
A user-friendly framework for database preferences
Roxana Gheorghiu

University of Pittsburgh
Email: roxana@cs.pitt.edu

Alexandros Labrinidis
University of Pittsburgh

Email: labrinid@cs.pitt.edu

Panos K. Chrysanthis
University of Pittsburgh

Email: panos@cs.pitt.edu

Abstract—Data drives all aspects of our society, from everyday
life, to business, to medicine, and science. It is well known
that query personalization can be an effective technique in
dealing with the data scalability challenge, primarily from the
human point of view. In order to customize their query results,
users need to express their preferences in a simple and user-
friendly manner. There are two types of preferences: qualitative
and quantitative. Each preference type has advantages and
disadvantages with respect to expressiveness. In this paper, we
present a graph-based theoretical framework and a prototype
system that unify qualitative and quantitative preferences, while
eliminating their disadvantages. Our integrated system allows
for (1) the specification of database preferences and creation
of user preference profiles in a user-friendly manner and (2)
the manipulation of preferences of individuals or groups of
users. A key feature of our hybrid model is the ability to
convert qualitative preferences into quantitative preferences using
intensity values and without losing the qualitative information.
This feature allows us to create a total order over the tuples in the
database, matching both qualitative and quantitative preferences,
hence significantly increasing the number of tuples covered by the
user preferences. We confirmed this experimentally by comparing
our preference selection algorithm with Fagin’s TA algorithm.

I. INTRODUCTION

The supply and demand of data is becoming a commonplace
in all aspects of our society; from everyday life (e.g., picking
movies or restaurants), to business products, to medicine,
and science in general. The term “Big Data” has been used
to describe the challenges and opportunities from such a
ubiquity of data, while also considering its volume, velocity,
and variety characteristics. Although some may argue that Big
Data is currently entering the Trough of Disillusionment, after
following the typical Hype Cycle [1], the reality of the matter
remains that there are still many technical challenges, as more
and more people are accustomed to using data to drive their
decisions and collaborations. Scalability is one such major
challenge.

We distinguish two types of scalability:

• scalability from a systems point of view – this refers to
traditional challenges due to the volume of data (and the
rate of increase) and limitations in network bandwidth,
processing, memory, and storage capacity. For example,
how to make a single user query return all the results as
fast as possible.
• scalability from a human point of view – given the volumes

of data, new paradigms to aid in search are needed so that
users do not get lost in a sea of data. For example, how

to make a single user query return only the most relevant
results for that user.

It is well-known that query personalization can be an
effective technique in dealing with the scalability challenge,
primarily from the human point of view. It is also well-known
that when individual users within a group have the ability
to personalized their work (i.e., see the content relevant to
them) and shared their experiences, the collaboration within
the group is significantly improved (e.g.,[2]). In order to
personalize their query results, users need to provide their
preferences in an effective manner (essentially letting the
system form user profiles). These preferences are then used
when users submit queries in order to only return the results
that are most relevant to them. Cutting down the result set in
this way improves both types of scalability.

There are two main types of user preferences defined in
the literature [10]: quantitative and quantitative. Quantitative
preferences are described by scores attached to each tuple that
matches a preference. For example, consider the following pre-
ference: “I like comedies very much”. This can be translated
in the following quantitative preference: (“I like comedies”,
score =1) The score denotes users’ interest in one or multiple
data tuples. Using these scores we can define a total order
over the database tuples, e.g., from the most preferred to
the least preferred. Qualitative preferences are expressed as
pairs of tuples. As an example, consider the preference “I like
comedies more than dramas”. This can be translated into the
following qualitative preference: (“comedies”, preferred over,
“dramas”). When put together, these pairs generally create
only a partial order over database tuples, since some are
incomparable.

Each type of preferences – quantitative and qualitative – has
its advantages over the other. There are examples when a user’s
preference can be conveniently expressed using one approach
but not the other. For example, it is very easy to express a
negative preference in the quantitative model, by assigning a
negative weight to that particular tuple or to a set of tuples
that match a given predicate. However, there is no easy way to
express a negative preference in the qualitative model, since
this will require, for example, to explicitly list all tuples that
are preferred over the non-preferred ones. In fact, this would
need to happen for all tuples currently in the database and also
for all tuples added later. Table I summarizes the key positive
and negative aspects of the two different type of preferences.

Another important aspect of preferences comes from the

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257659

TABLE I
QUALITATIVE, QUANTITATIVE AND THE HYBRID MODEL

Dimension Qualitative Model Quantitative Model Hybrid Model
Generality Mostly general Less general; cannot express As general as possible

a preference like:
“From two movies with

the same genre, I prefer the longer one”
Intuitiveness Easy and intuitive Not easy to decide Any form can be

way to express preferences how to assign values used
Negative preference Not intuitively Using negative Using negative

support values values
Order created by Partial Total Total

the use of preferences
Combining preferences By the use of Easily accessible Can use both aggregation

different rules using aggregation functions functions and rules

fact that they can be expressed with different intensity levels.
Preferences should not be seen as a binary option; instead, a
system should allow every user to express his/hers preferences
along with the intensity of that particular preference, i.e., how
“strongly” he/she feels about that preference. This intensity
value can be seen as a score attached to each tuple and it can
easily be applied to a quantitative preference. But in the case
of a qualitative preference, the intensity suggests the strength
between two different tuples and cannot be associated, indi-
vidually, to any of the two tuples involved in the preference;
it should instead be linked with the pair of tuples.

The hypothesis of this work is that a hybrid model, which
integrates qualitative and quantitative preferences by means of
preference strength or intensity and user profiles, is both user-
friendly and creates a global view of preferences that can be
effectively used to rank the query results.

In this paper, we propose such a hybrid model which is
able to overcompensate the negative aspects of one preference
model by using the solutions provided by the other preference
model. The formal underpinning of our proposed hybrid model
is a preference graph. Each node in the graph represents a
query predicate. We express quantitative preferences using
edges that have the same starting and ending point. Qualitative
preferences are represented by edges between two different
nodes. Each edge is labeled with a value that represents
the intensity of the preference. Users submit both qualitative
and quantitative preferences along with an intensity value.
In this way, individual users and groups create their own
profile by incrementally adding or removing preferences over
the database tuples. When a query is submitted, the system
effectively selects the best combination of preferences from
the user/group’s profile to filter and rank the query results.

A. Contributions

In this paper we present our hybrid preference model and
a prototype system that combine quantitative and qualitative
preferences into a unified model using an acyclic graph, called
HYPRE ([‘haip@]) Graph.

Specifically, this paper’s contributions are as follows:

• We formally define our hybrid preference model and we
show, using examples, how different types of preferences
can be supported (Sec. II)

• We design and implement a prototype of a real system
for our hybrid model and design algorithms to create and
update the unified preference graph, while also detect and
mark the conflicts (Sec. III).

• We show that our hybrid model can successfully map qual-
itative preferences into quantitative ones, using intensity
values, hence allowing for significantly better “coverage”
(up to 336%) of the database tuples (Sec. IV, Sec. VI).

• We experimentally show that our Practical and Efficient
Preference Selection (PEPS) algorithm returns Top-K re-
sults correctly, while it also covers more tuples in the
database that cannot be “seen” by Fagin’s TA algorithm
(Sec. III-E, Sec. VI).

• We showed that the model can be easily applied into
a collaborative environment where the group preferences
are used to supplement the lack of preferences for one
particular user (Sec. III-F, Sec. VI).

II. UNIFIED PREFERENCE MODEL

A graph representation is the most natural formal way of
exemplifying the connections between tuples in a database
and visually depicting their relationships. By adopting the
graph formalism, we can capture the two different preference
approaches into our proposed unified model as well as record
the strength/intensity of each preference.

Definition 1: Preference intensity is a decimal value be-
tween -1 and 1 and is used to express a negative preference,
a positive preference or equality/indifference:
• Negative preferences are expressed using any value

in [-1, 0); -1 is used to express complete dislike.
• Positive preferences are expressed using any value

in (0, 1]; 1 is used to capture the most preferred tuple(s).
• Indifference : when used for quantitative preferences, 0

captures indifference towards a set of tuples.
• Equality : when used for qualitative preferences, 0 ex-

presses preference equality between two sets of tuples.

TABLE II
THE DBLP RELATION

pid Title Year Venue
t1 Personal Ontologies for Web Navigation. 2000 CIKM
t2 Composite Subset Measures 2006 VLDB
t3 Processing Proximity Relations in Road Networks 2010 SIGMOD
t4 Relational Joins on Graphics Processors 2008 SIGMOD

For a quantitative preference, the intensity value expresses
the preference strength for one particular tuple (or set of
tuples) over all other tuples in the database. In this case,
intensity has the semantics of the score, and a large intensity
value describes a strong preference towards that particular
tuple (or set of tuples).

For a qualitative preference, the intensity value expresses
the preference strength for one tuple (or set of tuples) over
another tuple (or set of tuples). In this case, a small positive
value will express a similarity on preferences (i.e., one tuple
is almost as preferred as the other tuple).

Moreover, intensity can be seen as a constant value or as
a function to allow dynamic ranking of preferences. As an
example, consider the preference: “I like recent comedies”,
where recent can be expressed as a function on the year a
movie was released and normalized in the proper range (i.e.,
[-1, 1]).

Definition 2: Hybrid Preference Graph HYPRE =(PV,PE)
is a labeled directed and acyclic graph where:

• PV is a set of vertices where each vertex represents a tuple
in the database or a query predicate.
• PE is a set of edges where each edge (vi,vj ,s), vi, vj ∈PV,

defines a direction (i.e., from vertex vi to vertex vj), and
is labeled with a score s. An edge from vi to vj captures
a qualitative preference (i.e., the tuple(s) in vertex vi is
preferred over the tuple(s) in vertex vj) whereas an edge
from vi to itself will describe a quantitative preference.
• The score s captures the preference intensity and is a value

between -1 and 1, for the quantitative preferences, and
between 0 and 1 for the qualitative preferences.

Our unified model uses a HYPRE graph to record users’
preferences that can be viewed as triplets (vi,vj ,s). When i 6=j,
the triplet (vi,vj ,s) represents a qualitative preference, and
when i=j, it represents a quantitative preference.

Instead of a predicate, each node in our graph can store
only one tuple, in which case a tuple-based preference graph
is created. A predicate-based preference graph (i.e., each node
stores a predicate) is a scalable version of the tuple-based one
especially for predicates that apply to a large set of tuples.
Moreover, because a predicate can match only one tuple, we
consider the tuple-based preference graph a special case of the
predicate-based preference graph.

A. Examples of HYPRE Graph

Let us now exemplify how different types of preferences
can be supported by our model using an instance of the DBLP

database (see Table II). We start with an empty HYPRE graph
and we incrementally add new preferences in the graph.

We again split the preferences into two categories:

• quantitative preferences -any single node in the graph
• qualitative preferences -involving two different nodes

B. HYPRE Graph – Quantitative Preferences

Assume we have the following four preferences.

• P1: “I prefer papers published between 2000 and 2005,
with intensity 0.3” -matching tuple(s): {t1}

• P2: “I prefer papers published between 2005 and 2009,
with intensity 0.5” –matching tuple(s): {t2, t4}

• P3: “I like papers published after 2009 with intensity 0.8”
-matching tuple(s): {t3}

• P4 (Negative Preference): “I am not interested in papers
published in INFOCOM.” -matching tuple(s): { }

Fig.1 shows the state of the graph after (a) preference P1 is
inserted and (b) preference P2 is inserted in the graph.

P1

0.3

a) HYPRE Graph after preference P1 is
created

P1

0.3

P2

0.5

b) HYPRE Graph after preference P1 and
P2 are created

Fig. 1. Quantitative Preferences

Preferences defined above (P1 to P4) are all quantitative
preferences and one node is created in the HYPRE graph
for each preference. Fig. 2 shows the entire graph, after all
preferences P1 to P4 are inserted, where P1, P2, P3, P4 ∈
PV and e1=(P1, P1, 0.3), e2=(P2, P2, 0.5), e3=(P3, P3, 0.8),
e4=(P4, P4, -1) ∈ PE.

P1

0.3

P2

0.5

P3

0.8

P4

-1

Fig. 2. All Quantitative Preferences

For the negative preference P4, there are no tuples to match
it. However, if the database is updated, the HYPRE graph does
not need any modification.

C. HYPRE Graph – Qualitative Preferences

For qualitative preferences we need to connect two different
nodes. If the nodes are already part of the graph, we just add
the directed edge to connect them. Else, if one or both nodes

P1

0.3

P2

0.5

P3

0.8

P4

-1

P5 P60.8

Fig. 3. Relative Preference (P5, P6)

P1

0.3

P2

0.5

P3

0.8

P4

-1

P5 P60.8

P7

0.2

Fig. 4. Set Preference (P7,P3)

are not already part of the graph, we create the new nodes and
connect them with a directed edge.

Qualitative preferences can be used to express multiple
kinds of preferences as shown in the following examples:
• Relative Preferences: “Given two VLDB papers, I prefer,

with intensity 0.8, the one published in the last 4 years.”
For this preference we create two different nodes: let P5 be
the predicate:[venue=’VLDB’ and year≥2010] and P6 be
the predicate:[venue=’VLDB’ and year<2010] where P5,
P6 ∈ PV and e6 =(P5, P6, 0.8) ∈ PE. Fig. 3 is the new
HYPRE graph after this qualitative preference is inserted.
• Preference Set: “From a list of papers, I prefer VLDB

papers and as many papers published after 2009.”
Let P7 be the preference: [venue=’VLDB’] and since
preference: [year>2009] already exists in the graph (i.e.,
node P3) we are going to use it to create this qualitative
preference. Note that the user specifies that both preferen-
ces are important (paper should be published in VLDB and
paper should be published after 2009) but since the year of
publication is not as important (i.e., “as many as possible”)
we consider the intensity of this preference to be a small
value (e.g., 0.2). Therefore we add one new node, P7 ∈ PV
and e7 =(P7, P3, 0.2) ∈ PE, with the graph representation
given in Fig. 4.
• Different Levels of Intensity: “I really like papers pub-

lished in SIGMOD but I prefer the papers published in
VLDB a bit more than papers published in SIGMOD.”
In the preference graph, we already have node P7, for the
predicate: [venue=’VLDB’]. We are going to use this node
for the left part of the qualitative preference and for the
right side we create a new node, P8, with predicate: “I like
SIGMOD papers, intensity 0.8”. P7 and P8 ∈ PV and e8
=(P8, P8, 0.8), e9 =(P7, P8, 0.3) ∈ PE. As in the previous
example, we map the expression “a bit more” to a small
intensity value (e.g., 0.3).

P1

0.3

P2

0.5

P3

0.8

P4

-1

P5 P60.8

P7

0.3

P8

0.8

0.2

Fig. 5. HYPRE Graph with all preferences

III. HYPRE GRAPH MANIPULATION

A. HYPRE Graph Characteristics

Our solution for representing a HYPRE graph is based on a
graph database model which is designed to provide efficient
graph traversal and graph manipulation.

In this implementation, a node with no connections repre-
sents a quantitative preference and contains four properties:
(node id, user id, predicate, intensity), where intensity refers
to the quantitative preference intensity. Two connected nodes
creates a qualitative preference with the direction of the edge
to define the prefer order between predicates and store the
qualitative preference intensity. This implies that, if intensity
values of these nodes exists, then the value of the node that
has an outgoing edge (refer to as the left node) must always
have a greater or equal intensity value with respect to the node
where the edge ends (refer to as the right node).

Moreover, each edge has associated a label used to support
graph traversals. The most common label is PREFERS, used
to traverse the graph based on the partial order given by the
qualitative preferences. Additionally, we use labels CYCLE
and DISCARD to mark conflicts and inhibit traversal. We use
CYCLE when a new inserted edge creates a cycle in the graph.
We use DISCARD when a new edge causes the intensity value
in the left node to become smaller than the intensity value in
the right node and the system cannot recompute this value.

It should be noted that with this implementation, we can
easily create only one graph for all users and groups and
using the user id property of a node, select all the nodes for
a particular user/group, as needed.

B. Intensity Value Computation

To incorporate the nodes participating in a qualitative prefe-
rence into the total order generated by the quantitative prefe-
rences we need to be able to convert the qualitative preferences
into quantitative preferences. This process can be done if we
can derive an intensity value for these nodes. However, in
order for this to be correct, the new intensity value should
be computed based on the existing qualitative preference
intensity value and a quantitative preference intensity value
(or a DEFAULT VALUE if this does not exist).

For this purpose, we defined the following functions:

IntensityL (left, ql, qt) = min(1, qt*2sign(qt)*ql)

IntensityR (right, ql, qt) = max(-1, qt*2-sign(qt)*ql)
(1)

where: left/right is the position of the node for which we com-
putes intensity, ql is the intensity of the qualitative preference,
and qt is the intensity of the quantitative preference.

Although these functions are not unique, they do need to
have two important characteristics. First, if we compute the
value of the left node, the returned value should be greater
than the intensity value of the right node and it should directly
depend on the intensity value of the qualitative preference. The
stronger the qualitative intensity is – a stronger preference
towards one set of tuples in comparison with a different set

of tuples – the greatest the returned value should be. On the
other hand, if we compute the intensity value of the right
node, we need to return a value that is smaller than the
intensity value of the left node but it should also depend on
the intensity value of the qualitative preference. Also, since
the intensity value should always be in the interval [-1,1] we
use -1/1 as the upper/lower-bound of IntensityL and IntensityR
respectively. However, in practice the upper-bound should be
a value smaller than the min/max value since these are very
strong negative/positive opinions and as the value is computed
by the system, we want to avoid artificially assigning the
highest possible value.

C. Create HYPRE Graph Algorithm

The algorithm for creating the graph works incrementally.
Given a list of preferences, both qualitative and quantitative,
the algorithm inserts first all quantitative preferences, in a
batch, and then all the qualitative preferences by searching
if the nodes that define the qualitative preference already exist
in the graph. Therefore, the algorithm necessitates two steps
to insert all preferences.
Step 1. Algorithm creates a node for each quantitative prefe-
rence defined. Assuming that predicates are unique, this will
not create any conflict. In the case when the user provides
a preference for the same predicate as one already inserted,
the algorithm returns the node id of the node that has the
same user id and predicate property values and updates the
intensity value by computing the average of the two intensity
values provided.
Step 2. Algorithm adds all qualitative preferences by inserting
new nodes or using the ones already in the graph. For this
case, there are three possible situations:

1. If the nodes are already in the graph, a directed edge
is created between them and a conflict check routine is
executed. A conflict appears when the intensity value of the
left node is lower than the intensity value of the right node.
In this case, the algorithm recomputes the intensity value
for the node that is only connected to the graph through
the new edge (i.e., has in degree=0 and out degree=1 OR
in degree=1 and out degree=0). If both nodes are already
connected to the graph, we keep the new edge only if
it does not create a conflict. Otherwise we mark it as
DISCARD. (To recompute the intensity value of a node
that is already connected to the graph requires to check
for possible conflicts generated by the new value. Although
this is an interesting problem, it is beyond the scope of this
paper and we will address it in our future implementation.)

2. If only one node is already in the graph the algorithm
creates only one node, connects the two nodes with an
edge, and recomputes the intensity value of the new node
by using one of the functions defined in Eq. 1.

3. If none of the nodes that defines the qualitative preference
are already part of the graph, the algorithm creates the two
nodes, assigns a DEFAULT VALUE to one of the nodes
and computes the intensity value for the other node.

Moreover, if any edge introduced creates a cycle, the edge is
kept in the graph, but is labeled with CYCLE to be avoided
in the future graph traversals. However, if further updates on
the graph eliminates this conflict, the edge label is switched
back to PREFERS.

D. Preference Aware Query Enhancement

Once created, the preference graph is used to identify the
relevant preferences and enhance the user-submitted query.

Different predicates can refer to the same or different
attributes and can be combined using AND and OR semantics.
There are three possible scenarios to combine SQL predicates.
First we can add them all together as a disjunctive clause
(i.e., connecting them with OR). In this case, the list of tuples
returned will possibly be as large as the original dataset. Sec-
ond, we can combine all the predicates in a conjunctive clause
(i.e., combining them with AND) in which case, because many
predicates can possibly refer to the same attribute, the returned
list will become empty after relatively few steps. Finally, the
third way is to combine predicates with the same attribute with
an OR semantic and predicates with different attributes with
an AND semantic. In this way, we can eliminate the empty
result and the flooding problem associated with the previous
two versions.

Stefanidis et. al [10] describe three different ways to com-
pute the final intensity value when two or more quantitative
preferences are combined: the inflationary strategy - the final
score increases, the reserved strategy - the final score lies
between the two values, and the dominant strategy - the highest
value is used. For our model, we adopted the inflationary and
reserved functions from Koutrika and Ioannidis’ work [8]: f∧
to calculate the combined intensity for conjunctive predicate
combinations and f∨ to compute the combined intensity for
disjunctive predicate combinations with the form given in
Eq. 2 and Eq. 3. f∧ behaves inflationary whereas f∨ has a
reserved behavior.

f∧(p1, p2) = 1− (1− p1)(1− p2) (2)

f∨(p1, p2) =
p1 + p2

2
(3)

When we combine predicates with OR, the query returns
tuples that match possibly, only the preference with the smaller
intensity value. Since we do not know which predicate is
matched, we penalize the final intensity value by assigning
the average of the two. But, when we combine predicates with
AND, the tuples in the result list are guaranteed to match all
predicates. Because of that, the combined intensity is larger
than the two given intensity values.

E. The PEPS Algorithm

The Practical and Efficient Preference Selection (PEPS)
algorithm is our Top-K algorithm that returns the first k tuples
selected by the best combinations of preferences in terms of
combined intensity value.

The PEPS algorithm uses AND semantics to combine as
many predicates as possible. To efficiently create valid com-
binations of preferences (i.e., combinations of predicates that

will return tuples) we have implemented an optimized version
of the PEPS algorithm that makes use of a precomputed list
of combinations of two predicates, that is updated when the
preference graph is updated. Each item in the list contains the
pair of predicates that are AND combined, the precomputed
combined intensity value, and a count of number of tuples
returned when the predicate combination is used. The PEPS
algorithm uses this list to retrieve all the valid combinations
that start with a particular predicate.

The algorithm iterates over the list of preferences and for
a given preference p, it selects all the items from the list of
combinations of two predicates, with the combined intensity
value greater than the intensity value of p. This list is the
starting point of the PEPS algorithm to expand them into
multi-predicate AND-combinations. If the generated multi-
predicate combinations do not retrieve all k tuples, the PEPS
algorithm is invoked again with the next available preference,
until all k tuples are retrieved.

PEPS uses two stacks. First stack, CombStack is initialize
with all the combinations of two predicates found in a previous
step. Second stack, PrefStack, is initially empty and it will be
used to store all partial predicate combinations.

The algorithm starts by extracting one item from CombStack
(e.g., a pair (pi, pj) where pi and pj each represents a different
predicate). Then, if the PrefStack is empty, the algorithm
creates a new partial combination by joining the two predicates
with AND, computes a combined intensity value, and adds on
the CombStack all valid combinations (pj , X), where X is
any predicate in the user’s profile. When the PrefStack is not
empty, the algorithm extracts the top predicate combination,
appends the pj predicate using AND and checks the validity
of the new combination by verifying that there is a valid
combination between all predicates already used and pj . If
the new combination is valid, then this combination is added
to the PrefStack and all valid combinations of two predicates
that start with pj are also added to the CombStack.

If the new combination does not return any tuple, and the
top of the CombStack does not contain a pair (pi, Y), for any
preference Y in the user profile, then the algorithm removes
the last preference from the PrefStack and saves it to be
used in subsequent invocations, if necessary. However, if the
CombStack does contain a valid pair (pi, Y), then this pair
will be used to create a partial combination and its validity is
checked again, as explained before. The algorithm continues
until there are no more combinations left in CombStack.

F. The Collaborative PEPS Algorithm

In a collaborative environment users can be grouped to-
gether in order to access the knowledge (or the preferences)
stored as a collection. Users can be grouped based on their
common preferences or on their common interests. In the first
case, for example, the users that have in common at least a
predefined number of preferences can be grouped together. In
the second case, the users’ interests can be inferred in different
ways. For example, the users that have a predefined number of
common preferences with the same intensity value associated

can be considered as having similar interests. Users can still be
considered similar even when they do not have the required
number of common preferences, if the results of a specific
set of queries are similar when applying their preferences.
Although the general problem of clustering or creating user
groups based on their interest/preferences is orthogonal to this
work, this motivated us to develop a collaborative version of
PEPS to enhance the experience of users with limited number
of preferences or with preferences that are too restrictive.

Our PEPS algorithm works the same whether the list of
preference belongs to a single user or collected from multiple
users who were assigned to the same group. It takes as input a
list of preferences and decides which preferences to apply and
prunes the ones that will not return a high enough combined
intensity value. So the basic idea of the Collaborative PEPS
algorithm is to select more preferences, other than the given
ones of a user, allowing the system to better filter the result list
for the user. In other words, given a user, Collaborative PEPS
first creates a collaborative group for the user and then uses
the group’s list of preferences in returning the top k tuples.

Collaborative PEPS creates the user’s group based on a
slightly modified version of Jaccard similarity. The Jaccard
similarity metric is computed using the ratio between the num-
ber of common items over the total number of items. However,
we want that the selected users that have the highest number
of preferences in common with the given user. Therefore, we
fix the number of common preferences to the highest possible
and then we select the users that maximize the Jaccard metric,
that is, have the smallest number of preferences.

IV. EXPERIMENTAL WORKLOAD

For our experiments, we used the DBLP Citation Network
V4 dataset [11] that contains both the DBLP dataset (2011
version) and information about citations. Data is organized
in blocks, one block for each paper, which contains the title,
author(s), venue, abstract, citations. By parsing this dataset,
we create a database with four tables: author(aid, full name),
citation(pid, cid), dblp(pid, title, venue, year, abstract) and
dblp author(pid, aid), with the cardinality and arity of each
relation presented in Table III .

In addition to the relations given by the DBLP dataset, we
create two more relations for to store preferences:

• quantitative pref(pfid, uid, predicate, intensity).
• qualitative pref(pfid, uid, leftPred, rightPred, intensity).

In both tables, the attributes predicate, leftPred and rightPred
represent the SQL predicate that defines the preference, uid
represents the author id and intensity is the strength of the
preference.

A. Preference Extraction

To cover all possible types of preferences described in
Sec. II-B and Sec. II-C, we designed the following preference
extraction queries:

• Venue Preference (quantitative preference): Preference on
the venue based on the venues where she published

TABLE III
STATISTICS FOR THE DBLP DATABASE

Relation #Attr Cardinality
author 2 1,033,111 authors
dblp 5 1,614,306 papers

dblp author 2 4,265,164 entries
citation 2 2,327,450 total entries

316,562 distinct papers
quantitative pref 4 10,361,592 entries

1,033,010 distinct users
qualitative pref 5 7,901,874 entries

462,843 distinct users

• Author Preference (quantitative preference): Preference for
an author based on the co-author information
• Preference of one author over another (qualitative prefe-

rence): Author A is preferred over author B.
• Preference of one venue over another (qualitative prefe-

rence): Venue X is preferred over venue Y.
• Negative Venue Preference (quantitative preference):

For each user A, a negative preference towards the venues
where she did not publish but other authors that were cited
by A did publish.

We describe the details of preference extraction process and
the formulas used to compute intensity values next.

1) Quantitative Preferences: Venue preference. The inten-
sity is computed by, first, computing the total number of papers
published by an author in one particular venue; then selecting
the Top-5 most preferred venues and, finally, dividing the
number of papers per venue to the total number of papers
published in any of the Top-5 venues. We retained only the
Top-5 results because the dataset contains, for each author,
many singular papers per conference and hence, the intensity
value becomes very small, close to zero, for most of the
entries. As a reminder, a quantitative preference with intensity
value equal to zero expresses user’s indifference towards that
particular set of tuples. Thus, the system can not benefit from
having quantitative preferences with intensity equal to zero.

Author preference. Given the Citation relation, we find all
authors that are cited by a given author. For each uid, we
add one predicate for each author cited. The intensity value
for each preference is computed by dividing the total number
of citations of that particular author over the total number of
papers cited.

Negative venue preference. For each user, we insert a nega-
tive preference towards a venue if the user never published in
that particular venue but he cited authors that did publish in
it. Given two authors, A and B, where author A cites author
B, we extract a negative preference for author A, towards a
venue where B published but A did not. The intensity value
is computed as: (-1)*intensityA(B)*intensityB(V enue),
where: intensityA(B) is A’s preference intensity for author
B and intensityB(V enue) is B’s preference intensity for a
particular venue. The reasoning behind this formula comes
from the fact that if author A cited author B many times,

TABLE IV
LIST OF PREFERENCES FOR USER ID=2

Node id Preference Intensity
7 dblp.venue=”INFOCOM” 0.23
10 dblp.venue=”PODS” 0.14

10372710 dblp author.aid=128 0.19
10372711 dblp author.aid=116 0.14

and author B published in a venue multiple times (i.e., the
intensity for that venue is close to 1) but author A never
published in that venue, then author A should have a strong
negative preference towards that venue. On the other hand, if
author B published a lot in a venue where author A did not
published, but author A is almost indifferent towards author
B(i.e., intensity value is close to 0) then the preference’s
intensity should be a small negative value (close to 0).

2) Qualitative Preferences: We create qualitative prefe-
rences over the authors (e.g., author A is preferred over
author B) or over the venues (e.g., venue X is preferred over
venue Y) using the already defined quantitative preferences
over the authors and venues. The intensity value assigned
is the difference between the intensity values of the two
participating preferences. In some cases, the resulted intensity
is a negative value which is taken into account when we insert
the preference in the preference graph. Since our graph does
not contain any negative qualitative preferences, we reverse the
order of the preferences and use the positive value instead.

B. Preference Enhanced SQL Queries

As mentioned in the previous section, in order to avoid an
empty result in the case of ad-hoc queries, we can combine
preference predicates that are referring to the same attribute
with OR semantics and preference predicates that are defined
for different attributes with AND semantics.

For example, assume that a user with user id=2 has sub-
mitted the following query: “Show me all papers from the
DBLP database.” Table IV displays a snapshot of one user’s
profile. Using the above OR-AND semantics rule, the final
query enhanced with the user preferences, has the following
form:

SELECT *
FROM dblp, author
WHERE (dblp.venue=’INFOCOM’ OR

dblp.venue=’PODS’)
AND (author.aid=128 OR author.aid=116);

C. Collaborative Group Definition

In order to get a better insight of our proposed Collaborative
PEPS algorithm, in our experiments we use two methods to
create the collaborative group of a user. In addition to the
Jaccard similarity method based on which we defined the
Collaborative PEPS algorithm (III-F), we also use a simple
method based on the common preferences. In this second
method, we select a user with only one preferences and
from the list of remaining users that have that preference in

TABLE V
INSERTION TIME

Insertion Type Time (sec) No. of pref
Quantitative Preferences 256.61 10,361,592
Qualitative Preferences 3680.26 7,901,874

common, we select the user for which the intensity value for
the common preference is the same and has more than one
preference.

V. EXPERIMENTAL TESTBED

We implemented our preference graph in a real system, us-
ing real data in order to evaluate its practicality and usefulness
under realistic conditions. We store the preference graph using
the Neo4j 2.0 engine and we use Java 1.7 to query both the
graph database and the MySql database. We test our system
using the data extracted from an extended version of the DBLP
dataset [11], as discussed above.

In the previous section we described how we extracted
preferences from the dataset. The extraction process was
entirely done in MySql, and we used Neo4j, to create the nodes
in our preference graph. For the quantitative preferences we
read preferences from the relational database and create nodes
in the preference graph in batch, reading 100,000 preferences
at a time. Since we know that quantitative preferences are
uniquely defined for each user, being able to create a batch
insert into the preference graph speeds up significantly the time
needed to create the graph. Table V shows the time necessary
to create the preference graph for all users.

For the qualitative preferences however, since the preference
nodes might have been already created, we had to use an
individual approach - each qualitative preference is read from
the relational database, the preference graph is searched for
the existence of these preferences and new nodes are created,
in case preferences do not already exist, or an edge is created
between previously existing nodes, otherwise.

The DEFAULT VALUE is used to generate the missing
intensities, for all the qualitative preferences, and can be
seen as a seed of the entire process. We only use this
DEFAUL VALUE if no other value is provided. In the process
of generating the preference graph we experimented with dif-
ferent values for this seed -a default value of 0.5, the minimum
value or the maximum value from all intensity values for one
particular user, the minimum and maximum positive values.
Among all this choices, we picked the average positive value
as the starting point because it represents better the intensity
values provided by one user. The DEFAULT VALUE is com-
puted for each user, therefore we are treating all users equally
and there will be no user for whom the DEFAULT VALUE
will be outside of the range of values that she already provided.

VI. EXPERIMENTS

We designed our experiments to show first, the benefits
of having both qualitative and quantitative preferences in a
unified model and second, the key role of the intensity value.

A. Evaluation Metrics

In our experimental evaluation, we used three metrics:
coverage, similarity and overlap.

Definition 3: Coverage The total possible number of tuples
touched when all preferences are used independently.

Definition 4: Similarity Given two lists of tuples, the
similarity metric returns the percentage of tuples that are
common in the two lists.

Definition 5: Overlap Given two lists with the same tuples,
L1 and L2, the overlap metric returns the percentage of tuples
that are in the same relative order in both lists.

B. Benefits of a Unified Model of Preferences

Our model is using intensity values to combine the two
preference types which, in the end, generates significantly
more quantitative preferences, as presented in Fig. 6. For one
particular user (uid=2, chosen at random), the graph shows
that initially there are 36 quantitative preferences, but after
inserting all qualitative ones, the preference graph will contain
172 nodes.

By using the formulas presented in Sec. III, we are able to
assign a intensity value to all nodes connected in the graph
by generating a carefully selected default value follow by
computing a value given the intensity value of the qualitative
preference and an existing intensity value for one of the
predicates (i.e., the left or the right node that creates the
qualitative preference). This way we can transform all quali-
tative preferences in quantitative preferences, without loosing
the underline information provided by a qualitative preference,
that will still be stored in the graph.

With more quantitative preferences we can overall cover
more tuples in the database. Fig. 7 shows the number of
distinct tuples returned if we run:

1. Only original preferences: (QT) only quantitative prefe-
rences, (QL) only qualitative preferences, (QT+QL) both
qualitative and quantitative preferences.

2. All preferences extracted from our HYPRE Graph.

For the first case, qualitative preferences in the original form
have only information about the intensity of the preference,
about how much one set of tuples is preferred over the other.
Because of that, if the intensity provided was strictly greater
than zero we ran only the left preference since we only know
that left is preferred over right. However, when intensity is
equal to zero we ran both left and right preferences since zero
intensity, in the case of a qualitative preference, means that
both set of tuples are equally preferred. Fig. 7 shows that, for
both users, our model can cover significantly more tuples from
the database due to our mechanism that transforms a qual-
itative preference into two different quantitative preference.
This improvement is from 120% compared to both quantitative
and qualitative (uid=388437) up to 336% compared to just
quantitative preferences (uid=2). Of course, more results in
this case means better results because we are able to order
them according to the users’ preferences.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

 1
10

 1
20

 1
30

 1
40

 1
50

 1
60

 1
70

 1
80

in
te

ns
ity

 v
al

ue

preferences covered

preferences from graph
preferences from quantitative table

Fig. 6. QT for uid=2

 0

 10000

 20000

 30000

 40000

 50000

QT QL QT+QL HYPRE_Graph

nu
m

be
r o

f t
up

le
s r

et
ur

ne
d

preference type

coverage for uid=2
coverage for uid=38437

Fig. 7. Coverage for uid=2 and uid=38437

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

in
te

ns
ity

tuples in Top-K order

PEPS Algorithm
TA Algorithm

Fig. 8. Coverage -PEPS vs. Fagin’s TA
algorithm

C. Evaluation of the PEPS Algorithm

In order to evaluate our Top-K (PEPS) algorithm’s correct-
ness, we implemented the well known TA algorithm ([3]) by
generating, for different users, the combined intensity value for
each paper. TA algorithm assigns different scores to each tuple
in the database based on the attributes used in preference’s
predicates. In our dataset, there are two types of predicates -
on the venue and on the author. Because of that, we created
two different tables intensity author and intensity venue with
three attributes: (user id, paper id, combined intensity). The
combined intensity values, in both tables, were computed
using Eq. 2. Finally, we combined the intensity values from
the two tables to return a final score for each tuple. The final
ranking given by the TA algorithm was used to evaluate the
efficiency of our algorithm.

Because Top-K algorithms work only for the quantitative
preferences, we first created a HYPRE graph that stores only
the quantitative preferences. We ran PEPS over this graph and
we compared our results against those of the TA algorithm.
The results show 100% similarity and 100% overlap.

In order to assess the advantages of PEPS when qualitative
preferences are considered, we ran PEPS over the large
HYPRE Graph, containing both qualitative and quantitative
preferences. This time, we looked at the ranking of tuples
with combined intensity value at least as high as the maximum
preference intensity value for user with uid=2 (i.e., 0.5). The
results depicted in Fig. 8 show the two major advantages of
our Top-K algorithm.

1. The PEPS algorithm offers better coverage, i.e., finds more
tuples than the TA algorithm with intensity value higher
or equal to 0.5.

2. Overall, the PEPS algorithm returns tuples with higher
intensity value than the TA algorithm.

These advantages are a result of the fact that PEPS has ac-
cess to more preferences than the TA algorithm and since these
preferences are derived from both quantitative and qualitative
preference have in general higher intensity values than the
quantitative preferences used by the TA algorithm. Moreover,
when looking at the similarity between the two returned Top-

K lists, we found that there was 37% of matching tuples. To
measure the overlap between the two lists, we first extracted
the matching tuples from the two lists and then we verified that
their order is preserved across the two lists. Again, there was
a 100% match between the two list as in our first experiment.

These two experiments show that our solution is not only
performing as good as the TA algorithm – we have a perfect
match when only quantitative preferences are used – but it also
performs better overall because it has the advantage of using
the qualitative preferences too. Furthermore, it does not incur
any performance penalty. For example, for Top-800, PEPS
takes on average 2 sec to run for this workload. We measured
the time complexity of our algorithm by varing the size of K,
from 10 to 800, in 100 increment, and record the execution
time. We repeated this process 10 times and we averaged the
response time for each K value in order to eliminate any time
variations due to I/O requests.

D. Evaluation of the Collaborative PEPS Algorithm

In order to exemplify how the system performs for groups,
we selected a user with a low number of preferences
(uid=236892, number of preferences=4). As discussed in
Sec. IV-C, the selection of the user who participates in the
group is based on a slightly modified version of Jaccard
measure. The new user (uid=115539) selected to be in the
group has the most number of preferences in common with
the given user (i.e., three preferences) and the least number of
preferences overall (43 preferences). This way we maximize
the number of common preferences and the similarity between
the two users based on Jaccard measure.

We ran PEPS with preferences from only the first user and
then Collaborative PEPS with group preferences, i.e., PEPS
with preferences from both users. We measured again the
similarity and overlap between the returned list of tuples.
The results showed that there is a 65% match in terms of
similarity and 100% overlap. The group preferences brought
overall more tuples in the result list (9702 compared to 6324).
However, looking at the final intensity value assigned to each
tuple, in the two lists, there is no difference which means
either that the tuples returned by the common preferences are

not “touched” by other group preferences or the tuples returned
have already the maximum possible intensity value.

For the second experiment of comparing the algorithms, we
selected a user with only one preference (uid=158) and for the
new user, that will participate in the group, we selected user
with uid=117965 because it has the same intensity value for
the common preference. For this two users, the results showed
that there is only 15% match in terms of common tuples
returned (857 for the first user versus 5568 using the group
preferences) and 100% overlap. However, there are four tuples
that received a higher final intensity value. Using only the one
preference available, the tuples receive a combine intensity
value of 0.33. In the second run, because these tuples matches
more preferences, the final intensity value becomes 0.55 for
two tuples and 0.70 for the other two.

VII. RELATED WORK

In the database domain preferences are seen as soft criteria
and are used to filter the data to avoid information overload.
In contrast, predicates in the SQL WHERE clause are seen
as hard constraints and a non-empty result is returned only
when all conditions are met. Many solutions have been pro-
posed for working with preferences; Stefanidis et al[10] is
a comprehensive survey. In most cases the designed systems
can handle only one type or preference (e.g., qualitative or
quantitative). Our proposed model combines these two differ-
ent approaches into a unified model, whose main theoretical
idea was concurrently introduced in [5], [4]. In this paper,
we present the complete framework (including the algorithms
to compute intensity), a practical implementation, two new
metrics: coverage and utility, and an experimental evaluation
using a real data set.

Kiessling et al. [6] proposed a framework that can support
a hybrid version of both qualitative and quantitative preferen-
ces. The PreferenceSQL [7] system introduces a new clause,
PREFERRING, in which the user can state her preferences
relative to the current query. All preferences are connected
with an AND operator except for the case when a qualitative
preference is defined, in which case a PRIOR TO operator
is used. In this framework users need to fully describe their
preferences for each query.

Our work differs from Kiessling et al. because each pre-
ference is enhanced with intensity information to allow an
ordering over the database tuples in the query result. Our
work also handles both qualitative and quantitative preferences
through user profiles. Both dimensions are important when
we consider preferences because, together, they can generate
a global ranking of tuples by (1) adding intensity values to
every tuple for which a preference can be applied that can
be further used to rank the query results and (2) dynamically
modify the intensity values of tuples when a new preference
is introduced in the profile and that is connected to the already
existing ones.

The work done by Koutrika and Ioannidis [9] is the other
most related to ours. In their work the preferences are kept as
query predicates with intensity values attached. In contrast to

our work, they only record quantitative preferences and they
are using them to create a preference network (i.e., a directed
acyclic graph) that will allow an efficient identification of
relevant preferences. This graph is used to depict the relation
between preferences (i.e., each node in the network refers to
a subclass of entities that its parent refers to) whereas in our
case the graph’s edges depict the flow of the preferences from
the most preferred to the least preferred.

In contrast to [9], our work keeps track of preferences
in any form (qualitative and quantitative) and our graph
representation captures user specific order of tuples as they
will show up in the final response after preferences are applied.

VIII. CONCLUSIONS

In this paper we presented a new framework (HYPRE
Graph) that incorporates qualitative and quantitative prefe-
rences in a hybrid, unified model using intensity values to
capture the strength of both preference types. We implemented
our framework in a real graph database system (Neo4j) and
experimentally evaluated it using real data extracted from
DBLP. In terms of coverage, which captures how many tuples
are “touched” by a user preference, our HYPRE graph model
can outperform the other alternatives from 120% up to 336%.
Our experimental results also showed that our Top-K algorithm
(PEPS) that utilizes the HYPRE graph returns the same results
as Fagin’s algorithm, when using only quantitative preferences,
but significantly outperforms it for the full graph. Finally, we
proposed and experimented with a collaborative version of
PEPS which dynamically enhances the preferences of a user
with those of other similar users.

IX. ACKNOWLEDGMENTS

We would like to thank Christos Faloutsos, Wolfgang Gat-
terbauer, and Andy Pavlo for the fruitful conversations and
insightful feedback they gave us on this work. This work was
funded in part by NSF awards OIA-1028162 and IIS-0746696.

REFERENCES

[1] http://en.wikipedia.org/wiki/hype cycle.
[2] C. E. Evangelou, M. Tzagarakis, N. Karousos, G. Gkotsis, and D. Nou-

sia. Augmenting collaboration with personalization services. IJWLTT,
2(3):77–89, 2007.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. In PODS, pages 102–113, 2001.

[4] R. Gheorghiu. Unifying Qualitative and Quantitative Database Prefe-
rences to Enhance Query Personalization. PhD thesis, September 2014.

[5] R. Gheorghiu, A. Labrinidis, and P. K. Chrysanthis. Database preferen-
ces – A unified model. In PersDB, 2012.

[6] W. Kiessling. Foundations of preferences in database systems. In VLDB,
pages 311–322, 2002.

[7] W. Kiessling and G. Köstler. Preference SQL: design, implementation,
experiences. In VLDB, pages 990–1001, 2002.

[8] G. Koutrika and Y. Ioannidis. Personalization of queries in database
systems. In ICDE, pages 597–608, 2004.

[9] G. Koutrika and Y. Ioannidis. Personalizing queries based on networks
of composite preferences. ACM TODS, 35(2):13:1–13:50, 2010.

[10] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation,
composition and application of preferences in database systems. TODS,
36(3):19:1–19:45, 2011.

[11] J. Tang, J. Zhang, R. Jin, Z. Yang, K. Cai, L. Zhang, and Z. Su. Topic
level expertise search over heterogeneous networks. Machine Learning
Journal, pages 211–237, 2011.

