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Abstract—Extracting Ontop mapping rules and OWL ontol-
ogy manually from a relational schema is a tedious task. We
present an automatic approach for extracting Ontop mappings
and OWL ontology from an existing database schema. The end
users can access the underlying data source through SPARQL
queries. A SPARQL query is written according to the extracted
ontology and the end user does not need to know about the under-
lying data source and its schema. The proposed approach takes
into consideration the different relationships between entities of
the database schema. Instead of extracting a flat ontology that is
an exact copy of the database schema, it extracts a rich ontology.
The extracted ontology can also be used as an intermediate
between a domain ontology and the underlying database schema.
The experiment results indicate that the extracted mappings and
ontology are accurate. i.e., end users can query all data (using
SPARQL) from the underlying database source in the same way
as if they have written SQL queries.

I. INTRODUCTION

The Ontop framework [1] is fast becoming one of the
best approaches for Ontology-based data access (based on the
success of the well-known D2RQ framework). In [2], it is
shown that the Ontop framework is efficient, and achieves
good performance when compared with other well-known
systems (e.g., Jena, Sesame, etc.). Ontop deploys query
rewriting techniques with Semantic Query Optimization in an
efficient manner. Thus, the queries execute faster. Moreover,
redundant data is eliminated in the optimization process, which
is beneficial when SQL queries are written by inexpert users
[2]. In addition, another evaluation study [3] shows that the
performance of the SQL queries that are generated by Ontop
are superior compared to both other systems that translate
SPARQL queries into SQL, for example, D2RQ and Virtuoso
RDF Views, and other well known triple stores, for example,
OWLLIM, Stardog, and Virtuoso.

The continuous development of the Ontop framework, in
addition to providing a tool to translate R2RML mappings
[4] into Ontop mappings and vise versa, will increase the
popularity of the Ontop framework and make it the de facto
for ontology-based data access. Henceforth, our proposed
approach focuses on the automated extraction of Ontop map-
pings from a relational schema beyond the simple extraction
approach that only extracts simple mapping rules and an ontol-
ogy that is an exact copy of the underlying relational schema,
without considering the conceptual differences between the
two worlds.

Although mappings extraction is not the core focus of
the Ontop research group, (initially assuming that the Ontop
mappings can be written manually), the recent release added an
automatic extraction option for Ontop mappings and ontology
from an existing data source in the OntoPro plugin for

Protegé [5]. However, this tool follows a basic approach for
automating the process of extraction Ontop mappings. In other
words, it simply extracts an ontology that is an exact copy of
the relational schema and does not consider the relationships
between relational entities. This complicates the process of
mapping the extracted ontology with domain ontologies that
have a rich structure than that of a relational schema. Some
shortcomings and incompatibilities in the extracted mappings,
defined in the following:
• It does not recognize a binary relation. Instead, it extracts

incorrect Ontop mappings for representing binary relations.
• It represents the n-ary relation as n separate relations

between the n relations that are composing the n-ary relation.
Thus, it needs n separate SQL queries to retrieve the data the
represents the n-ary join relation, which is inefficient.
• It does not recognize a recursive reference. Thus, it fails

to extract Ontop mapping rules for representing recursive
references.

The remainder of the paper is organized as follows. Sec-
tion II gives a short background of the ontology-based data
access and Ontop framework, while Section III presents the
proposed approach for Ontop mappings and OWL ontology
extractions from a relational schema. A brief overview of
related works is presented in Section IV, while Section V
concludes the paper.

II. ONTOLOGY BASED DATA ACCESS (OBDA)
OBDA is an area of research in which the focus is to pro-

vide tools for end-users to access data sources through a high-
level of conceptual view, that is presented using ontologies
[6]. It assumes the availability of an ontology that acts as an
intermediate layer between the end-users, and the underlying
data source [7]. However, the end-users are assumed not to
be aware about the underlying database schema, structure of
entities, and storage details [8].

Several pproaches for direct access to relational data using
ontology-based data access and SPARQL queries have been
introduced in the literature (D2RQ server [9], Virtuoso RDF
[10], to name a few). However, these systems have some, but
serious drawbacks (e.g., lack of the semantics support and poor
query performance [1]).

The Ontop framework [1] has been proposed to tackle
the shortcomings of the existing approaches. It is an OBDA
framework that supports on-the-fly SPARQL queries over
RDBs through OWL and RDFS ontologies. Quest [1] is
a reasoner and SPARQL engine that represents the core of
Ontop. In contrast with conventional RDF triple store that
transform relational data into RDF triple before querying it, the
Quest engine accesses the relational data and reasoning over
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it directly and on the fly, without transforming it into OWL
assertions or RDF triples. Thus, it eliminates the performance
issues related to memory limitations over large data. This mode
of access is called virtual ABox mode. The Quest supports
access to RDBs by using mapping rules (written in a mapping
language) to translate SPARQL queries into SQL queries. It
also deploys the query rewriting techniques efficiently and
utilizes the high performance, scalability, and the maturity of
the underlying RDBMS for executing and answering SPARQL
queries. The architecture of Quest is shown in Figure 1. It gets
as inputs, an ontology (aka TBox) and an OBDA Model (that
consists of data source definitions that contain information on
how to access the defined sources, and a set of mappings that
are defined using Ontop’s mapping language). When Quest

Fig. 1: Quest reasoner architecture [11].

gets a SPARQL query over the ontology, it utilizes the set of
mappings over the relational database to translate it from a
query over the OWL ontology into an SQL query over the
relational data source. When a client sends a SPARQL query
request to the Quest engine, the following steps are taken
by the Quest engine. First, it rewrites the query using the
ontology terms (i.e., TBox). Second, it unfolds the query into
a single SQL query (using the Ontop mappings rules). Finally,
it executes the query and sends back the result to the client.
The Quest uses a powerful mapping language introduced in
[8] for writing the Ontop mapping rules. A mapping rule is
composed of two parts: a source part that is simply an SQL
query, and a target part represents an ABox assertion template
that is mapped with the source query. The template is simply a
set of RDF triples written in Turtle format. The columns of the
SQL query are mapped to the subject and object of the target’s
template triples, and the values of columns in the retrieved
result are used to generate the virtual ABox assertions. When
a client executes a SPARQL query over the OWL ontology,
Quest uses the mapping rules to rewrite the SPARQL query
over the OWL ontology into relational SQL queries over the
database. After an SQL query is executed, Quest returns the
results to the client as ABox assertions which are simply RDF
triples that represent the virtual data instances of ontology
classes and their relations.

A. Motivation Example
In this section, we illustrate Ontop framework through

an example. Assume we have a relational database schema
(BookStore) that is shown in Figure 2. It stores and manages
data about books and the authors of books. Assume we also
have an OWL ontology (OntoBookStore) as shown in Figure

Fig. 2: BookStore Schema.

3 that is similar or equivalent to (BookStore), in such that
both are representing the same domain of knowledge. Through
using Ontop framework, we can query the relational schema.
Ontop’s mapping language provides the support for defining
and managing mapping rules between the ontology and its
equivalent or similar relational schema for the purpose of
accessing the relational data. An Ontop’s mapping rule is
simply an axiom that relates relational entities and attributes
to the correspondent concepts and properties of a similar or
equivalent ontology.

We want, in this example, to declare the minimal number of
Ontop mapping rules that are efficient and comprehensive for
the purpose of querying the underlying relational data through
SPARQL queries. We take a relational schema and an ontology
as inputs and manually find a set of mapping rules that relates
the relational schema’s tables and fields to the classes and
attributes of the ontology. The mechanism that we follow to
declare the set of mappings is as follows:

• Find the mapping correspondences between entities/fields of
the relational schema and concepts/properties of the equiva-
lent ontology. For example, Books table in Figure 2 is paired
with Book class in Figure 3.
• For each table/class pair found in above (i.e., Books/Book

and Authors/Author), define a mapping rule that connects
the table to its correspondent class from the ontology. The
body of the mapping rule is composed of two parts: target
and source. The target part is an ABox assertion template
that maps the elements of the OWL ontology with their
correspondent elements in the relational schema. It can also
have one or more triples. The source part is simply an SQL
query that represents all the database entities that are part of
the mappings performed in the target part.
• Construct the subject template that represents the unique id

of the virtual instance of the class that is derived from the
related table. This subject template will plays as the subject
for all the triples that belong to the mapping rule. The subject
template is defined using the following format:

:< Class Name > /{< Table Primary Key >}
where < Table Primary Key > is the primary key of the
relational table that is equivalent to the ontology class.
• Add the following triples to the target part of each rule:
◦ a class triple that maps the given table with the equivalent

class from the ontology.
◦ a data property triple for each field in the table that maps

the field in the table with the correspondent data attribute



Fig. 3: OntoBookStore, an equivalent ontology for BookStore schema.

in the ontology.
◦ an object property triple for each foreign key field in the

table. It maps the foreign key and its referenced primary
key in the other table with the correspondent relation in
the ontology. The relation is simply an object property that
has the class that is a correspondent to the foreign key’s
table as its domain and the class that is a correspondent
to the primary key’s table as its range.

• Write the appropriate SQL query and add it to the source
part of the mapping rule.
• The remaining table (Book Authors) does not have an

equivalent class. However, this table is simply a binary-join
relation on Books and Authors tables. If we look at the on-
tology, we will find that the object property hasBookAuthor
is equivalent to the table Book Authors as it represents
the relation between Book and Author classes. Thus, to
represent this binary relation we add a mapping rule with
only one triple in the target part. The subject of the triple
is a subject template for class Book with the part of
the composite primary key (for table Book Authors) that
references table Books and the object is a subject triple for
class Author with the second part of the composite primary
key that references table Authors.

The extracted mapping rules are shown in Table I. Figure 4
also shows a pictorial representation for the mapping rules
and their associations with the relational schema and the
OWL ontology, where the black dotted arrows represent the
mappings between the elements of (the relational schema and
ontology) and the mapping rules, and the red dotted arrows
represent the relations among mapping rules. The motivating
example shows that extraction of ontology and Ontop mapping
rules from a relational schema is tedious and needs much time
in addition to expert people. Therefore, there is a need to
automate the extraction process.

III. ONTOP MAPPING RULES AND OWL ONTOLOGY
EXTRACTION FROM A RELATIONAL SCHEMA

The extraction process is composed of three modules:
Schema Metadata Extractor module that uses a Connection

Wrapper (implemented through JDBC API [12]) to extract the
definition of the relational schema (i.e., the SQL DDL details),
Ontop Mappings Extractor (OMsE) module that uses the
schema metadata to extract the required Ontop mapping rules
to enable end users from accessing the given relational schema
through SPARQL queries, and OWL Ontology Extractor
(OOE) module that depends on the metadata and Ontop
mapping rules extracted from the first module to generate
the equivalent OWL ontology for the given relational schema.
OMsE module takes the description of the schema (as SQL
DDL) and extracts Ontop mappings rules. The proposed
approach is built on top of the Quest inference system. Before
we show our approach for extracting Ontop mappings and
OWL ontology from a relational database schema, we define
terms used hereafter:

A. The Metadata of a Relational Schema
• Σ: A metadata of a relational schema that represents the

entities and their relationships in a particular domain. It
is defined as Σ: {T1, T2, ..., Tt}, where Ti is a particular
table/entity in the schema and t is the number of tables.
• Ti: {Ni, Ai, PKi, FKi, NKi}, where Ni is the name of

the table, Ai is the set of all Ti’s attributes, PKi is the set
of Ti’s primary key attributes, FKi is the set of Ti’s foreign
key attributes, and NKi is the set of Ti’s non-key attributes.
• Ai: {a1:d1, a2:d2, ..., an:dn}, where n is the number of

attributes in Ti and aj :dj is the pair of attribute j’s name
(aj) and the SQL data type (dj).

B. Extracting Ontop mapping rules from a relational schema
Assuming we have a relational schema metadata Σ (that is

extracted from the SQL DDL) as an input to the OMsE, we
apply the following rules in the OMsE to extract the mapping
rules M from Σ:

1) Independent Table (IT ) rule: Let Ti be a table that has
a primary key PKi. Let PKi be either a single attribute key
or a composite key, such that PKi = {KP 1

i
,KP 2

i
, . . . ,KPn

i
},

where KP t
i

is the attribute t in PKi and n is the total number
of attributes that are composing PKi. If the foreign keys set



TABLE I: Mapping rules between OntoBookStore ontology and BookStore relational schema.

1) map-books:

TARGET: : book/{BOOK ID} a : Book; :hasBookID {BOOK ID}; :hasBookTitle {BOOK TITLE};

SOURCE: SELECT ∗ FROM books

2) map-authors:

TARGET: : author/{AUTHOR ID} a : Author; :hasAuthorID {AUTHOR ID}; :hasAuthorName {AUTHOR NAME};

SOURCE: SELECT ∗ FROM authors

3) map-authors-to-books:

TARGET: : book/{BA BOOKID} : hasBookAuthor : author/{BA AUTHORID};

SOURCE: SELECT ba bookid, ba authorid FROM book authors

Fig. 4: A pictorial mapping between BookStore schema, OntoBookStore ontology, and the mapping rules.

FKi of Ti is null, we say that Ti is an IT . We can represent
the target of an IT rule by a class triple and a data property
triple for each attribute that belongs to Ti. The source query
part of Ontop mapping rule for IT is simply an SQL select
statement on the table.

Example 1. IT rule. Consider a table dept with a primary
key deptno of type integer and the non-key attributes dname
and loc of type string. Because dept has a primary key and
has no any foreign key constraints, IT rule applies on dept.
The Ontop mapping rule for dept is shown in Table II.

2) Dependent Table (DT ) rule: Let Ti be a table that has
a primary key PKi. Let PKi be either a single attribute key
or a composite key, such that PKi = {KP 1

i
,KP 2

i
, . . . ,KPn

i
},

where KP t
i

is the attribute t in PKi and n is the total number
of attributes that are composing PKi. Let also the foreign keys
set FKi of this table to be {KF 1

i
,KF 2

i
, . . . ,KFm

i
}, where KF t

i

is the foreign key t in FKi and m is the number of foreign
keys in Ti. Let KFx

i
= {Kf1 ,Kf2 , . . . ,Kfv}, where Kft is

the attribute t in KFx
i

and v is the number of attributes in
foreign key KFx

i
. If FKi is not null, we say that Ti is an DT .

There are two steps for extracting Ontop mapping rules from
Ti that satisfies the DT rule. The first step is to extract an
Ontop mapping rule as we do in IT rule. The second step
is to extract an Ontop mapping rule for each foreign key in
Ti. We skip the first step because it is the same as in the
previous rule. The details of the second step follow. For each
foreign key KF t

i
in Ti that references a table Tj , we extract



TABLE II: Mapping rule for table dept.

TARGET: :dept/deptno = {deptno} a :dept; :dept#deptno {deptno}; :dept#dname {dname}; :dept#loc {loc};

SOURCE: SELECT ∗ FROM dept

an Ontop mapping rule with target and source parts. The
target part has two object property triple templates. The first
triple represents the many-to-one relation from Ti to Tj . The
other triple is simply the inverse of first one. In other words,
it represents the one-to-many relation from Tj to Ti. Thus, the
predicate of the second triple is the inverse of the predicate of
the first one.

Example 2. DT rule. Consider tables dept (from the previous
example) and emp. emp has the primary key empno and the
non-key attributes empname, job, and sal. It also has the
department number field (deptno) that represents a foreign
key that references deptno (which is the primary key of dept).
In addition, it has the manager attribute (mgr) that represents
a foreign key reference to itself. Because emp has a primary
key and some foreign key constraints, DT rule applies on emp.
The first step is to extract an Ontop mapping rule for emp
the same way as in the case of IT . The outcome of this step is
the Ontop mapping rule shown in Table III. Next, an Ontop
mapping rule is extracted for each foreign key in emp. emp
has two foreign keys fields: mgr and deptno. The first one is
a recursive reference to emp. Thus, RT rule is applied in this
case to extract the Ontop mapping rule that represents the
self-reference. We leave the details of extracting the RT rule
to the next example. The Ontop mapping rule for the foreign
key deptno is then extracted, as shown in Table IV.

3) Recursive Table (RT ) rule: RT . Let Ti be a table that
has a primary key PKi. Let PKi be either a single attribute key
or a composite key, such that PKi = {KP 1

i
,KP 2

i
, . . . ,KPn

i
},

where KP t
i

is the attribute t in PKi and n is the total number
of attributes that are composing PKi. Let also KF to be a
foreign key in table Ti, such that it references the same table
(i.e., recursive). Let KF = {Kf1 ,Kf2 , . . . ,Kfv}, where Kft is
the attribute t in KF and v is the number of attributes in KF .
If there is at least one KF that is a self reference on the table
Ti, we say that this table is an RT . For representing a foreign
key KF that is a self reference in Ti, we extract an Ontop
mapping rule with a target part that has one object property
triple that represents the recursive reference KF on Ti.
Example 3. RT rule. We go back to the previous example
and consider table emp. The field mgr in emp is a foreign
key that references emp itself. Thus, we apply the RT rule.
The outcome is the Ontop mapping rule shown in Table V.

4) Binary Join Table without non-key Attributes (BJ) rule:
BJ . Let Ti, Tj , and Tk are tables with primary keys PKi,
PKj , and PKk, respectively. If (1) the primary key of Ti is
composed of two parts (PF j and PFk), where the former is
both the first part of PKi and the foreign key that references
PKj of Tj , and the latter is both the second part of PKi and
the foreign key that references PKk of Tk, and (2) all Ti’s
attributes are in the primary key, we say that Ti is a binary
join table. We can represent this kind of binary relation in
ontology without adding an equivalent class entity for table
Ti. Instead, we add one object property for each one-to-many
relationship. The first object property has the extracted concept

of Tj as its domain and the extracted concept of Tk as its range.
The second object property has the extracted concept of Tk as
its domain and the extracted concept of Tj as its range. In
other words, each object property is simply the inverse of the
other. Thus, we represent the target of BJ rule by using two
object property triples. The first triple represents the one-to-
many sub-relation from Tj to Tk, and the second one (which is
simply the reverse of the first one) represents the one-to-many
sub-relation from Tk to Tj , as we mentioned above.

Example 4. BJ rule. Assume we have the tables employee,
project and assignments. employee has the primary key
empid and the non-key attributes fname and lname,
project has the primary key projid and the non-key attribute
projname, and assignments has a composite primary key of
emp id that references empid in employee and proj id that
references projid in project and it has no non-key fields. Table
assignments represents a binary join table that connects
both employee and project. Both employee and project
are independent tables. Thus, their Ontop mapping rules are
extracted according to the IT rule as shown in Table VI.
Table assignments has a composed primary key of emp id
and proj id, such that the former foreign key references table
employee and the latter foreign key references table project.
In other words, the primary key is only composed of these two
foreign keys, such that each foreign key references another
table. In addition, table assignments does not have any
fields other than the ones that are composing its primary key
and both foreign keys that are representing the binary join.
Thus, the BJ rule applies here on assignments. The resulted
Ontop mapping rule is shown in Table VII.

5) n-ary Join Table (NJ) rule: NJ . Let Ti be a table that
has a primary key PKi. Let PKi be either a single attribute key
or a composite key, such that PKi = {KP 1

i
,KP 2

i
, . . . ,KPn

i
},

where KP t
i

is the attribute t in PKi and n is the total number
of attributes that are composing PKi. Let also the foreign keys
set FKi of this table to be {KF 1

i
,KF 2

i
, . . . ,KFm

i
}, where KF t

i

is the foreign key t in FKi and m is the number of foreign
keys in Ti. Let KFx

i
= {Kf1 ,Kf2 , . . . ,Kfv}, where Kft is the

attribute t in KFx
i

and v is the number of attributes in foreign
key KFx

i
. Let NJKi be {KJ1

i
,KJ2

i
, . . . ,KJm

i
}, where KJt

i
is

the foreign key t in NJKi and m is the number of foreign
keys in Ti that are forming the m-ary join of tables T1, T2,
. . . , Tm in Ti, such that KJ1

i
is referring to table T1, KJ2

i
is

referring to table T2, ..., and KJm
i

is referring to table Tm. Let
KJx

i
= {Kf1

x
, . . . ,Kfnx

x
}, where Kft

x
is the attribute t in KJx

i

that is part of the m-ary join and nx is the number of attributes
in foreign key KJx

i
. Let KJx

i
is referring to the primary key

PKx of table Tx, such that the attributes Kf1
x

, ..., Kfnx
x

are
referring to the attributes KP 1

x
, ..., KPnx

x
, respectively. If n is

greater than 2, we say that Ti is an NJ table. There are three
steps for extracting Ontop mapping rules from Ti that satisfies
the NJ rule. The first step is to extract an Ontop mapping rule
as we do in the IT rule. The second step is to extract an Ontop
mapping rule for each foreign key in Ti that does not belong
to NJKi. The last step is to extract an Ontop mapping rule



TABLE III: Mapping rule for representing table emp.

TARGET: : emp/empno = {empno} a : emp; emp#empno {empno}; :emp#empname {empname}; :emp#sal {sal};

SOURCE: SELECT ∗ FROM emp

TABLE IV: Mapping rule for representing the reference deptno in table emp.

TARGET: : emp/empno = {emp empno} emp#hasDept : dept/deptno = {dept deptno} .
: dept/deptno = {dept deptno} emp#hasEmp : emp/empno = {emp empno} .

SOURCE: SELECT emp.empno AS emp empno, dept.deptno AS dept deptno FROM emp, dept WHERE emp.deptno = dept.deptno

TABLE V: Mapping rule for representing the self reference mgr in table emp.

TARGET: : emp/empno = {emp child empno} emp#mgr : emp/empno = {emp parent empno} .

SOURCE: SELECT emp child.empno AS emp child empno, emp parent.empno AS emp parent empno
FROM emp emp child, emp emp parent WHERE emp child.mgr = emp parent.empno

TABLE VI: Mapping rules for tables employee and project.

TARGET: :employee/empid = {empid} a :employee; :employee#empid {empid}; :employee#fname {fname}; :employee#lname {lname};

SOURCE: SELECT ∗ FROM employee

TARGET: :project/projid = {projid} a :employee; :project#projid {projid}; :project#projname {projname};

SOURCE: SELECT ∗ FROM project

from the foreign keys in NJKi which are representing the n-
ary join relation in Ti. We skip the first two steps because they
are the same as in IT and DT rules. The details of the last step
follow. We extract an Ontop mapping rule to represent the n-
ary join relation in Ti. The target part of this rule has a number
of object property triples that is equal to the number of joined
tables (nm). However, because both the subject and predicate
for all triples are the same, we include the subject and predicate
in the first triple and omit them from the rest of triples. We
do this by separating objects by a comma as we mentioned
before using Turtle format. The predicate hasNaryJoin has
the domain : T i and the ranges : T 1, : T 2, ..., and : T m. OWL
and SPARQL cannot represent n-ary relations. To overcome
this issue, we represent the n-ary relation by only one predicate
that is named hasNaryJoin. It maintains the n-ary relation
tightly-coupled by having all joined tables as its ranges.

Example 5. NJ rule. Assume we have the tables employee,
component, product and assembly. employee has the
primary key empid and the non-key attribute empname,
component has the primary key compid and the non-key
attributes comptype and compname, and product has the
primary key prodid and the non-key attributes prodtype and
prodname. assembly has a composite primary key (empid,
compid, prodid) that references employee, component,
and product tables, respectively, and the non-key attribute
description. employee, component, and product are inde-
pendent tables. Thus, their Ontop mapping rules are extracted
according to the IT rule as shown in Table VI. assembly
represents an NJ that connects the three tables employee,
component, and prdouct. Thus, the NJ rule applies. First,
we extract a mapping rule (according to the IT rule format)
to represent assembly. Second, an Ontop mapping rule that
represents this 3-ary relation is extracted. These two rules are
shown in Table IX.

C. Extracting OWL Ontology from Ontop Mapping Rules
The process of extracting an OWL ontology W (that is

equivalent to the relational schema) from existing Ontop map-
pings becomes straight forward. It scans the Ontop mappings
in M. For each Ontop mapping rule, it checks the target
templates; if the type of the template is a class triple, a
new class is added to W; if its type is an object property
triple, a new object property is added to W; and if it is a
data property triple, a new data property is added to W .
In addition, the domain and range of each extracted object or
data property are also extracted and added to W . Thus, at the
end of this process we will have a complete OWL ontology
with classes, properties, and relations.

D. Implementation and Experiments
We have implemented a prototype for the proposed ap-

proach in Java. The end-users can access any remote relational
data through a JDBC connection. After establishing the con-
nection, end-users can extract the Ontop mapping rules and
OWL ontology from the underlying data source, pose SPARQL
queries over the extracted ontology (to access the relational
data) and get the results back. In addition, end-users can alter
both the extracted rules and the ontology according to their
needs.

We have evaluated the proposed approach using different
freely available relational databases. The evaluation process is
composed of two steps: In the first step, the ontology and
mapping rules are extracted. In the second step, SPARQL
queries (over the extracted ontologies) are used to access the
relational data sources. Evaluation results have showed that
all the data instances in the underlying data sources can be
accessed indirectly (only using SPARQL queries) in the same
efficient way as in the SQL queries.

For the lack of space, we give only one example on the



TABLE VII: Mapping rule for table assignments.

TARGET: :project/proj id = {proj id} :project#hasEmployee :employee/emp id = {emp id} .
:employee/emp id = {emp id} :employee#hasProject :project/proj id = {proj id} .

SOURCE: SELECT ∗ FROM assignments

TABLE VIII: Mapping rules for tables employee, component and product.

TARGET: :employee/empid = {empid} a :employee; :employee#empid {empid}; :employee#empname {empname};

SOURCE: SELECT ∗ FROM employee

TARGET: :component/compid = {compid} a :component; :component#compid {compid}; :component#comptype {comptype};
:component#compname {compname};

SOURCE: SELECT ∗ FROM component

TARGET: :product/prodid = {prodid} a :product; :product#prodid {prodid}; :product#prodtype {prodtype}; :product#prodname {prodname};

SOURCE: SELECT ∗ FROM product

TABLE IX: Mapping rule for table assembly.

TARGET: :assembly/empid = {empid}; compid = {compid}; prodid = {prodid} a :assembly;
:assembly#empid {empid}; :assembly#compid {compid}; :assembly#prodid {prodid}; :assembly#description {description};

SOURCE: SELECT ∗ FROM assembly

TARGET: :assembly/empid = {assembly empid}; compid = {assembly compid}; prodid = {assembly prodid} :assembly#hasNaryJoin
:employee#empid {employee empid} , :component#compid {component compid} , :product#prodid {product prodid} .

SOURCE: SELECT assembly.empid AS assembly empid, assembly.compid AS assembly compid, assembly.prodid AS assembly prodid,
employee.empid AS employee empid, component.compid AS component compid, product.prodid AS product prodid

FROM assembly, employee, component, product
WHERE assembly.empid = employee.empid AND assembly.compid = component.compid AND assembly.prodid = product.prodid

evaluation process. Consider the tables dept and emp that have
been used in the first three examples. An instance of these two
tables is shown in Table X.

TABLE X: Data instance for dept and emp tables.

deptno dname loc

10 Accounting New York
20 Research Dallas
30 Sales Chicago
40 Operations Boston

(a) dept

empno empname job mgr sal deptno

7839 King President Null 5000 10
7566 Jones Manager 7839 2975 20
7902 Ford Analyst 7566 3000 20
7369 Smith Clerk 7902 800 20
7782 Clark Manager 7839 2450 10
7698 Blake Manager 7839 2850 30
7521 Ward Salesman 7698 1250 30

(b) emp

PREFIX : <http://experiments .org/

:dept rdf:type owl:Class .
:emp rdf:type owl:Class .

:dept#deptno rdf:type owl:DatatypeProperty .
:dept#dname rdf:type owl:DatatypeProperty .
:dept#loc rdf:type owl:DatatypeProperty .
:emp#deptno rdf:type owl:DatatypeProperty .
:emp#empno rdf:type owl:DatatypeProperty .
:emp#empname rdf:type owl:DatatypeProperty .
:emp#job rdf:type owl:DatatypeProperty .
:emp#mgr rdf:type owl:DatatypeProperty .
:emp#sal rdf:type owl:DatatypeProperty .

:emp#hasDEPT rdf:type owl:ObjectProperty .
:emp#hasEMP rdf:type owl:ObjectProperty .

Listing 1: Ontology extracted from dept and emp tables.

PREFIX emp: <http://experiments.org/emp#>
PREFIX dept: <http://experiments.org/dept#>

SELECT ?e ?eName ?eJob ?eMgrName ?dDeptNo ?dDName
WHERE {

?e a :emp .
?e emp:empno ?eEmpNo .
?e emp:empname ?eName .
?e emp:job ?eJob .
OPTIONAL {

?e emp:mgr ?eMgr .
?eMgr a :emp .
?eMgr emp:empname ?eMgrName .

}
?e emp:deptno ?dDeptNo .
?eDeptNo a :dept .
?eDeptNo dept:dname ?dDName .

}

Listing 2: SPARQL query to access the database instance shown in Table X.

TABLE XI: The SPARQL query’s result in Listing 2.
e eName eJob eMgrName dDeptNo dDName

:emp/empno=7782 Clark Manager King :dept/deptno=10 Accounting
:emp/empno=7839 King President null :dept/deptno=10 Accounting
:emp/empno=7369 Smith Clerk Ford :dept/deptno=20 Research
:emp/empno=7566 Jones Manager King :dept/deptno=20 Research
:emp/empno=7902 Ford Analyst Jones :dept/deptno=20 Research
:emp/empno=7521 Ward Salesman Blake :dept/deptno=30 Sales
:emp/empno=7698 Blake Manager King :dept/deptno=30 Sales

IV. RELATED WORK

There is a plenty of works in the literature about extract-
ing an ontology from an existing relational schema. Most



approaches share common rules for the extracting process.
The most common rules that are repeated in the different
approaches (for examples, in [13], [14], [15], [16], [17], [18],
[19], and [20]) are as follows: default (or basic approach),
binary relationship, n-ary relationship, hierarchy, and fragmen-
tation rules (See [7] for a comprehensive survey). A default
rule is simply a basic and naive approach for extracting
equivalent OWL concepts and properties from relational tables
and their attributes. The basic approach is to map a relation
to an OWL class, a non-foreign key attribute to an OWL data
property, a foreign key attribute to an OWL object property,
and a relation row to an individual of an OWL class. The
first two rules of our proposed approach (i.e., independent
and dependent rules) are similar to the basic approach. In
addition, all the previously mentioned approaches have some
kind similar rules for the default and binary rules. [15],
[17], and [18] do not have a rule for representing the n-ary
relationship. The hierarchy (or sub-class) rule is not considered
by [14] ,[16], and [18], whereas the fragmentation rule is
not considered in all mentioned approaches, except in [19] .
Hierarchy and fragmentation rules are very similar and one
cannot distinguish between them unless he/she knows the
intend of the schema designers or by mining the relational
instance. The latter usually requires mining the data instance
if enough data are available or using heuristic approaches, etc.
Thus, most existing approaches misrepresent the hierarchy and
fragmentation rules. In other words, they apply the hierarchy
rule when in fact they should apply the fragmentation rule,
and vice versa. In our approach, we decide to leave the
discussion of the hierarchy and fragmentation rules for a
future research as they primary depend on the availably of
a relational instance with sufficient data. In addition, we leave
the discussion of extracting equivalent OWL axioms for the
relational constraints for future research.

V. CONCLUSION AND FUTURE WORK

Manually extracting Ontop mapping rules and OWL on-
tology from a relational schema is a very complex and time
consuming process. In this paper, we propose an approach
for extracting Ontop mappings and OWL ontology from a
relational schema. The proposed approach defines an Ontop
mapping rule’s template for each type of relational entities.
It covers the extraction rules for independent, dependent,
recursive, binary join, and n-ary join tables. It also defines
algorithms for automatically extracting Ontop mappings for a
relational entity according the defined templates. OWL ontol-
ogy is then easily extracted from those mappings rules This
work can be extended to cover other type of relations, such
as fragment entities, sub-entities (inheritance), enumerated
attributes, and others. In addition, we will develop approaches
for extracting equivalent ontological elements for database
constraints, for example, check, enum, etc.
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