with another is to use a linear least squares
approximation. The first stream is translated using a linear
function in the form Y =aX + b into an approximation of the
second stream in such a way as to minimize the amount of
error between the approximated stream and the actual stream.
Computing full least squares regression is far too
computationally complex to run on a sensor every time a new
value is sensed; however, the correlation can be computed
incrementally such that only a few calculations need to be
made after each sample while still maintaining accurate
correlation values.

Also, the correlation is not necessarily the same for the
entire run of the sensor network so some decay should be
introduced in the correlation equation such that the most recent
data contributes a higher weight to the correlation and older
data contributes less. Such decaying rolling statistics have been
used many times for other applications [6][14][15]. Here we
refine the rolling least squares to optimize for simplicity of
calculation for the sensor networks.

A common method for calculating the slope and intercept
of the regression line (correlation function) Y = aX+b is shown
in Equation 5 where σX is the standard deviation of X, E(X) is
the expected value (mean) of X, and r is the Pearson
Correlation of X and Y.

() ()XbEYEa

rb
X

Y

−=

=
σ
σ

 (5)

The standard deviation of a variable can be expressed in
terms of the expected values of the variable and the square of
the variable as shown in Equation 6.

 () ()()22 XEXEX −=σ (6)

The Pearson Correlation coefficient is also commonly
expressed in those terms as shown in Equation 7.

() () ()

YX

YEXEXYE
r

σσ
−= (7)

Combining equations 5, 6, and 7 we can derive Equation 8.

() () ()

() () ()
()

() () ()
() ()()22

2

XEXE

YEXEXYE

YEXEXYE

YEXEXYE
b

X

X

Y

YX

−

−=

−=

−=

σ

σ
σ

σσ

 (8)

Since E(X) is simply the sum of X divided by the count of
samples, if a running total is kept for X, Y, XY, and X2 , then the
correlation function can be updated incrementally at each
sensed value with a computational complexity of O(1).

To allow more recent samples to have a greater impact on
the correlation function we introduce a window size W over
which to compute the statistics. We use the notation XW to
indicate the average of X over the window W. At each sensed
value of Xi, XWi is recomputed using Equation 9 so that the
effect of older samples on the value of XW slowly decays
toward zero. We use [XY]W and [X2]W for the averages of XY
and X2 respectively.

 iWW X
W

X
W

W
X

ii

11
1

+−=
−

 (9)

In practice, if the current number of samples N was less
than W, then N was substituted for W in the equations. In that
case XW is the actual mean of the current samples of X1 through
XN.

This leads us to the final equations for rolling least squares
calculations for the correlation function used in this work
shown in Equation 10.

[]
[] ()

WW

WW

WWW

bXYa

XX

YXXY
b

−=
−

−=
2

2 (10)

The mean square error (MSE), a measure of the average
deviation from the correlation function, can also be computed

on the fly in a similar fashion. The general equation for
calculating mean square error over variables X and Y given the
correlation function defined by some a and b is shown in
Equation 11.

()()()
N

baXY
MSE

N

i
ii∑ +−

=

2

 (11)

This can be expanded and shown in the same form as the
other equations used here as shown in Equation 12.

 ()()∑ −−=
N

i
ii baXY

N
MSE 21

 (12)

()
[] [] [] 2

22

2

22221

babXXabYXYaY

babXXabYXaYY
N

WWWWW

N

i
iiiiii

++−−−=

++−−−= ∑

The coefficient of determination, usually written as R2 and
used to measure the strength of the correlation, can also be
computed incrementally. R2 is simply the square of the r value
from Equation 7 and is shown in Equation 13.

[]()

[]() []()2

22

2

2
2

WWWW

WWW

YYXX

YXXY
R

−−

−= (13)

B. Collaborative correlation

The above formulas can be used to dynamically track the
correlation function between two streams as well as to
periodically reevaluate which streams are correlated with
which other streams.

Since the correlation function is computed in real time as
the data stream is sensed, the correlation is built on the
previous values and is not affected by the current sensed value
until that value has been transmitted. This enables the
calculations to be done on the sink side as well the data is being
decoded so that the correlation function is known without the
need to transmit the correlation function across the sensor
nodes wireless channel. This helps to reduce the total amount
of bandwidth required by the application.

For the lossy case, the correlations must be computed after
the values have been truncated to the baselines otherwise the
sink side would not have the same data on which the
correlations were built and would thus be unable to decode the
stream unless the correlation functions were transmitted
periodically along with the data.

A correlated stream can then encode its values as offsets
from its correlation function of its baseline stream. A higher R2
value indicates a higher correlation and therefore serves as a
good metric for which stream to choose as a base for which
other streams.

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R-squared

R
el

at
iv

e
si

ze

Figure 3 Compressed size for correlated pairs by R2 value

The computational complexity for computing the
correlation for every pair of streams is on the order of O(S)
where S is the number of streams. The number of streams on a
single sensor node tends to be relatively low (the Great Duck
Island weather dataset [1] had 12 which is the highest count of
any of the datasets studied here). Even though the number of
streams is low, the computation is still too heavy to be ideal.
However, while the correlation function can be very dynamic,
the sets of correlated streams tend to be rather static, i.e., if
some set of streams is found to be correlated, they are typically
correlated for the entire run of the dataset. The R2 values then
need not be recomputed every time but only on occasion. Also
in many applications, the computations can be done on the sink
(which typically has much more processing power) and the
correlated sets communicated back through the network. In our
experiments, we recomputed the correlation sets every 10W
samples (where W is the window size of the correlation
functions).

To determine when to apply a correlation function, we
analyzed each pair of streams on the sensor nodes from the
Great Duck Island weather dataset. Figure 3 shows the R2 value
of each pair along with the compressed size using the
correlation function divided by the compressed size using just
the TinyPack-Init codes. If two streams were not correlated,
then adding the correlation function as the baseline for a stream
naturally required more bits to transmit the data. Most of the
pairs of streams with an R2 value greater than 0.25 had
compression gains when using the correlation function. In our
algorithm, any pair of streams with a measured R2 value greater
than 0.25 is defined as a correlated set.

If two streams are correlated to only each other, the one
with the lower index is chosen as the baseline stream. If three
or more are correlated to each other, then the R2 values are
summed for each pair a stream is in and the stream with the
highest R2 sum is selected as the baseline stream. For example,
consider a sensor node sensing temperature (T), humidity (H),
and light intensity (L) with the R2 values for the stream pairs
measured as shown in Equation 14. The humidity stream would
be selected as the base stream since it has the highest sum of R2

values as shown in Equation 15.

 0.53 R 0.62 R 0.68 R LT,
2

LH,
2

HT,
2 === (14)

1.15 RRsum

1.32 RRsum

1.21 RRsum

LH,
2

LT,
2

L

LH,
2

HT,
2

H

LT,
2

HT,
2

T

=+=

=+=

=+=

 (15)

V. EXPERIMENTAL SET UP

A. Datasets

The datasets used for simulation were pulled from a wide
variety of domains, which utilize wireless sensor networks
including environment monitoring, animal tracking, vehicle-to-
vehicle communication, and smart phone accelerometers. All
are from publicly available real deployments of wireless sensor
networks.

The Great Duck Island (GDI) [1] experiment deployed
sensor nodes in and around the burrows of Leach's Storm
Petrels. 32 sensors were deployed monitoring sensor voltage
and various types of temperature, humidity, barometric
pressure, and solar radiation. Data was analyzed to provide
knowledge about the nesting conditions and behaviors of the
birds. Strong correlations were observed between temperature,
humidity, and solar radiation. Barometric pressure was also
somewhat correlated.

For the Intel Berkeley Labs (Lab) [2] deployment, 54
sensor nodes were configured inside a laboratory and used to
transmit readings of temperature, humidity, light intensity, and
voltage. Temperature, humidity, and light were all correlated,
but voltage was not correlated to any other stream.

The ZebraNet project (ZNet) [3] tracked Kenyan zebras
generating sensor readings of GPS position and some
contextual data about the sensor nodes themselves such as the
voltage, count of connected satellites, and horizontal delusion
of precision. The sensors were attached to the Zebras and data
was used to analyze the social patterns of the animals.

The GATech Vehicular dataset (GATech) [16] was
obtained testing a vehicle-to-vehicle network while the vehicles
were in motion. Data streams included location, altitude, and
speed of the vehicles along with bytes sent and received, signal
strength, and noise.

The CenceMe project [17] examined the performance of a
system combining off-the-shelf sensor-enabled mobile phones
and the automatic sharing and aggregation of the data using
social networking applications. Data was gathered by 22
different users and contained readings from the various sensors
on the mobile phones including the Bluetooth, GPS, and
accelerometer sensors.

B. Implementation

The algorithms were implemented in TOSSIM [18] on
simulated MicaZ [19] motes. Experiments were done to show
the impact of collaborative compression between the streams
on bandwidth usage, energy consumption, and latency.
PowerTOSSIM [20] was used to simulate the energy usage for
each of the algorithms.

0%

10%

20%

30%

40%

50%

60%

Znet Lab GDI GATech CenceMe

B
an

d
w

id
th

LEC SLEC TPInit TP-C

Figure 4 Bandwidth for lossless algorithms

Latency was measured by implementing the algorithms on
TelosB motes [21] sending to a base station connected to a
notebook computer. The data was stored on the sensor nodes
before the experiments and was compressed and transmitted as
if the sensors had sensed it. Thus, the time required for actually
sensing the data was not included in the experiments; however,
since those times are not related to the compression method
used, the data would be uninteresting and would approximately
be constant for each dataset.

Lossy compression was done four times for each algorithm
and dataset. Maximum error was set to 5%, 2%, 1%, and 0.5%
respectively for the four runs. Results are shown in the
following sections.

VI. RESULTS

A. Bandwidth, lossless

Bandwidth results are shown in Figure 4. Note that the lines
between the data points are to aid in visual grouping, not to
imply a linear relationship. Bandwidth is shown as a percentage
of the bandwidth required to send the data uncompressed and is
equivalent to the compressed size of the data as a percentage of
the uncompressed size. Collaboration between the streams
made significant improvements in bandwidth usage for most of
the algorithms. The CenceMe data was not highly correlated
causing TinyPack-Collaborative to only improve upon the
TinyPack-Init codes by a small fraction. In contrast,
compression of the GATech Vehicular dataset benefited greatly
from the TinyPack-C algorithm since the data contained a high
degree of correlation between the streams at a single sensor.

If no correlation is detected at all in the data, then
TinyPack-Collaborative and TinyPack-Init should function
identically in terms of bandwidth although TinyPack-
Collaborative would consume more energy.

B. Bandwidth, lossy

Figure 5 shows the results of the error tolerant version of
our algorithm. As with the lossless case, the introduction of
correlation between the sensed streams on the individual sensor
node significantly reduced the amount of bandwidth usage
needed to transmit the data. As expected, all the algorithms
performed better as more error was allowed in the system. The
effect of leveraging correlation between the streams was
roughly equivalent to the lossless case. The datasets that had
high degrees of correlation saw the most benefit.

0%

2%

4%

6%

8%

10%

12%

B
an

d
w

id
th

5% max error

LTC Jumping Baselines TP-Collaborative

0%
2%
4%
6%
8%

10%
12%
14%
16%

B
an

d
w

id
th

2% max error

0%

5%

10%

15%

20%

25%

B
an

d
w

id
th

1% max error

0%

5%

10%

15%

20%

25%

30%

35%

B
an

d
w

id
th

0.5% max error

Figure 5 Bandwidth for lossy algorithms, all datasets

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

B
an

d
w

id
th

5% max error

LTC Jumping Baselines TP-Collaborative

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

B
an

d
w

id
th

2% max error

0%

1%

2%
3%

4%
5%

6%
7%

8%

B
an

d
w

id
th

1% max error

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

B
an

d
w

id
th

0.5% max error

Figure 6 Bandwidth for lossy algorithms, selected datasets

The results vary greatly from one dataset to the next. This is
due to the individual characteristics of the dataset. ZebraNet
and CenceMe sensed data at a lower frequency than the others
which decreases the benefits that can be gained by relying on
temporal locality. The Lab, GDI, and GATech results are also
shown in Figure 5 along with ZNet and CenceMe for
comparison and are also shown in Figure 6 for greater clarity
and readability.

As with the lossless case, the low degree of correlation in
the CenceMe and ZNet dataset caused TinyPack-Collaborative
to only perform slightly better than the other algorithms, while
the GDI and GATech datasets were able to be consistently
compressed to near or below half the size achieved by the
Jumping Baseline algorithm.

While more tolerated error allowed for better compression
in all cases, the relative compressed sizes for the different
algorithms was roughly similar for all configured levels of
tolerable error.

0

100

200

300

400

500

600

Znet Lab GDI GATech CenceMe

E
n

er
g

y
(m

J)

LEC SLEC TPInit TP-C

Figure 7 Energy consumption for lossless algorithms

0

50

100

150

200

250

300

350

Znet Lab GDI GATech CenceMe

E
n

er
g

y
(m

J)

LTC Baselines TP-C

Figure 8 Energy consumption for lossy algorithms

C. Energy

The MicaZ motes simulated in PowerTOSSIM for
measuring energy consumption have three different radio
power settings that can be used requiring 11, 14, and 17.4 mA
respectively. We selected the 11 mA radio for our experiments.
Choosing a higher powered radio would make the results for
energy consumption look almost identical to bandwidth since
all the energy would be spent transmitting the data.

The results for the lossless case are shown in Figure 7.
Since the bandwidth savings on CenceMe were not much
greater for the TinyPack-C, the extra processor utilization was
enough to cause it to require more energy than the jumping
baseline method. The high number of streams in the GDI
dataset caused a higher increase in the energy requirements for
TinyPack-C relative to the other datasets. Even using the low
powered radios, the bandwidth savings are still enough to cause
a lower energy profile for sensors running TinyPack-C over the
other algorithms for most datasets.

The results for the lossy case are shown in Figure 8 based
on the 1% maximum error configuration. The lower bandwidth
requirements of the error tolerant algorithms cause the
increased processor utilization to have a more significant
impact on overall energy consumption; however, energy
consumption for TinyPack-C was still close to or better than
the other algorithms for all the datasets studied.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

LEC SLEC TPInit TP-Cp
er

ce
n

t
o

f
ti

m
e

to
 s

en
d

 u
n

co
m

p
re

ss
ed

Processing Time Transmit Time Wait Time

Figure 9 Latency for lossless algorithms

0%

5%

10%

15%

20%

25%

30%

35%

40%

LTC Baselines TP-Cp
er

ce
n

t
o

f
ti

m
e

to
 s

en
d

 u
n

co
m

p
re

ss
ed

Processing Time Transmit Time Wait Time

Figure 10 Latency for lossy algorithms

D. Latency

Latency results are shown for the lossless methods in
Figure 9 and for lossy in Figure 10. Latency is shown as a
percentage of the time that would be required to transmit the
data uncompressed. Results are shown as the average across all
the datasets including the processing, transmission, and wait
time used by the algorithms.

As with energy, the higher processor utilization for
TinyPack-Collaborative caused an increase in latency
compared to the lighter weight TinyPack-Init and jumping
baseline methods; however, in a multi-hop environment, the
average latency per hop decreases with each hop and
approaches the sum of the transmit time and the wait time as
shown in Figure 11.

6%

8%

10%

12%

14%

16%

1 2 3 4 5 6 7 8 9
Number of hops

p
er

ce
n

t o
f t

im
e

to
 s

en
d

u

n
co

m
p

re
ss

ed

Baselines

TP-C

Figure 11 Latency for multi-hop environment

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

Znet Lab GDI GATech CenceMe

av
er

ag
e

m
ea

su
re

d
 e

rr
o

r

Raw 5% Raw 2%

Raw 1% Raw 0.5%

Reconstructed 5% Reconstructed 2%

Reconstructed 1% Reconstructed 0.5%

Figure 12 Average total error for raw baseline and reconstructed

VII. ERROR ANALYSIS

The step function used to approximate the stream in the
lossy case can be reconstructed into a series of line segments as
done for the jumping baselines in [11]. This can reduce the
total measured error in the data. The points at which new
baselines were selected are used as the endpoints of the line
segments.

Since the algorithm tracks whether the data was trending
up, trending down, or peaking, this information can be used to
better approximate the end points. If the data was trending up
or down, then the line segment endpoint is selected as the
average of the previous and current baselines. If the data is
peaking (last jump was up, current jump was down or vice
versa), then the previous baseline value serves as the endpoint.

Figure 12 shows the total error for both the raw baseline
step function and for the reconstructed streams for each of the
four configured maximum error percentages. Total error for the
step functions is shown as dotted lines. The total error after
reconstructing the streams as sequences of line segments are
shown as solid lines. Data points for both raw and
reconstructed for the same maximum error are shown with the
same shape in the figure. Again, the lines between data points
are to aid in visual grouping, not to imply a linear relationship.

Raw baseline step function total error was typically around
one half of the maximum tolerable error. This is expected since
the candidate baselines are integer multiples of the maximum
tolerated error. The total error for the reconstructed streams
ranged from around one quarter to one sixth of the maximum
tolerable error. The more the data in a stream approximates a
straight line over a short interval, the more accurate the
reconstruction.

Experiments were also conducted using b-spline
interpolation as a curve fitting technique, but the results were
almost identical to the linear approximation and were much
more computationally intense.

VIII. AGGREGATION OF COMPRESSED VALUES

As detailed previously, TinyPack-Collaborative, for both
lossless and lossy compression, transmits values as the delta
over some previous value or baseline function encoded using
the TinyPack-Init codes. Some mathematical operations and
aggregation can be performed on these encoded deltas without
the need to first decode the data.

For instance, in an ad-hoc network, if an intermediate node
between the sensor publishing the data and the base station
begins forwarding data without seeing the initial baseline
value, it can still perform aggregations on the data which the
base station can apply to the baseline.

A. Adding encoded values

Adding two encoded deltas can be done without converting
the value to a standard encoded integer. The codes contain a
prefix, a suffix and a sign bit. In the case of two positive or two
negative numbers, the two suffixes with their prefix bits
prepended can be added in simple binary, if the high prefix bit
overflows (is set to 0), then the prefix length is incremented by
one and the sign bit remains unchanged. In the case of a
positive and negative number, the negative number is
expressed in 2's complement. The two numbers are added as
before and the prefix length is reduced by the number of
leading zeros in the sum.

B. Dropping packets

If a sensor network is being overloaded such that a sensor
needs to conserve additional bandwidth, one common method
for quick bandwidth savings is to drop a packet. In a
compressed stream, simply dropping a packet causes the
decoding process to produce incorrect results; however, delta
compressors such as TinyPack-Collaborative can drop packets
without invalidating the data as long as the delta values of all
the dropped packets are summed into the next transmitted
packet. For example, if a sensor received the values 5, 7, 12 9
10 and transmitted them as +5, +2, +5, -3, +1 and needed to
drop every other packet, it could send +5, +7, -2 and the sink
would decode them as 5, 12, 10. Any intermediate nodes need
not know the baseline on which the first packet is based.

C. Minimum and maximum

Maintaining the maximum of a portion of a stream can be
done without knowing the baseline by maintaining the current
max delta and offset from the max delta by summing the delta
values. For example, consider a sensor in an ad hoc network
that samples the following values: 15, 13, 10, 12, 17, 13. The
15 is transmitted to the base station through one intermediate
node and the remaining values through another node. The new
intermediate node first sees the -2 and maintains the max as
shown in Table V. Minimum can be maintained equivalently.

Table V MAX DELTA EXAMPLE

sensed
value

sent delta current
max delta

offset from
max

actual max
(delta+15)

15 -- -- -- 15
13 -2 0 2 15
10 -3 0 5 15
12 +2 0 3 15
17 +5 +2 0 17
13 -4 +2 4 15

D. Average

Maintaining an average of a portion of a stream can be done
without knowing the baseline as long as the count of samples
included in the average is transmitted. The intermediate sensor
maintains the current offset by keeping a running sum of the
delta values. The sensor then maintains a sum of those offsets.
Dividing that sum of offsets by the count gives the average
delta value which can be added by the base station to the
known baseline value to obtain the overall average. For
example, consider a sensor that samples the following values:
10, 13, 17, 14, 8, 7, 15. Again, the intermediate node starts
receiving and forwarding the data in the middle of the stream
starting with the 13. This process is shown in Table VI.

Table VI AVERAGE DELTA EXAMPLE

sensed
value

sent
delta

sum of
deltas

sum of
sums

count avg
delta

actual avg
(delta+10)

10 -- -- -- 0 --
13 +3 +3 +3 1 3 13
17 +4 +7 +10 2 5 15
14 -3 +4 +14 3 4.67 14.67
8 -6 -2 +12 4 3 13
7 -1 -3 +9 5 1.8 11.8
13 +6 +3 +12 6 2 12

IX. CONCLUSIONS AND FUTURE WORK

TinyPack-Collaborative compression performed well
compared to related methods in terms of bandwidth usage,
energy requirements, and end-to-end latency. Collaboration
between the data streams improved the compression
performance in all experiments compared to compression
without inter-stream collaboration. While collaboration
between the same streams on different sensor nodes has been
shown to be effective in increasing compression gains in other
published works, collaboration between streams on the same
sensor node can also be used to achieve greater compression
leading to longer deployments, more data collection, fewer
collisions, and faster response times for a wide variety of
wireless sensor applications.

While the rolling least squares regression used here was
shown to be effective, other more sophisticated methods such
as Kalman Filters [22] or Principal Component Analysis [23]
could be potentially improve the accuracy of the baseline
correlation functions. It would also be useful to study the effect
of node failures on compression and error calculations.

REFERENCES
[1] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,

“Wireless sensor networks for habitat monitoring,” In WSNA '02:
Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications. New York, NY, USA: ACM, 2002, pp. 88-
97.

[2] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux.
Intel Berkeley Labs. 2004

[3] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi. “Hardware
Design Experiences in ZebraNet.” In Proc. of the ACM Conf. on
Embedded Networked Sensor Systems (SenSys), 2004.

[4] Sadler C. and Martonosi M. "Data Compression Algorithms for Energy-
Constrained Devices in Delay Tolerant Networks," In Proceedings of the
ACM Conference on Embedded Networked Sensor Systems (SenSys),
2006.

[5] F. Marcelloni and M. Vecchio, "An Efficient Lossless Compression
Algorithm for Tiny Nodes of Monitoring Wireless Sensor Networks,"
Computer Journal, vol. 52, no. 8, pp. 969–987, 2009.

[6] T. Szalapski and S. Madria, "On Compressing Data in Wireless Sensor
Networks For Energy Efficiency and Real Time Delivery," In
Distributed and Parallel Databases. June 2013, Volume 31, Issue 2, pp
151-182.

[7] A. Rooshenas, H.R Rabiee, A. Movaghar, M.Y. Naderi. "Reducing the
data transmission in Wireless Sensor Networks using the Principal
Component Analysis." Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP) 133-138, 7-10 Dec. 2010

[8] R. Masiero, G. Quer, M. Rossi. M. Zorzi.. "A Bayesian analysis of
compressive sensing data recovery in wireless sensor networks." In Ultra
Modern Telecommunications & Workshops, 2009. (ICUMT'09). 1-6.
2009.

[9] S. Gandhi, S. Nath, S. Suri, and J. Liu. "GAMPS: Compressing Multi
Sensor Data by Grouping and Amplitude Scaling," In Proceedings of the
35th SIGMOD international Conference on Management of Data, New
York, NY, 771-784. 2009.

[10] A. Ali, A. Khelil, P. Szczytowski, and N. Suri. "An adaptive and
composite spatio-temporal data compression approach for wireless
sensor networks." In Proceedings of the 14th ACM international
conference on Modeling, analysis and simulation of wireless and mobile
systems (MSWiM '11). ACM, New York, NY, USA, 67-76.

[11] T. Szalapski and S. Madria, " Energy Efficient Distributed Grouping and
Scaling for Real-Time Data Compression in Sensor Networks." In
communication.

[12] Y. Liang, Y. Li. "An Efficient and Robust Data Compression Algorithm
in Wireless Sensor Networks." Communications Letters, IEEE, vol.18.
439-442. March 2014

[13] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow, D. Estrin.
"Lightweight temporal compression of microclimate datasets [wireless
sensor networks]." 29th Annual IEEE International Conference on Local
Computer Networks. 16-18 Nov. 2004.

[14] A. Vahidi, A. Stefanopoulou, and H. Peng. "Recursive least squares with
forgetting for online estimation of vehicle mass and road grade: theory
and experiments." Vehicle System Dynamics 43. pp. 31-55. 2005.

[15] M. Salgado, G. C. Goodwin, and R. H. Middleton. "Modified least
squares algorithm incorporating exponential resetting and
forgetting."International Journal of Control 47, no. 2 pp. 477-491. 1988.

[16] R. M. Fujimoto, R. Guensler, M. P. Hunter, H. Wu, M. Palekar, J. Lee,
and J. Ko. "CRAWDAD dataset gatech/vehicular. v. 2006-03-15.
Downloaded from http://crawdad.org/gatech/vehicular. Mar 2006.

[17] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S.
B. Eisenman, X. Zheng, and A. T. Campbell. "Sensing meets mobile
social networks: the design, implementation and evaluation of the
cenceme application." In Proceedings of the 6th ACM conference on
Embedded network sensor systems, pp. 337-350. ACM, 2008.

[18] P. Levis, N. Lee, M. Welsh, and D. Culler. "TOSSIM: Accurate and
scalable simulation of entire TinyOS applications. In Proceedings of the
First ACM Conference on Embedded Networked Sensor Systems
(SenSys) 2003.

[19] Crossbow Technology, Inc. MicaZ Datasheet. http://www.xbow.com/,
2010.

[20] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh,
"Simulating the Power Consumption of Large-Scale Sensor Network
Applications," In Proceedings of the ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2004.

[21] Willow Technologies. http://willow.co.uk/TelosB_Datasheet.pdf , 2013.

[22] R. Olfati-Saber. "Distributed Kalman filtering for sensor networks," In
Decision and Control, 2007 46th IEEE Conference on. Dec. 2007.

[23] A. Rooshenas, H. R. Rabiee, A. Movaghar, and M. Y. Naderi.
"Reducing the data transmission in wireless sensor networks using the
principal component analysis." In Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), 2010 Sixth International
Conference on, pp. 133-138. IEEE, 2010.

