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Abstract— Session hijacking attacks of social network websites 
are one of the commonly experienced cyber threats in today’s 
Internet especially with the unprecedented proliferation of wireless 
networks and mobile applications. To address this problem, we 
propose a cache supported hybrid two-dimensional one-way hash 
construction to handle social networks’ user sessions 
authentication in collaborative applications efficiently. The 
solution, which presents a major redesign from [18], is based on 
utilizing two-dimensional OHC chains equipped with sparse 
caching capabilities to carry out authentication during social 
networks users’ sessions. We analyze the proposed hybrid scheme 
mathematically to determine the cost of authentication and 
develop a quartic equation to check the optimal configuration of 
the two dimensions. We also evaluate the hybrid scheme with 
simulation experiments of different configurations and scenarios. 
The results of the simulation experiments show that the hybrid 
scheme improves performance of the OHC tremendously while 
efficiently and securely handling authentication. 
     
Key words: Internet Sessions, Collaborative environments, 
Wireless networks, Mobile devices, one-way hash, authentication 

1 INTRODUCTION 

Session hijacking attacks are considered one of the 
commonly experienced cyber threats in today’s Internet. 
These attacks not only impact users and service providers 
alike, but can certainly jeopardize the whole Internet 
experience. In a 2010 Open Web Application Security 
Project (OWASP) [1], broken authentication and session 
management attacks were identified among the top ten list 
along with injection, cross-site scripting and cross-site 
forgery attacks. In their 2013 Release, OWASP still lists 
these attacks, which lead to session hijacking, among the 
top 10 security threats of the Internet [2]. Additionally, the 
broken authentication and session management attacks have 
moved up in prevalence to be second in the list.  

Session hijacking typically targets the Hypertext 
Transfer Protocol (HTTP) where session based 
communication is used to keep a user/browser state. Before 
a session is established, many websites and especially 
collaborative applications use the secure HTTPS connection 
to grant users access to their services. During the HTTPS 
connection, user login is established and login credentials 
are replaced by session identifiers such as session cookies 

as a cheaper alternative to the secure HTTPS particularly in 
mobile devices characterized by their limited computational 
abilities. Such threat is more prominent in collaborative 
applications networks, particularly with the remember me 
option, which extends the users’ sessions to unpredicted 
periods. The rise of session hijacking attacks in 
collaborative applications and other Internet applications is 
attributed to the increased utilization of HTTP cookies in 
session authentication in lieu of the session-wide 
employment of the secure HTTPS connection. Session 
cookies are typically stored on the clients’ machine and are 
usually transmitted over unsecure wireless connections, 
thereby compromising the client’s social network 
experience if the cookies are illegally accessed whether 
through passive attacks (e.g. eavesdropping) or active 
attacks (e.g. cookie stealing). Many tools are available to 
carry out session hijacking attacks which include 
CookieCatcher [3], FaceNiff [4], Firesheep [5] and many 
more. Session hijacking can be either active where attackers 
take over the whole session and impersonate the social 
network’s victim, or passive which involves sniffing out a 
session and passively watching traffic.  

In this paper, we present a hybrid scheme that utilizes 
one-way hashing and sparse caching techniques. Our 
objective is to propose a scheme that can be easily deployed 
in an efficient and secure manner that does not burden 
collaborative applications providers or incur extraneous 
memory resources on users’ platforms.    

The remainder of the paper is organized as follows. 
Section 2 provides a brief overview on previous literature 
on this area. In section 3, we introduce the fundamental 
concepts for this paper. In section 4, we provide a detailed 
description of the proposed scheme highlighting its main 
features. In section 5, we introduce comparisons and 
tradeoffs and evaluate the performance of the proposed 
scheme. Finally, section 6 concludes the paper.  

2 RELATED WORK  

Recent research on attacks targeting collaborative 
applications and social media networks has focused on 
detection schemes (e.g. [6]), reputation attacks (e.g. [7], 
[8]); both of which are directly related to session hijacking 
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attacks. The detection schemes do not, however, provide 
prevention against such attacks, and so do the reputation 
attacks solutions. Research dealing with session hijacking 
threats’ prevention is vast and the issue has received 
attention from a variety of perspectives. The authors of [9] 
indicate that the current IEEE 802.11 wireless networks are 
vulnerable to session hijacking attacks as the existing 
standards fail to address the lack of authentication of 
management frames and network card addresses, and rely 
on loosely coupled state machines. Several proposed 
schemes have tried to solve this issue. Liu et al. [10] 
propose the use of a secure cookie that relies on HMAC to 
ensure the authenticity of transmitted cookies. However, 
due to its reliance on the Secure Socket Protocol (SSL), this 
solution does not provide scalability. Solutions not utilizing 
HTTPS such as SessionLock in [11], SessionShield [12] 
both have shortcomings. SessionLock uses session fragment 
identifier and HMAC to create authentication tokens 
exchanged between the server and the client throughout the 
life of the session. On the other hand, SessionLock does not 
provide strong protection against active session attacks 
since it aims at providing protection against passive attacks 
like eavesdropping. SessionShield [12] employs a proxy 
like application at the client’s side to prevent session 
hijacking. Nonetheless, this technique presents problems 
pertaining to scalability and compatibility.  

To secure communication in an internet session,  
cryptographic techniques such as one-way hash chain 
(OHC) technique that rely on one-time passwords proposed 
by Lamport [13] have been utilized. In particular, the OHC 
technique has been employed in many application with the 
aim of mitigating the potential of session hijacking. For 
example, the authors in [14] proposed using One-Time-
Cookies (OTC), where disposable credentials called one-
time cookies replace authentication credentials. The OTC 
scheme generates a set of tokens that are only used once 
and discarded once used. To overcome some inherent 
drawbacks in the OHC scheme such as high computational 
overhead, the authors of [15] and [16] propose devoting 
some memory in the client’s machine for previously 
computed hashed values for authentication tokens that are 
fetched as needed. This relieves some of the computational 
overhead, but requires additional memory that sometimes is 
not available especially with low-end devices such as some 
wireless devices. Another approach suggested in [17] and 
[18] is to divide the one-way hash chains in a two-
dimensional format. Compared to the sparse caching 
approach, dividing the OHC into multiple smaller chains 
does not provide a similar reduction in the computational 
overhead. In this paper, we propose a solution that benefits 
from the advantages of the sparse caching strategy proposed 
in [15] and [16], in addition to the efficiency of the two-
dimensional one-way hash construction [17] and [18]. The 
hybrid approach is light, efficient and easy to implement as 
a client side plug-in.  

3 PRELIMINARIES   

The basic assumption of the OHC scheme is that an 
authentication token derived by applying a one-way hash 
function is used to protect session cookies. Essentially, we 
use a one-way hash chain of length N, which corresponds to 
the number of transactions in a session, to protect a session 

from being sniffed or hijacked. Initially and using an 
HTTPS channel, some parameters are exchanged between 
the server and the client. These parameters include a shared 
secret S0 in addition to the length of the Internet session 
denoted N. Based on such parameters and using the agreed 
upon cryptographic hash function, the OHC protects the kth 
transaction with an authentication token Uk=HN-k+1(S0) 
derived by applying the cryoptographic hash function m 
times. Thus, for the notation H2(x)= H(H(x)), the hash 
function is applied twice on x. To take an example, if 
N=100, the authentication tokens for the 1st, 2nd, and 3rd 
transactions are U1=H100(S0), U2=H99(S0), U3=H98(S0), 
respectively.  

Inherently, the OHC approach suffers from a high 
computational overhead caused by the need to compute the 
hash function recursively in the first iteration. Thus, the 
number of transactions expected to be handled during an 
Internet session is a key factor contributing to the 
computational overhead required to compute the hash 
function. Basically, without accurate statistics of users’ 
behavior, which tends to vary tremendously, the number of 
transactions can be overestimated, thereby unnecessarily 
increasing overhead, or underestimated resulting in having 
the user redo the login process. The solutions proposed in  
[15] and [16] address this problem by devising sparse 
caching units in which the hashed secrets are pre-computed, 
stored and fetched as needed. However, while the solution 
gives acceptable performance in reducing the computational 
overhead, cache memory is scarce in many mobile devices 
and the space for cache in these devices cannot be 
committed for a long time. Alternately, the authors of  [17] 
and [18] propose a scheme that deploys two-dimensional 
mini one-way hash chains to significantly reduce the 
overhead of OHC without deploying cache memory.  

We propose a hybrid solution that maximizes 
efficiency and minimizes the cost of memory resources. To 
achieve this, we divide the one-way hash chain into 
multiple chains and support them with caching units where 
authentication tokens are stored and fetched as needed. To 
measure efficiency, we use the number of hash operations 
needed in a session. In the next section, we define the 
configuration of the system’s components and determine 
the cost based on these configurations. Before this overview 
is presented, we introduce the notations used in the scheme. 
We refer to the proposed scheme as the hybrid scheme.  

 
Scheme Notation 
I = mini OHC scheme 
J = OHC Caching scheme 
K = Hybrid scheme 
 
Common Notation 
N = number of transactions 
X = horizontal chain for seeds   
Y = vertical chain for authentication tokens   
M = space interval between cache units 
N = X  × Y       // simplified assumption   
 
We will introduce a more detailed description of these 

notations in our description of the schemes below.   



A. The mini OHC Scheme: 
The conventional OHC scheme has one dimension 

where one seed is used to generate authentication tokens by 
a single one-way hash chain for the whole session. 
However, the mini OHC scheme is arranged into two 
dimensions (see Figure 1). In the first dimension (i.e. the 
horizontal axis Xi), there is a single hash chain that 
computes the seeds for the second dimensions chains (i.e. 
vertical axis Yi). In the second dimension, we have multiple 
hash chains that use these seeds to generate authentication 
tokens. Authentication tokens are generated by hashing the 
seeds using cryptographic hash functions (e.g. SHA-1, 
SHA-2 or SHA-3). These cryptographic hash functions are 
known for their resistance against attacks.   

 
 

Figure 1 mini OHC construction 

Authentication in the mini OHC is done in three steps: 
 
Initialization:  
The server and the client utilize an HTTPS channel to 

exchange the number of transactions in a session N,  an 
initial value of the shared secret S0, and the length of the 
authentication token chain Yi. Based on these variables, the 
number of seeds is determined, and Seed1 is calculated to be 
used in the first authentication token chain by applying one-
way hash function on S0.  

 
Authentication: 
 In this step, the scheme generates the authentication 

token V at the client side. The authentication tokens are 
derived in the vertical chains by applying the one-way hash 
function on Seed1. The authentication token is then attached 
to the transaction cookie and sent to the server. A similar 
authentication routine is done at the server’s side to check 
the authenticity of the authentication token. If 
authentication is verified, the transaction is accepted; 
otherwise, it will be rejected. Once the first vertical chain is 
exhausted, the next routine (i.e. Seed Update) is called to 
calculate seeds for the following vertical chain.  

 
 Seed Update:  
Once the first vertical chain is exhausted, the seed is 

updated for the next chain by applying a one-way hash 
function on the initial S0. Note that each seed is only used in 
a single vertical chain to generate authentication tokens for 
that chain. Furthermore, the authentication tokens once used 

are discarded and never used again. As such, the cost of 
authentication in the mini OHC scheme is a result of 
calculating the number of hash operations in the horizontal 
chain and the multiple vertical chains. The following is how 
we calculate the cost of the scheme:  

 
Cost of one vertical chain = 

𝑌𝑖×  (  𝑌𝑖!!)
!

 

Total cost of all vertical chains = CV =  𝑋!×
!!×  (  !!!!)

!
  

                                                         =  𝑁  ×   (  !!+1)
2   

  
Cost of the horizontal chain= CH =𝑋𝑖×  (  𝑋𝑖!!)

!
 

Total Cost = C  = CV + CH 
                    =  𝑁  ×   (  !!+1)

2  + 𝑋𝑖×  (  𝑋𝑖!!)
!

 

B. The OHC Caching Scheme:  
Unlike the previous mini OHC scheme, the OHC 

caching scheme utilizes storage and only one-dimension 
chain, to reduce the computation overhead of the OHC. 
During the initialization step, and in addition to the initial S0 
a few authentication tokens are pre-calculated and stored. 
Figure 2 demonstrates how the cache units are placed for 
this scheme. The highlighted blocks are where the 
authentication tokens are stored. For ease we assume the 
interval between caches is one. It should be noted that since 
we only have one dimension in the OHC caching scheme, 
the X parameter is considered the cache size (i.e. number of 
cache units utilized). Also, given we do not have vertical 
chains, we consider Y to be the interval between cache 
units. Therefore, Xj= size of cache Yj= interval between two 
cache units.  

 

 
 

Figure 2 OHC Caching Scheme  
Here is an example for a session of 100 transactions is 

authenticated using the OHC caching scheme. For a session 
of this size, five storage units (of length 160 bits for SHA-1) 
can be reserved. Thus five authentication tokens are 
calculated in the initial steps and stored at 20 transaction 
interval as follows. Note that Xj in this example is 5 and Yj is 
20.   

 
cache[0] = s            
cache[1] = H20(s),  
cache[2] = H40(s),  
cache[3] = H60(s),  
cache[4] = H80(s). 
 
Compared to the mini OHC scheme, the OHC with 

caching has the advantage of low computation cost. Two 
important parameters are used to guide the calculation of 
computation overhead in the OHC with caching: the cache 
size Xj and the cache spacing interval Yj. In the above 
example, the cache size= 5 and the cache spacing interval= 



20. Based on these assumptions, we can determine the cost 
of the OHC caching scheme according to the following 
formulas:  

 
 
 

Cost of authentication tokens between two cache units 

= 
𝑌𝐽×  (  𝑌𝐽!!)

!
 

 
Total Cost = C =  𝑋!×

!!×  (  !!!!)
!

  

                          =  𝑁  ×   (  !!+1)
2  

 
It should be noted that the total cost includes the sum of 

the cost of (Xj-1)  ×Yj for the initial filling of the cache 

values and a cost of 
(!!!!)  ×  !×  (!!!!)

!
 for the N 

transactions. Also, notice that (Xj-1) of the N transactions 
will not need to perform any hashing since the required 
value is already in the cache. For the above example of N = 
100 and Xj = 5, transaction # 21 will simply read V80 from 
cache[4]. 

In order to handle more transactions efficiently, we 
either need to increase the number of storage units 
allocations. Or, we have to increase the cache spacing 
interval.  

4 THE HYBRID SCHEME 

We can alleviate the need for extra storage units and 
increase efficiency by equipping the mini OHC with sparse 
caching components to benefit from the advantages of 
caching in a two-dimensional configuration. Figure 3 is a 
general view of how the hybrid scheme looks with the 
caching units added to the mini OHC in the vertical chain 
Yk. In the Simulation Results Section, we discuss why we 
prefer to equip the scheme with caching at the vertical 
chain. The highlighted blocks are where the sparse caching 
units are placed, and the authentication tokens in these 
locations are computed and stored. The proposed scheme 
uses two dimensions, each of which generates a set of 
values. In the first dimension—the horizontal dimension 
denoted Xk, is a single one-way hash chain responsible for 
generating seeds to be used in producing the authentication 
tokens in the second dimension Yk—the vertical multiple 
one-way hash chains. 

   

 
 

Figure 3 Hybrid Scheme 

Here is a high level description of the protocol.  
 
 
Initialization: 
Xk := N ÷Yk                      // length of the Seed_Chain 
K:= Yk                              // K is the global index for the Token_Chain 
J:= Xk                              // J is the global index for the Seed_Chain  
Seed:= HJ(S0)                 // Seed is now Seed1 for the first Token_Chain 
Interval:= Yk÷ Cache_Size    // # of hash operations between cache units 
Call Fill_Cache(Seed) 

 
Fill_Cache (Seed) 
Begin 
i:= 0 
HNum:= 1                                    // number of hashes to be calculated  
While( i not equal to Cache_Size) 

Cache[i]:= HM(Seed)        // authentication tokens stored 
HNum:= HNum +Interval 
 i:= i+1 

 End-While 
End 
 
Authentication ( ) 
Begin 
L:= (K/Interval)-1          //L is the cache locator to fetch the token  value  
HNum:= K-(L*interval)-1 
V:= HHNum(Cache[L])          
K:= K -1 

if (K==0) then 
   Update_Seed( ) 
  K:= Yk;  

  end_if 
Return (V); 
End 
 
Update_Seed( ) 
Begin 
J := J-1                       // J is the global index for the first-tier chain 
Seed:= HJ(S0); 
Call Fill_Cache(Seed)  // update the next authentication tokens  
Return (Seed) 
End; 

 
The protocol is composed of four main procedures: the 

Initialization, the Authentication, the Update_Seed and the 
Fill_Cache (Seed) routines. Each of these routines is 
responsible for some part of the protocol.  



The Initialization procedure works the same way as 
described in the mini OHC described in Section 3. An 
additional step in the Initialization entails filling the cache 
with authentication tokens based on the cache size. This is 
achieved by invoking the Fill_Cache (Seed) procedure.  

The next step is when the session actually starts. It is 
where authentication tokens are used to protect session 
cookies. The Authentication procedure is responsible for 
generating the authentication tokens. This step works by 
locating the closest cache, fetching the respective stored 
authentication token and performing the additional hash 
operations if needed. Once the first vertical chain is 
exhausted, the Update_Seed step is invoked and a new seed 
is calculated and handed over to Fill_Cache (Seed) so that 
authentication tokens for the next Token Chain are stored. 
The protocol works in this manner until the session is 
complete.  

Compared to the single dimension OHC caching 
scheme described in Section 3, where the number of cache 
units devised either grows proportionately with the number 
of transactions, or is configured to handle more transactions 
by increasing the cache spacing interval, the hybrid scheme 
is more efficient. In other words, to achieve good 
performance with higher number of transactions, the OHC 
caching scheme will need to devise more cache units. In the 
hybrid configuration, however, we efficiently handle this 
scenario, but with much less space by emptying storage 
after each Token Chain is exhausted.  

While the mini OHC performance is influenced by the 
length of the Token Chain and the OHC with caching by the 
cache size, we need to investigate the optimal configuration 
of the hybrid scheme by comparing the costs of the previous 
two schemes and identifying the factors that influence the 
performance. In the following section, we introduce our 
evaluation of these factors and present an analytical model 
to find the best tradeoff between cache employment and 
performance.  

5 COMPARISON AND TRADEOFFS  

Essentially, using the number of hash operations in a 
session as a measurement metric, the mini OHC has higher 
computation cost as opposed to the OHC caching scheme. 
The difference between the two schemes is   𝑋𝑖  ×  (  𝑋𝑖  +1)2 . 
However, there is the expense of extra storage units 
associated with OHC caching scheme. If the number of 
cache units devised is relatively small, the performance is 
comparable. However, if more cache units are added, the 
OHC caching scheme outperforms the mini OHC. Figure 4 
shows how the two schemes give different performance for 
different size of cache for 500 transactions.  

 

 
Figure 4 Total Cost of 500 transactions with different x values 

In the hybrid scheme, our goal is to utilize the 
minimum storage requirements while efficiently handling 
authentication. First, we present how the total hash cost of 
the hybrid scheme is calculated. The analytical model 
below is used to obtain the optimal setup of the scheme; we 
try to achieve a configuration that strikes a balance between 
efficiency and memory requirements.  

 
𝑁 =   𝑋!  ×  𝑌!   

 
Assuming 𝑋!  << 𝑌!  and using the same number of 

sparse storage units X in the vertical chains, we get: 
 
Let Space_Interval 𝑀 =      𝑌𝐾𝑋𝐾

  // simplifying assumption 

M integer 
 
𝑌! =   𝑀×  𝑋!             𝑁 = 𝑋!  ×  𝑌! = 𝑀  ×  𝑋!   
  

Cost of authentication tokens between 2 cache units 

  =  !×  (  !!!)
!

  

Cost of one vertical chain =  𝑋!  ×   
𝑀×  (  𝑀+1)

2   

                                    =  𝑌!×
  (  𝑀+1)

2  

 

Cost of all vertical chains =  CV  =  𝑋!  ×    𝑌!×
  (  𝑀+1)

2     

              =  𝑁  ×   (  𝑀+1)
2    

Cost of horizontal chain =  CH  =  
!!  ×  (  !!  !!)

!
    

Total Cost = C  =  CV  +  CH  

                =  𝑁  ×   (  !!!)
!

+   !!  ×  (  !!  !!)
!

    
 
The above formula can be used to plot C as a function 

of N and M where X  =   !
!
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To find the optimal value of M which minimizes the 
cost C, we differentiate the above formula with respect to M 
and equate to 0. On differentiation we have  

 
!"
!"
  = 0.5  𝑁 − 0.5   !

!!  
+ 0.5   𝑁      −0.5  𝑀!!

!    

     =    0.5𝑁 − 0.5   !
!!  

− 0.25   !
!  

!
!  
  

  
After equating 

!"
!"

 to zero, we get the following quartic 
equation: 

 
4𝑁𝑀! − 8𝑁𝑀! −𝑀 + 4𝑁 = 0 

 
To give an example, the Plot of the function C when 

the number of transactions is 500 is given below in Figure 
5. 

 

 
  Figure 5 The minimum value of M when N=500 

 
Thus, the minimum value occurs near the value M = 1. 

Table 1 summarizes the optimal values of M for the 
different numbers of transactions.  

 
Table 1 Optimal values of M 

 
N Optimal value of M by 

 equating 𝒅𝑪
𝒅𝑴

= 𝟎  

500 1.01118 
1000 1.00791 
1500 1.00645 
2000 1.00559 
2500 1.00500 
3000 1.00456 

 
Based on the analytical modeling presented above, we 

can determine the optimal cache spacing in the hybrid 
scheme to be 1. Therefore, given the optimal Token Chain 
length Yk obtained in [15], we run our simulation with the 
assumption that the optimal cache spacing is 1. In the next 
section the simulation results for the three schemes are 
presented.   

6 SIMULATION AND PERFORMANCE RESULTS 

The performance of the proposed hybrid scheme is 
evaluated using a detailed Java benchmark. Our goal was to 
measure the performance of the three schemes. We 
compared and contrasted the results measured in terms of 
efficiency (number of hash operations in a session) and in 
terms of storage units required to complete an internet 
session.  

6.1 A. Caching Options:  
The hybrid scheme can benefit from caching in a 

number of ways. Our first option is to use caching in the 
Token Chain Yk. In other words, we only store the 
authentication tokens or a subset of them in the vertical 
dimension of the mini OHC. Caching can be either full or 
partial. In the full caching option, all the authentication 
tokens are calculated and stored before authentication, 
whereas only a subset of authentication tokens are 
calculated and stored in the partial caching option. Below is 
a description of both options.   

 
In the full caching  
The number of cache units required is equal to the 

optimal Token Chain length Yk. Since all authentication 
tokens are going to be calculated and stored before the start 
of the session, the full caching approach indicates that the 
authentication tokens do not require any hash operation in 
the Yk. The only cost incurred when full caching is utilized 
would be hash operations used to derive the seeds in the Xk.  

 
In the partial caching  
A subset of authentication tokens in the Token Chain Yk 

is stored. We use the optimal cache spacing obtained above 
(i.e. M = 1) and the optimal Token Chain Yk as the basis for 
our spacing. As a result, each authentication token will cost 
either one hash operation or none (i.e. fetching the 
authentication token form the cache). Here is an example to 
illustrate this:   

Suppose we have an Internet session of length 500 
transactions. According to [15], the optimal length of Yk in 
the mini OHC is 10. The length of Seed Chain Xk is going 
to be 50.  

 
Cache [0]=H1(S1) 
Cache [1]=H3(S1) 
Cache [2]=H5(S1) 
Cache [3]=H7(S1) 
Cache [4]=H9(S1) 
 

Given the number of cache units and the spacing interval, 
the following are the first ten authentication tokens along 
with their cost in terms of hash operations.  
 

1st Transaction = V1 = H1(Cache [4])  
2nd Transaction = V2 = H0(Cache [4]) 
3rd Transaction = V3 = H1(Cache [3]) 
……. 

 10th Transaction = V10 = H0(cache [0]) 
 
Therefore, for every Yk only 5 hash operations are required 
given we have 5 cache units uniformly distributed. The 



maximum number of hash operations for the authenticate 
token transaction is 1 if partial caching with cache spacing 
of 1 is used.  

These caches are used in the first Yk. Once this chain is 
exhausted, the cache is emptied and a new seed is generated 
for the next Yk authentication tokens. New values are 
calculated and the cache is filled again with new 
authentication tokens. If partial caching was used in the 
OHC with caching scheme only, we would need 250 
memory spaces to carry out an Internet session of length 
500 transactions to achieve comparable results. With adding  
partial sparse caching to the mini OHC, we can bring this 
number down to just 5 memory spaces.  
6.2 B. Full vs. Partial Caching Performance 

Figure 6 demonstrates the session cost measured by the 
number of hashes in the full caching configuration and the 
partial caching operation. We perform this test when 
caching is only performed at the Token Chain Yk. Later, we 
test the caching option in the Seed Chain Xk. Here we can 
see that the full caching does not have a tremendous 
improvement over partial caching.  

 
Figure 6 Session cost comparison between full and partial 

caching in Y. 

Thus, the next step is to compare the storage 
requirements in the full and partial caching configurations 
in the Token Chain Yk to see whether it is worth to employ 
full caching or partial caching. The comparison is presented 
in Figure 7. While the partial caching requires half the 
storage of the full caching, it can still achieve good results. 
Therefore, the partial caching can be a better option as the 
memory requirement is half without sacrificing 
performance.  

 
Figure 7 Storage requirement comparison between full and 

partial caching 

6.3 Performance Comparison between the three 
schemes 

Since the partial caching option strikes a good balance 
between memory requirement and efficient performance, 
we compare the performance of the hybrid scheme in the 
partial caching option at the Token Chain Yk with the OHC 
caching scheme and the mini OHC scheme. Table 2 
summarizes the results of this comparison. Note that we use 
the same number of cache units in the simulation of each 
scenario except for mini OHC where caching is not 
supported. In terms of efficiency, the mini OHC scheme 
helps reduce the session cost significantly if compared to 
the OHC scheme. By utilizing very little storage in the 
hybrid scheme, we were able to lower this cost by 
approximately 65% as indicated in the table.   

 
Table 2 Comparing session cost between three schemes 

Number of 
Transactions OHC mini OHC Hybrid 

Scheme 
500 25250 4025 1525 

1000 71930 10009 3465 
1500 141382 12505 5750 
2000 251000 24875 8875 
2500 348471 33496 10980 

6.4 Caching in Token Chain Yk or Seed Chain Xk 
Our next task is to see whether equipping the proposed 

scheme with caching capabilities in both dimensions can 
have better outcome. Figure 8 and 9 demonstrate the storage 
and session cost requirements if either the Seed Chain or the 
Token Chain is equipped with caching capabilities. It is 
obvious that adding caching in the Seed Chain does not 
benefit the scheme as storage requirement increases (Figure 
8) while the session cost increases (Figure 9). Therefore, we 
have opted for equipping the hybrid scheme with sparse 
caching at the Token Chain to be the optimal setup.  
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Figure 8 Storage requirement comparison  with cache support in 

either Token_Chain (Y) or Seed_Chain (X) 

 
Figure 9 Session cost comparison  with cache support in either 

Token_Chain (Y) or Seed_Chain (X) 

7 CONCLUSION  

This paper addresses the security threat of session 
hijacking attacks facing collaborative application especially 
when mobile and wireless applications are utilized to access 
collaborative services. Common HTTPS based solutions do 
not usually suit mobile devices especially those with limited 
computation and storage capacities. One-way hash chain 
based solutions have been proposed to replace the current 
cookie based session management techniques but due to 
their inherent nature requiring recursive computation of 
hash values, they do not suit some mobile devices. This is 
particularly because of the high computational overhead 
associated with OHC in Internet session.  

This paper proposed and analyzed the potential of a 
hybrid solution where divided one-way hash chains are 
equipped with caching capacities to store pre-computed 
hashed values and fetch them once needed to authenticate a 
user session. We presented an analytical model which 
aimed at measuring the cots of the hybrid scheme compared 
to the straightforward OHC with caching and the two-
dimensional OHC. We also used this analysis to derive a 
quartic equation with which we were able to identify the 
optimal cache spacing configuration in the hybrid scheme. 
The evaluation and experimentation reveal major 
improvements and highlight advantage of adding sparse 
caching to the mini one-way hash chains to achieve 
economic and efficient authentication for mobile devices 

that suits collaborative applications and other Internet 
applications.  
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