
Preventing session hijacking in
collaborative applications with hybrid
cache-supported one-way hash chains

Amerah Alabrah

Department of Electrical Engineering and
Computer Science

University of Central Florida, Orlando, Florida
College of Computer and Information Sciences

King Saud University, Riyadh, Saudi Arabia
amerah@knights.ucf.edu

Mostafa Bassiouni
Department of Electrical Engineering and

Computer Science
University of Central Florida, Orlando, Florida

USA
bassi@cs.ucf.edu

Abstract— Session hijacking attacks of social network websites
are one of the commonly experienced cyber threats in today’s
Internet especially with the unprecedented proliferation of wireless
networks and mobile applications. To address this problem, we
propose a cache supported hybrid two-dimensional one-way hash
construction to handle social networks’ user sessions
authentication in collaborative applications efficiently. The
solution, which presents a major redesign from [18], is based on
utilizing two-dimensional OHC chains equipped with sparse
caching capabilities to carry out authentication during social
networks users’ sessions. We analyze the proposed hybrid scheme
mathematically to determine the cost of authentication and
develop a quartic equation to check the optimal configuration of
the two dimensions. We also evaluate the hybrid scheme with
simulation experiments of different configurations and scenarios.
The results of the simulation experiments show that the hybrid
scheme improves performance of the OHC tremendously while
efficiently and securely handling authentication.

Key words: Internet Sessions, Collaborative environments,
Wireless networks, Mobile devices, one-way hash, authentication

1 INTRODUCTION

Session hijacking attacks are considered one of the
commonly experienced cyber threats in today’s Internet.
These attacks not only impact users and service providers
alike, but can certainly jeopardize the whole Internet
experience. In a 2010 Open Web Application Security
Project (OWASP) [1], broken authentication and session
management attacks were identified among the top ten list
along with injection, cross-site scripting and cross-site
forgery attacks. In their 2013 Release, OWASP still lists
these attacks, which lead to session hijacking, among the
top 10 security threats of the Internet [2]. Additionally, the
broken authentication and session management attacks have
moved up in prevalence to be second in the list.

Session hijacking typically targets the Hypertext
Transfer Protocol (HTTP) where session based
communication is used to keep a user/browser state. Before
a session is established, many websites and especially
collaborative applications use the secure HTTPS connection
to grant users access to their services. During the HTTPS
connection, user login is established and login credentials
are replaced by session identifiers such as session cookies

as a cheaper alternative to the secure HTTPS particularly in
mobile devices characterized by their limited computational
abilities. Such threat is more prominent in collaborative
applications networks, particularly with the remember me
option, which extends the users’ sessions to unpredicted
periods. The rise of session hijacking attacks in
collaborative applications and other Internet applications is
attributed to the increased utilization of HTTP cookies in
session authentication in lieu of the session-wide
employment of the secure HTTPS connection. Session
cookies are typically stored on the clients’ machine and are
usually transmitted over unsecure wireless connections,
thereby compromising the client’s social network
experience if the cookies are illegally accessed whether
through passive attacks (e.g. eavesdropping) or active
attacks (e.g. cookie stealing). Many tools are available to
carry out session hijacking attacks which include
CookieCatcher [3], FaceNiff [4], Firesheep [5] and many
more. Session hijacking can be either active where attackers
take over the whole session and impersonate the social
network’s victim, or passive which involves sniffing out a
session and passively watching traffic.

In this paper, we present a hybrid scheme that utilizes
one-way hashing and sparse caching techniques. Our
objective is to propose a scheme that can be easily deployed
in an efficient and secure manner that does not burden
collaborative applications providers or incur extraneous
memory resources on users’ platforms.

The remainder of the paper is organized as follows.
Section 2 provides a brief overview on previous literature
on this area. In section 3, we introduce the fundamental
concepts for this paper. In section 4, we provide a detailed
description of the proposed scheme highlighting its main
features. In section 5, we introduce comparisons and
tradeoffs and evaluate the performance of the proposed
scheme. Finally, section 6 concludes the paper.

2 RELATED WORK

Recent research on attacks targeting collaborative
applications and social media networks has focused on
detection schemes (e.g. [6]), reputation attacks (e.g. [7],
[8]); both of which are directly related to session hijacking

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257327

attacks. The detection schemes do not, however, provide
prevention against such attacks, and so do the reputation
attacks solutions. Research dealing with session hijacking
threats’ prevention is vast and the issue has received
attention from a variety of perspectives. The authors of [9]
indicate that the current IEEE 802.11 wireless networks are
vulnerable to session hijacking attacks as the existing
standards fail to address the lack of authentication of
management frames and network card addresses, and rely
on loosely coupled state machines. Several proposed
schemes have tried to solve this issue. Liu et al. [10]
propose the use of a secure cookie that relies on HMAC to
ensure the authenticity of transmitted cookies. However,
due to its reliance on the Secure Socket Protocol (SSL), this
solution does not provide scalability. Solutions not utilizing
HTTPS such as SessionLock in [11], SessionShield [12]
both have shortcomings. SessionLock uses session fragment
identifier and HMAC to create authentication tokens
exchanged between the server and the client throughout the
life of the session. On the other hand, SessionLock does not
provide strong protection against active session attacks
since it aims at providing protection against passive attacks
like eavesdropping. SessionShield [12] employs a proxy
like application at the client’s side to prevent session
hijacking. Nonetheless, this technique presents problems
pertaining to scalability and compatibility.

To secure communication in an internet session,
cryptographic techniques such as one-way hash chain
(OHC) technique that rely on one-time passwords proposed
by Lamport [13] have been utilized. In particular, the OHC
technique has been employed in many application with the
aim of mitigating the potential of session hijacking. For
example, the authors in [14] proposed using One-Time-
Cookies (OTC), where disposable credentials called one-
time cookies replace authentication credentials. The OTC
scheme generates a set of tokens that are only used once
and discarded once used. To overcome some inherent
drawbacks in the OHC scheme such as high computational
overhead, the authors of [15] and [16] propose devoting
some memory in the client’s machine for previously
computed hashed values for authentication tokens that are
fetched as needed. This relieves some of the computational
overhead, but requires additional memory that sometimes is
not available especially with low-end devices such as some
wireless devices. Another approach suggested in [17] and
[18] is to divide the one-way hash chains in a two-
dimensional format. Compared to the sparse caching
approach, dividing the OHC into multiple smaller chains
does not provide a similar reduction in the computational
overhead. In this paper, we propose a solution that benefits
from the advantages of the sparse caching strategy proposed
in [15] and [16], in addition to the efficiency of the two-
dimensional one-way hash construction [17] and [18]. The
hybrid approach is light, efficient and easy to implement as
a client side plug-in.

3 PRELIMINARIES

The basic assumption of the OHC scheme is that an
authentication token derived by applying a one-way hash
function is used to protect session cookies. Essentially, we
use a one-way hash chain of length N, which corresponds to
the number of transactions in a session, to protect a session

from being sniffed or hijacked. Initially and using an
HTTPS channel, some parameters are exchanged between
the server and the client. These parameters include a shared
secret S0 in addition to the length of the Internet session
denoted N. Based on such parameters and using the agreed
upon cryptographic hash function, the OHC protects the kth
transaction with an authentication token Uk=HN-k+1(S0)
derived by applying the cryoptographic hash function m
times. Thus, for the notation H2(x)= H(H(x)), the hash
function is applied twice on x. To take an example, if
N=100, the authentication tokens for the 1st, 2nd, and 3rd
transactions are U1=H100(S0), U2=H99(S0), U3=H98(S0),
respectively.

Inherently, the OHC approach suffers from a high
computational overhead caused by the need to compute the
hash function recursively in the first iteration. Thus, the
number of transactions expected to be handled during an
Internet session is a key factor contributing to the
computational overhead required to compute the hash
function. Basically, without accurate statistics of users’
behavior, which tends to vary tremendously, the number of
transactions can be overestimated, thereby unnecessarily
increasing overhead, or underestimated resulting in having
the user redo the login process. The solutions proposed in
[15] and [16] address this problem by devising sparse
caching units in which the hashed secrets are pre-computed,
stored and fetched as needed. However, while the solution
gives acceptable performance in reducing the computational
overhead, cache memory is scarce in many mobile devices
and the space for cache in these devices cannot be
committed for a long time. Alternately, the authors of [17]
and [18] propose a scheme that deploys two-dimensional
mini one-way hash chains to significantly reduce the
overhead of OHC without deploying cache memory.

We propose a hybrid solution that maximizes
efficiency and minimizes the cost of memory resources. To
achieve this, we divide the one-way hash chain into
multiple chains and support them with caching units where
authentication tokens are stored and fetched as needed. To
measure efficiency, we use the number of hash operations
needed in a session. In the next section, we define the
configuration of the system’s components and determine
the cost based on these configurations. Before this overview
is presented, we introduce the notations used in the scheme.
We refer to the proposed scheme as the hybrid scheme.

Scheme Notation
I = mini OHC scheme
J = OHC Caching scheme
K = Hybrid scheme

Common Notation
N = number of transactions
X = horizontal chain for seeds
Y = vertical chain for authentication tokens
M = space interval between cache units
N = X × Y // simplified assumption

We will introduce a more detailed description of these

notations in our description of the schemes below.

A. The mini OHC Scheme:
The conventional OHC scheme has one dimension

where one seed is used to generate authentication tokens by
a single one-way hash chain for the whole session.
However, the mini OHC scheme is arranged into two
dimensions (see Figure 1). In the first dimension (i.e. the
horizontal axis Xi), there is a single hash chain that
computes the seeds for the second dimensions chains (i.e.
vertical axis Yi). In the second dimension, we have multiple
hash chains that use these seeds to generate authentication
tokens. Authentication tokens are generated by hashing the
seeds using cryptographic hash functions (e.g. SHA-1,
SHA-2 or SHA-3). These cryptographic hash functions are
known for their resistance against attacks.

Figure 1 mini OHC construction

Authentication in the mini OHC is done in three steps:

Initialization:
The server and the client utilize an HTTPS channel to

exchange the number of transactions in a session N, an
initial value of the shared secret S0, and the length of the
authentication token chain Yi. Based on these variables, the
number of seeds is determined, and Seed1 is calculated to be
used in the first authentication token chain by applying one-
way hash function on S0.

Authentication:
 In this step, the scheme generates the authentication

token V at the client side. The authentication tokens are
derived in the vertical chains by applying the one-way hash
function on Seed1. The authentication token is then attached
to the transaction cookie and sent to the server. A similar
authentication routine is done at the server’s side to check
the authenticity of the authentication token. If
authentication is verified, the transaction is accepted;
otherwise, it will be rejected. Once the first vertical chain is
exhausted, the next routine (i.e. Seed Update) is called to
calculate seeds for the following vertical chain.

 Seed Update:
Once the first vertical chain is exhausted, the seed is

updated for the next chain by applying a one-way hash
function on the initial S0. Note that each seed is only used in
a single vertical chain to generate authentication tokens for
that chain. Furthermore, the authentication tokens once used

are discarded and never used again. As such, the cost of
authentication in the mini OHC scheme is a result of
calculating the number of hash operations in the horizontal
chain and the multiple vertical chains. The following is how
we calculate the cost of the scheme:

Cost of one vertical chain =

𝑌𝑖× (𝑌𝑖!!)
!

Total cost of all vertical chains = CV = 𝑋!×
!!× (!!!!)

!

 = 𝑁 × (!!+1)
2

Cost of the horizontal chain= CH =𝑋𝑖× (𝑋𝑖!!)

!

Total Cost = C = CV + CH
 = 𝑁 × (!!+1)

2 + 𝑋𝑖× (𝑋𝑖!!)
!

B. The OHC Caching Scheme:
Unlike the previous mini OHC scheme, the OHC

caching scheme utilizes storage and only one-dimension
chain, to reduce the computation overhead of the OHC.
During the initialization step, and in addition to the initial S0
a few authentication tokens are pre-calculated and stored.
Figure 2 demonstrates how the cache units are placed for
this scheme. The highlighted blocks are where the
authentication tokens are stored. For ease we assume the
interval between caches is one. It should be noted that since
we only have one dimension in the OHC caching scheme,
the X parameter is considered the cache size (i.e. number of
cache units utilized). Also, given we do not have vertical
chains, we consider Y to be the interval between cache
units. Therefore, Xj= size of cache Yj= interval between two
cache units.

Figure 2 OHC Caching Scheme
Here is an example for a session of 100 transactions is

authenticated using the OHC caching scheme. For a session
of this size, five storage units (of length 160 bits for SHA-1)
can be reserved. Thus five authentication tokens are
calculated in the initial steps and stored at 20 transaction
interval as follows. Note that Xj in this example is 5 and Yj is
20.

cache[0] = s
cache[1] = H20(s),
cache[2] = H40(s),
cache[3] = H60(s),
cache[4] = H80(s).

Compared to the mini OHC scheme, the OHC with

caching has the advantage of low computation cost. Two
important parameters are used to guide the calculation of
computation overhead in the OHC with caching: the cache
size Xj and the cache spacing interval Yj. In the above
example, the cache size= 5 and the cache spacing interval=

20. Based on these assumptions, we can determine the cost
of the OHC caching scheme according to the following
formulas:

Cost of authentication tokens between two cache units

=
𝑌𝐽× (𝑌𝐽!!)

!

Total Cost = C = 𝑋!×

!!× (!!!!)
!

 = 𝑁 × (!!+1)
2

It should be noted that the total cost includes the sum of

the cost of (Xj-1) ×Yj for the initial filling of the cache

values and a cost of
(!!!!) × !× (!!!!)

!
 for the N

transactions. Also, notice that (Xj-1) of the N transactions
will not need to perform any hashing since the required
value is already in the cache. For the above example of N =
100 and Xj = 5, transaction # 21 will simply read V80 from
cache[4].

In order to handle more transactions efficiently, we
either need to increase the number of storage units
allocations. Or, we have to increase the cache spacing
interval.

4 THE HYBRID SCHEME

We can alleviate the need for extra storage units and
increase efficiency by equipping the mini OHC with sparse
caching components to benefit from the advantages of
caching in a two-dimensional configuration. Figure 3 is a
general view of how the hybrid scheme looks with the
caching units added to the mini OHC in the vertical chain
Yk. In the Simulation Results Section, we discuss why we
prefer to equip the scheme with caching at the vertical
chain. The highlighted blocks are where the sparse caching
units are placed, and the authentication tokens in these
locations are computed and stored. The proposed scheme
uses two dimensions, each of which generates a set of
values. In the first dimension—the horizontal dimension
denoted Xk, is a single one-way hash chain responsible for
generating seeds to be used in producing the authentication
tokens in the second dimension Yk—the vertical multiple
one-way hash chains.

Figure 3 Hybrid Scheme

Here is a high level description of the protocol.

Initialization:
Xk := N ÷Yk // length of the Seed_Chain
K:= Yk // K is the global index for the Token_Chain
J:= Xk // J is the global index for the Seed_Chain
Seed:= HJ(S0) // Seed is now Seed1 for the first Token_Chain
Interval:= Yk÷ Cache_Size // # of hash operations between cache units
Call Fill_Cache(Seed)

Fill_Cache (Seed)
Begin
i:= 0
HNum:= 1 // number of hashes to be calculated
While(i not equal to Cache_Size)

Cache[i]:= HM(Seed) // authentication tokens stored
HNum:= HNum +Interval
 i:= i+1

 End-While
End

Authentication ()
Begin
L:= (K/Interval)-1 //L is the cache locator to fetch the token value
HNum:= K-(L*interval)-1
V:= HHNum(Cache[L])
K:= K -1

if (K==0) then
 Update_Seed()
 K:= Yk;

 end_if
Return (V);
End

Update_Seed()
Begin
J := J-1 // J is the global index for the first-tier chain
Seed:= HJ(S0);
Call Fill_Cache(Seed) // update the next authentication tokens
Return (Seed)
End;

The protocol is composed of four main procedures: the

Initialization, the Authentication, the Update_Seed and the
Fill_Cache (Seed) routines. Each of these routines is
responsible for some part of the protocol.

The Initialization procedure works the same way as
described in the mini OHC described in Section 3. An
additional step in the Initialization entails filling the cache
with authentication tokens based on the cache size. This is
achieved by invoking the Fill_Cache (Seed) procedure.

The next step is when the session actually starts. It is
where authentication tokens are used to protect session
cookies. The Authentication procedure is responsible for
generating the authentication tokens. This step works by
locating the closest cache, fetching the respective stored
authentication token and performing the additional hash
operations if needed. Once the first vertical chain is
exhausted, the Update_Seed step is invoked and a new seed
is calculated and handed over to Fill_Cache (Seed) so that
authentication tokens for the next Token Chain are stored.
The protocol works in this manner until the session is
complete.

Compared to the single dimension OHC caching
scheme described in Section 3, where the number of cache
units devised either grows proportionately with the number
of transactions, or is configured to handle more transactions
by increasing the cache spacing interval, the hybrid scheme
is more efficient. In other words, to achieve good
performance with higher number of transactions, the OHC
caching scheme will need to devise more cache units. In the
hybrid configuration, however, we efficiently handle this
scenario, but with much less space by emptying storage
after each Token Chain is exhausted.

While the mini OHC performance is influenced by the
length of the Token Chain and the OHC with caching by the
cache size, we need to investigate the optimal configuration
of the hybrid scheme by comparing the costs of the previous
two schemes and identifying the factors that influence the
performance. In the following section, we introduce our
evaluation of these factors and present an analytical model
to find the best tradeoff between cache employment and
performance.

5 COMPARISON AND TRADEOFFS

Essentially, using the number of hash operations in a
session as a measurement metric, the mini OHC has higher
computation cost as opposed to the OHC caching scheme.
The difference between the two schemes is 𝑋𝑖 × (𝑋𝑖 +1)2 .
However, there is the expense of extra storage units
associated with OHC caching scheme. If the number of
cache units devised is relatively small, the performance is
comparable. However, if more cache units are added, the
OHC caching scheme outperforms the mini OHC. Figure 4
shows how the two schemes give different performance for
different size of cache for 500 transactions.

Figure 4 Total Cost of 500 transactions with different x values

In the hybrid scheme, our goal is to utilize the
minimum storage requirements while efficiently handling
authentication. First, we present how the total hash cost of
the hybrid scheme is calculated. The analytical model
below is used to obtain the optimal setup of the scheme; we
try to achieve a configuration that strikes a balance between
efficiency and memory requirements.

𝑁 = 𝑋! × 𝑌!

Assuming 𝑋! << 𝑌! and using the same number of

sparse storage units X in the vertical chains, we get:

Let Space_Interval 𝑀 = 𝑌𝐾𝑋𝐾

 // simplifying assumption

M integer

𝑌! = 𝑀× 𝑋! 𝑁 = 𝑋! × 𝑌! = 𝑀 × 𝑋!

Cost of authentication tokens between 2 cache units

 = !× (!!!)
!

Cost of one vertical chain = 𝑋! ×
𝑀× (𝑀+1)

2

 = 𝑌!×
 (𝑀+1)

2

Cost of all vertical chains = CV = 𝑋! × 𝑌!×
 (𝑀+1)

2

 = 𝑁 × (𝑀+1)
2

Cost of horizontal chain = CH =
!! × (!! !!)

!

Total Cost = C = CV + CH

 = 𝑁 × (!!!)
!

+ !! × (!! !!)
!

The above formula can be used to plot C as a function

of N and M where X = !
!

0.50.5 0.5 0.5N NC NM N
M M

= + + +

0	

5000	

10000	

15000	

20000	

25000	

30000	

100	
 50	
 25	
 5	

To
ta
l	
 C
os
t	

X	

OHC	
 Caching	

Mini	
 OHC	

To find the optimal value of M which minimizes the
cost C, we differentiate the above formula with respect to M
and equate to 0. On differentiation we have

!"
!"
 = 0.5 𝑁 − 0.5 !

!!
+ 0.5 𝑁 −0.5 𝑀!!

!

 = 0.5𝑁 − 0.5 !
!!

− 0.25 !
!

!
!

After equating

!"
!"

 to zero, we get the following quartic
equation:

4𝑁𝑀! − 8𝑁𝑀! −𝑀 + 4𝑁 = 0

To give an example, the Plot of the function C when

the number of transactions is 500 is given below in Figure
5.

 Figure 5 The minimum value of M when N=500

Thus, the minimum value occurs near the value M = 1.

Table 1 summarizes the optimal values of M for the
different numbers of transactions.

Table 1 Optimal values of M

N Optimal value of M by

 equating 𝒅𝑪
𝒅𝑴

= 𝟎

500 1.01118
1000 1.00791
1500 1.00645
2000 1.00559
2500 1.00500
3000 1.00456

Based on the analytical modeling presented above, we

can determine the optimal cache spacing in the hybrid
scheme to be 1. Therefore, given the optimal Token Chain
length Yk obtained in [15], we run our simulation with the
assumption that the optimal cache spacing is 1. In the next
section the simulation results for the three schemes are
presented.

6 SIMULATION AND PERFORMANCE RESULTS

The performance of the proposed hybrid scheme is
evaluated using a detailed Java benchmark. Our goal was to
measure the performance of the three schemes. We
compared and contrasted the results measured in terms of
efficiency (number of hash operations in a session) and in
terms of storage units required to complete an internet
session.

6.1 A. Caching Options:
The hybrid scheme can benefit from caching in a

number of ways. Our first option is to use caching in the
Token Chain Yk. In other words, we only store the
authentication tokens or a subset of them in the vertical
dimension of the mini OHC. Caching can be either full or
partial. In the full caching option, all the authentication
tokens are calculated and stored before authentication,
whereas only a subset of authentication tokens are
calculated and stored in the partial caching option. Below is
a description of both options.

In the full caching
The number of cache units required is equal to the

optimal Token Chain length Yk. Since all authentication
tokens are going to be calculated and stored before the start
of the session, the full caching approach indicates that the
authentication tokens do not require any hash operation in
the Yk. The only cost incurred when full caching is utilized
would be hash operations used to derive the seeds in the Xk.

In the partial caching
A subset of authentication tokens in the Token Chain Yk

is stored. We use the optimal cache spacing obtained above
(i.e. M = 1) and the optimal Token Chain Yk as the basis for
our spacing. As a result, each authentication token will cost
either one hash operation or none (i.e. fetching the
authentication token form the cache). Here is an example to
illustrate this:

Suppose we have an Internet session of length 500
transactions. According to [15], the optimal length of Yk in
the mini OHC is 10. The length of Seed Chain Xk is going
to be 50.

Cache [0]=H1(S1)
Cache [1]=H3(S1)
Cache [2]=H5(S1)
Cache [3]=H7(S1)
Cache [4]=H9(S1)

Given the number of cache units and the spacing interval,
the following are the first ten authentication tokens along
with their cost in terms of hash operations.

1st Transaction = V1 = H1(Cache [4])
2nd Transaction = V2 = H0(Cache [4])
3rd Transaction = V3 = H1(Cache [3])
…….

 10th Transaction = V10 = H0(cache [0])

Therefore, for every Yk only 5 hash operations are required
given we have 5 cache units uniformly distributed. The

maximum number of hash operations for the authenticate
token transaction is 1 if partial caching with cache spacing
of 1 is used.

These caches are used in the first Yk. Once this chain is
exhausted, the cache is emptied and a new seed is generated
for the next Yk authentication tokens. New values are
calculated and the cache is filled again with new
authentication tokens. If partial caching was used in the
OHC with caching scheme only, we would need 250
memory spaces to carry out an Internet session of length
500 transactions to achieve comparable results. With adding
partial sparse caching to the mini OHC, we can bring this
number down to just 5 memory spaces.
6.2 B. Full vs. Partial Caching Performance

Figure 6 demonstrates the session cost measured by the
number of hashes in the full caching configuration and the
partial caching operation. We perform this test when
caching is only performed at the Token Chain Yk. Later, we
test the caching option in the Seed Chain Xk. Here we can
see that the full caching does not have a tremendous
improvement over partial caching.

Figure 6 Session cost comparison between full and partial

caching in Y.

Thus, the next step is to compare the storage
requirements in the full and partial caching configurations
in the Token Chain Yk to see whether it is worth to employ
full caching or partial caching. The comparison is presented
in Figure 7. While the partial caching requires half the
storage of the full caching, it can still achieve good results.
Therefore, the partial caching can be a better option as the
memory requirement is half without sacrificing
performance.

Figure 7 Storage requirement comparison between full and

partial caching

6.3 Performance Comparison between the three
schemes

Since the partial caching option strikes a good balance
between memory requirement and efficient performance,
we compare the performance of the hybrid scheme in the
partial caching option at the Token Chain Yk with the OHC
caching scheme and the mini OHC scheme. Table 2
summarizes the results of this comparison. Note that we use
the same number of cache units in the simulation of each
scenario except for mini OHC where caching is not
supported. In terms of efficiency, the mini OHC scheme
helps reduce the session cost significantly if compared to
the OHC scheme. By utilizing very little storage in the
hybrid scheme, we were able to lower this cost by
approximately 65% as indicated in the table.

Table 2 Comparing session cost between three schemes

Number of
Transactions OHC mini OHC Hybrid

Scheme
500 25250 4025 1525

1000 71930 10009 3465
1500 141382 12505 5750
2000 251000 24875 8875
2500 348471 33496 10980

6.4 Caching in Token Chain Yk or Seed Chain Xk
Our next task is to see whether equipping the proposed

scheme with caching capabilities in both dimensions can
have better outcome. Figure 8 and 9 demonstrate the storage
and session cost requirements if either the Seed Chain or the
Token Chain is equipped with caching capabilities. It is
obvious that adding caching in the Seed Chain does not
benefit the scheme as storage requirement increases (Figure
8) while the session cost increases (Figure 9). Therefore, we
have opted for equipping the hybrid scheme with sparse
caching at the Token Chain to be the optimal setup.

0	

2000	

4000	

6000	

8000	

10000	

12000	

500	
 1000	
 1500	
 2000	
 2500	

Se
ss
io
n	

Co
st
	

Number	
 of	
 Transac/ons	

Full	
 Caching	
 in	
 Y	

Par6al	
 Caching	
 in	
 Y	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

500	
 1000	
 1500	
 2000	
 2500	

St
or
ag
e	

Re

qu
ire

m
en

t	

Number	
 of	
 Transac/ons	

Full	
 Caching	
 in	
 Y	

Par6al	
 Caching	
 in	
 Y	

Figure 8 Storage requirement comparison with cache support in

either Token_Chain (Y) or Seed_Chain (X)

Figure 9 Session cost comparison with cache support in either

Token_Chain (Y) or Seed_Chain (X)

7 CONCLUSION

This paper addresses the security threat of session
hijacking attacks facing collaborative application especially
when mobile and wireless applications are utilized to access
collaborative services. Common HTTPS based solutions do
not usually suit mobile devices especially those with limited
computation and storage capacities. One-way hash chain
based solutions have been proposed to replace the current
cookie based session management techniques but due to
their inherent nature requiring recursive computation of
hash values, they do not suit some mobile devices. This is
particularly because of the high computational overhead
associated with OHC in Internet session.

This paper proposed and analyzed the potential of a
hybrid solution where divided one-way hash chains are
equipped with caching capacities to store pre-computed
hashed values and fetch them once needed to authenticate a
user session. We presented an analytical model which
aimed at measuring the cots of the hybrid scheme compared
to the straightforward OHC with caching and the two-
dimensional OHC. We also used this analysis to derive a
quartic equation with which we were able to identify the
optimal cache spacing configuration in the hybrid scheme.
The evaluation and experimentation reveal major
improvements and highlight advantage of adding sparse
caching to the mini one-way hash chains to achieve
economic and efficient authentication for mobile devices

that suits collaborative applications and other Internet
applications.

References

[1] T. OWASP, "10 2010," The Ten Most Critical Web Application
Security Risks, 2010.

[2] D. Wichers, "The 2013 OWASP Top 10," in AppSec USA 2013,
2013.

[3] D. Chrastil. (01/30/2014). CookieCatcher - Session Hijacking
Tool. Available: http://security-
sh3ll.blogspot.com/2013/08/cookiecatcher-session-
hijacking-tool.html

[4] B. Ponurkiewicz, "FaceNiff—A new Android download
application," ed, 2012.

[5] E. Butler, "FireSheep: Cookie Snatching Made Simple," in
ToorCon Conference, San Diego, CA, 2010, pp. 22-24.

[6] S.-H. Wu, M.-J. Chou, C.-H. Tseng, Y.-J. Lee, and K.-T. Chen,
"Detecting in-situ identity fraud on social network services: a
case study on facebook," in Proceedings of the companion
publication of the 23rd international conference on World wide
web companion, 2014, pp. 401-402.

[7] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai,
"Uncovering social network sybils in the wild," ACM
Transactions on Knowledge Discovery from Data (TKDD), vol.
8, p. 2, 2014.

[8] A. Mohaisen and S. Hollenbeck, "Improving Social Network-
based Sybil Defenses by Rewiring and Augmenting Social
Graphs," in Information Security Applications, ed: Springer,
2014, pp. 65-80.

[9] R. Gill, J. Smith, and A. Clark, "Experiences in passively
detecting session hijacking attacks in IEEE 802.11 networks,"
in Proceedings of the 2006 Australasian workshops on Grid
computing and e-research-Volume 54, 2006, pp. 221-230.

[10] A. X. Liu, J. M. Kovacs, C.-T. Huang, and M. G. Gouda, "A
secure cookie protocol," in Computer Communications and
Networks, 2005. ICCCN 2005. Proceedings. 14th International
Conference on, 2005, pp. 333-338.

[11] B. Adida, "Sessionlock: securing web sessions against
eavesdropping," in Proceedings of the 17th international
conference on World Wide Web, 2008, pp. 517-524.

[12] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W.
Joosen, "SessionShield: lightweight protection against session
hijacking," in Engineering Secure Software and Systems, ed:
Springer, 2011, pp. 87-100.

[13] L. Lamport, "Password authentication with insecure
communication," Communications of the ACM, vol. 24, pp.
770-772, 1981.

[14] I. Dacosta, S. Chakradeo, M. Ahamad, and P. Traynor, "One-
time cookies: Preventing session hijacking attacks with
disposable credentials," ACM Transactions on Internet
Technology (TOIT), vol. 12, 2012.

[15] J. Cashion and M. Bassiouni, "Protocol for mitigating the risk
of hijacking social networking sites," in Collaborative
Computing: Networking, Applications and Worksharing
(CollaborateCom), 2011 7th IEEE International Conference
on, 2011, pp. 324-331.

[16] Amerah Alabrah, Jeffrey Cashion and Mostafa Bassiouni
“Enhancing security of cookie-based sessions in mobile
networks using sparse caching” International Journal of
Information Security- Springer Publishing, Vol. 13, No. 4, July
2014, pp. 355–366, online version published December 2013,
DOI: 10.1007/s10207-013-0223-8.

 [17] A. Alabrah and M. Bassiouni, "A hierarchical two-tier one-way
hash chain protocol for secure internet transactions," in Global
Communications Conference (GLOBECOM), 2012 IEEE, 2012,
pp. 868-873.

[18] A. Alabrah and M. Bassiouni, "Robust and fast authentication
of session cookies in collaborative and social media using
position-indexed hashing," in Collaborative Computing:
Networking, Applications and Worksharing (Collaboratecom),
2013 9th IEEE International Conference Conference on, 2013,
pp. 241-249.

0	

10	

20	

30	

40	

50	

60	

70	

80	

500	
 1000	
 1500	
 2000	
 2500	

St
or
ag
e	

Re

qu
ire

m
en

t	

Number	
 of	
 Transac/ons	

Par6al	
 Caching	
 in	
 Y	

Par6al	
 Caching	
 in	
 X	

0	

5000	

10000	

15000	

20000	

25000	

30000	

500	
 1000	
 1500	
 2000	
 2500	

Se
ss
io
n	

Co

st
	

Number	
 of	
 Transac/ons	

Par6al	
 Caching	
 in	
 Y	

Par6al	
 Caching	
 in	
 X	

