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Abstract— A translational boundary is any computer network 

system which performs network address translation in order to 

act as an intermediary between client requests and server 

responses.  Since boundaries essentially hide networks from the 

world by acting on their behalf, a sensor monitoring traffic for 

malicious activity outside of a boundary would attribute the 

boundary itself as the target of an attack rather than the actual 

host affected behind the boundary. This challenge is exacerbated 

inside of tiered network architectures and drives the need for a 

capability to track network communications across boundaries.  

While several attempts have been made at addressing this 

problem space, existing approaches are often difficult to 

implement or fundamentally problematic.  We propose a novel 

method for tracking communications across boundaries based on 

the fact that the message being transmitted must remain constant 

and intact in order for it to be successfully interpreted by a 

server.  The proposed method leverages cryptographic hashing 

techniques applied towards the application layer payload of 

network packets from two different perspectives on the network, 

enabling correlation before and after the packet headers are 

modified by the boundary. The technique can be implemented 

atop open source technology on commodity hardware, and 

provides a stable foundation for building tiered enterprise 

network architectures with an inherent capability for pinpointing 

malicious activity.  

Keywords-source identity; translational boundary; packet 

marking 

I.  INTRODUCTION 

     A translational boundary, referred to from here on as 

simply a boundary, is any computer network system that 

performs network address translation in order to act as an 

intermediary between client/server transactions.  When a client 

attempts to connect to a server in order to access some 

resource, the boundary intercepts, alters, and relays the request 

on behalf of the client.  Doing this allows the boundary to 

impersonate the client and provide transparent routing to the 

packet’s intended destination.  The boundary also provides the 

response back to the client on behalf of the server.  The 

boundary’s existence, with few exceptions, is transparent to 

both the client and server application. 

 

A. Network Address Translation 

 

     Boundaries implement a technique known as Network 

Address Translation (NAT). NAT is an Internet Engineering 

Task Force standard used to allow multiple computers on a 

network to share an Internet Protocol (IP) address [1, 2].  It 

was originally introduced as a means to continue the Internet’s 

growth despite rapid depletion of the IPv4 address space [3].  

Its ancillary intent was to hide a network’s internal topology 

and architecture from the world by 1) using unique, discrete 

address spaces for both the internal and external network 

segments as well as 2) mediating all inbound and outbound 

communications between those segments. 

B. Communication Through A Translational Boundary 

 

     A boundary sits in the path of communication between a 

client and server so that it can intercept and relay the client’s 

request to the server as well as the server’s response to the 

client.  Fig. 1 illustrates the flow of data between a client and 

server through a boundary. 

Client Boundary Server

 

Figure 1 – Topology of a Client/Server transaction through a Translational 

Boundary 

When an application on a client needs to communicate with a 

service on a server, it will open a network socket in order to 

transmit its message over an Internet Protocol (IP) network.  

The network socket is characterized by a source IP address, 

source port, destination IP address, destination port, and 

network protocol, which are used to address an IP packet 

header.  The source IP address defines the client while the 

destination IP address defines the server.  Likewise, the source 

port defines the client application where requests originate, 

while the destination port defines the service where the server 

application processes the request and issues a response.  The 

network protocol indicates whether the resulting packet (and 
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session) is connection-oriented via the Transmission Control 

Protocol (TCP) or connection-less via User Datagram Protocol 

(UDP) [7]. 

 

The IP packet, which encapsulates the message, is intercepted 

by the boundary.  The boundary alters the contents of the 

packet header by replacing the source IP address and source 

port with its own boundary IP address and boundary-assigned 

application port.  The assignment of a unique application port 

is used to disambiguate clients’ sessions.  The boundary 

actively maintains a translation table of mappings for each 

connection from every client it serves [4].   

 

Once received and processed, the server addresses its response 

back to the boundary IP address and boundary-assigned 

application port, which is the perceived origin of the original 

request.   

 

The boundary compares incoming response packets to its 

established translation table.  If the server’s response packet 

header has a source IP address (server IP address), source port 

(server application), and network protocol which match the 

destination IP address (server IP address), destination port 

(server application), and network protocol of a record in the 

translation table, the boundary performs a reverse translation.  

The boundary replaces the packet’s destination IP address 

(boundary IP address) and destination port (boundary-assigned 

application port) with the matching record’s source IP address 

(client IP address) and source port (client application).   

 

The boundary transmits the modified packet back to the client.  

Subsequent packets from the same session are translated in the 

same manner.  It’s important to note a supplementary effect of 

this process is that the boundary prevents unsolicited packets 

from entering a client’s network.  Since an unsolicited packet 

would have no record in the boundary’s translation table, it 

would simply be discarded. 

 

 
Figure 2 - Connection sequence between a Client and Server through a 

Translational Boundary 

Table 1 - Contents of an IP Packet Header through a Translational Boundary 

 

Fig. 2 illustrates a time line of client to server connections for 

both the UDP and TCP protocols through a boundary.  The 

boundary intercepts, alters and relays packets from the client 

to the server and vice versa.  The sequence of transactions 

illustrated in Error! Reference source not found., as seen 

from the packet header’s perspective, is enumerated in Table 

1.  While client requests are sourced from the client, boundary 

requests are altered to appear from the boundary.  Likewise, 

server responses are addressed to the boundary, whereas 

boundary responses are altered to appear addressed directly to 

the client.   

 

C. Types of Network Address Translation 

 

     Though there are many implementations found in a myriad 

of network devices, there are fundamentally two distinct ways 

of characterizing NAT.  They are based upon where the 

boundary intercepts the transaction between the client and 

server, or in other words whether the boundary exists on the 

client’s network or on the server’s network [6].  

When NAT is performed on the client’s network, the boundary 

alters egress communication originating from internal clients.  

This process is also referred to as “IP Masquerading”, “Port 

Address Translation”, “Network Address and Port 

Translation”, “Many-to-One NAT”, or “NAT Overload”.  The 

boundary hides the entire IP address space of the client’s 

network behind a single unique IP address
1
.  The boundary 

alters the source IP address, the source application ports and  

                                                           
1
 In rare circumstances, clients may map to more than one unique 

IP address.   
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their associated checksums within each packet header.  A 

translation table is established and dynamically maintained in 

order to disambiguate sessions.  Fig. 3 illustrates how the 

source address changes across a boundary.  The upper screen 

capture depicts a session before it was modified by a 

boundary, whereas the lower screen capture depicts the same 

session after it was modified by a boundary.  While the 

destination IP address of the server remains constant, the 

source address was altered from a 172 prefix to a 132 prefix 

by the boundary.  When NAT is performed on the server’s 

network, the boundary alters ingress communication 

originating from external clients.  This process is also referred 

to as “Port Forwarding”, “Static NAT” or “Destination 

Network Address Translation”.  The boundary hides the entire 

IP address space of the server’s network behind a single 

unique IP address.  The boundary alters the destination IP 

address and the associated checksums within each packet 

header.  This translation is performed either through static 

configuration of the boundary or dynamically through NAT 

Traversal. 

D. Examples of Boundary Devices 

Boundaries were traditionally used to connect an isolated 

network with private unregistered addresses to an Internet with 

publicly registered and globally unique addresses.  The 

practice of assigning reusable IP addresses in combination 

with NAT served as an effective tool for alleviating the 

consequences of IPv4 address exhaustion [1, 2, 3, 6, 7, and 8].  

NAT’s inherent ability to filter out unsolicited traffic led to its 

perception as a rudimentary network security mechanism.  

Boundaries have since become a common, indispensable 

feature ubiquitously found in a plethora of network devices 

designed to govern network connections.  

 

 Routers forward packets between computer networks.  

Address information from a packet header is read by the 

router and used to direct the packet to its intended 

destination.  This is accomplished through a routing table, 

which defines what networks are connected to which of 

its physical interfaces.  Though by strict definition routers 

only pass packets between interfaces, most modern 

routers have an integrated capability to perform NAT as 

well as rudimentary packet filtering [9]. 

 Firewalls regulate packets entering and exiting a computer 

network based upon some set of security criteria defined 

by a policy [10].  Modern firewalls can route packets in a 

similar manner to routers, albeit with fewer interfaces for 

segments of the network where packets must be inspected.  

Almost all modern firewalls have the ability to implement 

NAT [11]. 

 Network proxies are systems which act as an intermediary 

between client requests and server responses.  Forward 

proxies act on behalf of a client requesting resources, 

whereas reverse proxies act on behalf of a server 

providing resources.  Proxies serve a variety of purposes, 

including but not limited to: content filtering, caching, 

content modification, insertion, and content 

customization.   

Proxies further be characterized as transparent, those 

which are invisible to the client and server application, or 

non-transparent, those which require the client to know 

about their existence and embed additional information in 

the packet payload.  For example, a web browser allows a 

user to manually configure a non-transparent proxy server 

for which to send its requests to. 

 Internet Gateway Devices connect computer networks, 

usually residential broadband networks, to an Internet 

Service Provider (ISP) backbone.  They can be small 

hardware appliances such as cable modems or software 

implementations such as Internet Connection Sharing 

found in Microsoft Windows XP.  They typically 

implement a combination of features found in firewalls, 

routers and sometimes proxies. 

 IPv6 Gateways connect networks running the v4 

implementation of the IP stack (IPv4) to a network 

running IPv6.  The gateway merely translates packets 

between the stacks, with little regard to which version is 

run on the internal or external segments of the network.  

This is opposed to gateways which simply tunnel IPv4 

traffic within IPv6 connections.  These gateways 

implement a variant of NAT known as “NAT64” which 

replaces an IPv6 address on side with an IPv4 address on 

the other. 

 Unified Threat Management Appliances are hardware or 

software appliances which combine features from all of 

the above device categories and more.  They will usually 

have enhanced port density in order to accommodate 

connections between multiple networks, both as a firewall 

and as an intrusion prevention sensor.   

Practically speaking, interception is accomplished through 

strategic placement in the network architecture (routers, 

firewalls, transparent proxies, gateways) or static 

configuration of the client itself (non-transparent proxies).   

 

http://en.wikipedia.org/wiki/IPv4_address_exhaustion
http://en.wikipedia.org/wiki/Data_packet
http://en.wikipedia.org/wiki/Computer_network


Boundaries serve a variety of purposes: They provide a cost 

effective method of connecting multiple hosts to a network 

under one Internet Protocol (IP) address.  They can boost the 

perceived speed of the network by caching content for their 

clients.  They can enforce security policy on network services 

or application layer content.  They can audit and log network 

activity.  They can try to detect malicious content.  These 

attributes account for the pervasiveness of boundaries, both as 

a functional component of network architectures as well as a 

network security mechanism. 

 

E. Tiered Network Architectures 

 

     Many enterprises employ tiered architectures, where the 

network can be topologically described as comprised of 

hierarchically interconnected enclaves [4].  This concept is 

illustrated in Fig. 4.  The core layer is comprised of assets 

which form the backbone infrastructure of the network.  The 

distribution layer interconnects the access layer to the core 

layer.  The access layer provides connectivity to clients.  This 

model may be applied towards networks of all sizes.  The 

model is purely notional and need not be limited to three 

layers.  

 

In a simple, physically collocated network such as a single 

building, the core layer would be comprised of a backbone 

router which serves as the Internet gateway.  The access layer 

could be comprised of switches for each connected story of the 

building.  The distribution layer in turn would be comprised of 

switches (or VLANs) to connect individual offices to the 

access layer.  

 

In a complex, geographically diverse network, the core layer 

could be comprised of a large routing infrastructure.  The 

access layer would serve as a step site to provide connectivity 

to geographically disparate points of presence.  The 

distribution layer in turn would provide access to clients on a 

particular location [12]. 

 

Since each layer may represent independent enclaves of the 

Enterprise, each enclave may employ its own boundary device 

for any number of reasons discussed in the previous section.  

For example, consider a global network where the core, 

distribution and access layers are interconnected through 

leased circuits from an ISP.  Since each layer has to pass 

traffic through the Internet, it is often in their best interest to 

employ a boundary protection mechanism. 

II. CHALLENGES 

     NAT fundamentally breaks the originally envisioned model 

of end-to-end connectivity across the Internet.  Boundaries 

hide their clients from the world by acting on their behalf.  

When a client communicates with a server, the server 

perceives the boundary as the client, rather than the actual 

client.  This is true regardless of whether the communication 

itself could be characterized as benign or malicious.   

 

The detection of malicious activity on a network is primarily 

accomplished through a myriad of sensing technologies [5].  

Network Intrusion Detection/Prevention sensors inspect 

network traffic in order to identify and alert on policy 

violations or malicious activity.  Whereas firewalls deny 

 

Figure 3 – Source IP is altered by the boundary and Destination IP remains constant 
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traffic by default and allow by exception, sensors allow traffic 

by default and deny by exception.  Positive identification of 

malicious activity is accomplished through signatures that 

identify unique patterns found in network traffic indicative of 

vulnerabilities or exploits. 

 

Active sensing technology (intrusion prevention) accesses 

network traffic through inline placement on the network.  

Passive sensing technology (intrusion detection) accesses 

network traffic through passive mirroring of traffic via a hub, 

tap, or port mirroring switch.  In either case, sensor placement 

is a strategic concern in the design of secure network 

architectures [5, 11].    

 

If packets were intercepted between the client and boundary, 

one would expect to observe the true address of the client and 

server.  If the packets were intercepted between the boundary 

and the server, one would expect to observe the address of the 

boundary and server.  Applied to tiered network architectures, 

inspecting packets at the core or distribution layers will not 

provide adequate visibility into the particular client 

communicating at the access layer, since they are in effect 

hidden by the boundary at that layer.  For example, consider a 

home network comprised of a desktop PC, laptop, tablet, 

phones, and other network/Wi-Fi enabled devices.  All devices 

sit behind an Internet Gateway Device provided by the ISP 

which performs NAT.  The ISP for the residential network 

would not be able to easily pinpoint which device is 

communicating since all communications appear to be sourced 

from the gateway device. 

 
This problem is further exacerbated in distributed networks 

where each subordinate tier runs its own boundary.  The 

distribution layer would have inadequate visibility into the 

access layer, and the core layer would have inadequate 

visibility into both the distribution and access layers.  While 

this challenge can be solved through adequate placement of 

sensors, there are usually external factors such as bandwidth 

limitations and enclave ownership which prevent full sensor 

coverage. 

 

This is a significant problem for the defence of networks with 

tiered architectures, especially since an introspective look 

behind a translational boundary violates the security policy in 

almost all cases.  When malicious activity is detected, the first 

step in an incident response protocol is to gauge the scope and 

impact of the incident by identifying the relevant parties 

involved.  One cannot isolate the affected hosts if they are 

hidden by a translational boundary. 

III. CURRENT APPROACHES 

     The challenge of identifying the true source of an event on 

the network falls in to the realm of a larger problem space 

known as the IP trace-back problem.  Most solutions for this 

problem are expensive to implement or fail to accurately 

attribute activity behind boundaries. 

First and foremost, any discussion around NAT almost 

inevitably yields an immediate response indicating how fully 

ubiquitous adoption of IPv6 will supersede any continued need 

for NAT.  While it is true that homogenous adoption of IPv6 

and the subsequent deprecation of IPv4 will theoretically 

render NAT obsolete, it does not address the reality of 

networks that run dual stack.  Any general purpose IP protocol 

stack that supports IPv6 will also support IPv4 in order to 

ensure any two parties can have a conversation, even if one of 

them only speaks IPv4.  Since running dual stack is a key 

milestone to full adoption of IPv6, NAT is absolutely critical 

in order to provide every network interface both an IPv6 and 

an IPv4 address [13].  This is so because IPv6 possesses a 

significantly larger address space than IPv4, whereas 

addresses for both stacks are needed.  IPv6 addresses this 

through its specification for carrier grade NAT (sometimes 

referred to as large scale NAT). 

 

Probabilistic packet matching involves setting aside a fixed 

number of unused or rarely used bits in the packet header (or 

an entirely new packet) in order to mark packets as they 

traverse routers [14, 15].  The first problem with this approach 

is that the vast majority of routers that make up the Internet are 

commercial-of-the-shelf devices, which do not implement 

custom capabilities such as packet tagging.  Moreover, while 

there are a number of statistical approaches on tagging 

methods, each approach requires a fixed number of packets to 

be observed before accurately reconstructing a path.  More 

often than not, the number of packets is usually high, limiting 

its practical effectiveness to detecting distributed denial of 

service or flooding attacks.  Further, approaches which require 

Figure 4 - Tiered Network Architecture 



tagging packets with the IP address of the router traversed by 

the packet do not provide much value added in tiered networks 

that heavily leverage private IP addresses.  Packets may 

traverse multiple routers with the same reusable private IP 

addresses.  The final drawback of this approach is mark 

spoofing, where an attacker intentionally injects packets with 

known false tags in order to throw off path reconstruction 

algorithms. 

Deterministic packet marking operates similarly to 

probabilistic packet matching, with the exception that packets 

are tagged with the network’s ingress address.  That is to say, 

it treats router interfaces as an index for trace-back as opposed 

to the router itself.  The largest advantage of this approach is 

that it separates inbound and outbound packets, accounting for 

asymmetrical route paths [16].  While deterministic packet 

marking generally requires fewer packets to be observed in 

order to reconstruct a path, it still requires a custom tagging 

capability not readily available in commercial off the shelf 

devices [17]. 

State table analysis involves exposing the translation table 

generated by a boundary to the outside world.  If the state 

table, which contains an index of the true client for each and 

every transaction, were exposed it would enable ad-hoc 

queries in order to identify the true source IP address or source 

application port of an open session [18].  There are several 

problems with this approach.  First off, most boundaries are 

commercial devices and purposely do not support such a 

capability in light of performance considerations.  Next, the 

contents of the state table are highly dynamic and change 

frequently based upon how many active sessions they are 

translating.  Closed sessions are expired from the state table, 

rendering any human driven ad-hoc queries futile.  Finally, 

exposing a service interface on a boundary, which typically 

serve as protection mechanism for networks, open up a 

potential attack vector for external entities unless properly 

mitigated through separation of the management and data 

paths.   

Time-To-Live (TTL) analysis focuses on inferring path by 

observation of the IP protocol TTL field.  TTL indicates how 

many hops a packet may route through before being expired 

and discarded.  Each IP forwarding device reduces the value 

of the TTL field by 1 before relaying the packet to its next 

hop.  The value of this assignment depends upon the 

implementation of the network stack [19].  In Microsoft 

Windows operating systems, it is usually 128, whereas on 

Linux operating systems, it is usually 64.  If a client is directly 

connected to an ISP, then the ISP's edge router will always see 

TTL values of 128 (or 64).  If there is a boundary in the path, 

the ISP will see TTL values of 127 (or 63).  This approach 

provides little value for packets which are routed through 

multiple hops and does nothing for identifying their true 

source address.  Moreover, there are implementations of NAT 

which do not modify the TTL field on purpose in order to 

remain stealth. 

 

Similarly, IP identifier analysis makes it possible to ascertain 

whether or not a client is a boundary or not, as well as estimate 

how many clients they are serving.  When a client originates 

an IP packet, it creates a 16 bit ID number in the ID field of 

the IP packet header.  ID numbers from a single client are 

usually assigned in sequence.  If multiple clients are 

multiplexed through a boundary, a unique number of 

sequences will be observed, one for each client transaction.  

Inferring the number of sequences may serve to estimate how 

many clients the boundary services.  Again, this will not aid 

identification of a client’s true source address. 

IV. PROPOSED APPROACH 

     Despite the challenge of a boundary replacing a client’s 

network address with its own, there is a constant for the 

majority of packets: the actual message being transmitted, or 

the application layer payload of the packet. The application 

layer payload must remain completely intact both inside and 

outside of the boundary in order for a packet to be successfully 

received and interpreted by a server.  Since the payload 

remains constant between the client and server, we 

hypothesize and validate that it can also be used as a unique 

identifier in and of itself.   

Our proposed solution leverages cryptographic hashing 

techniques applied towards the application layer payloads of 

network packets from at least two different perspectives on the 

network (both sides of the boundary).  By analysing the 

payload from two different perspectives, one can match an 

observed packet before and after it is modified by a 

translational boundary.  Fig. 5 presents a framework to 

accomplish this.    

Figure 5 - Framework Diagram 



Figure 6 - FIFO approach to hash matching 

A.  Cryptographic Hash Calculation 

     We rely on two commodity servers running full packet  

capture in promiscuous mode via open source software.  While 

a single server with two network interfaces would suffice, the 

process was implemented in a distributed fashion in order to 

scale to the demanding requirements of full packet capture, 

especially on high bandwidth links.  The first server is referred 

to as “inside”, which passively records traffic on the client 

network, before the contents are altered by a boundary.  The 

second server is referred to as “outside”, which passively 

records traffic externally, after it has been modified by the 

boundary.  Cryptographic hashes are independently calculated 

on both sides of the boundary.  Results are only correlated 

after all the packets from both sides have been analyzed. 

In theory, any cryptographic hashing algorithm can be used to 

identify unique payloads.  The hash selected for proof of 

concept implementation is MD5 hash.  MD5 was chosen 

because it is relatively easy to compute, it does not require a 

large memory footprint, and it produces a unique resulting 

value. 

The hash value from each payload is stored in a database 

along with the IP address and timestamp of when it was 

sensed.  While this occurs on both the inside and outside 

sensors, a separate process mirrors the contents of each 

server’s database into a single instance on the inside sensor.  

This is done in order to construct a unified location for data in 

order to match payloads. 

B. Correlating Results 

     Payloads are matched based on three criteria; hash, time, 

and IP address.  When an identical hash is observed on the 

outside and inside, there is a high probability that the hashes 

belong to the same payload.  A First-In-First-Out approach is 

leveraged in order to match outside and inside hashes with 

respect to their observed timestamp.  After a hash is observed 

on the outside, the closest matching hash (with respect to the 

timestamp) on the inside is identified as the corresponding 

match. 

Fig. 6 depicts an example of four packet payloads that have 

been hashed by both the inside and outside sensors.  Here we 

show that after the outside hash is computed, the match 

program will search for the first hash from the inside it can 

find that occurs after the outside value was computed. 

C. Proof of Concept 

     A proof of concept implementation was constructed in the 

C programming language.  Data is stored and retrieved from 

SQL databases, and the entire framework is operated atop 

commodity hardware.  The proof of concept has two operating 

modes: live packet capture and file upload.  Live packet 

Figure 7 - One match generated by our framework 



capture allows the user to generate hash values from packet 

payloads observed on the network interface in near real-time.  

File upload hashes packet payloads from a capture file that has 

been previously recorded and stored on a file system.  Figure 7 

shows one match from the output of the framework.   

D. Challenges 

     The proposed approach for matching cryptographically 

hashing payloads has one critical assumption:  that the 

payloads sensed both inside and outside are identical.  If either 

payload has been altered in any way, the computed hash will 

not be the same and therefore will not match.  One example of 

this is non-transparent proxies which make slight 

modifications to the payload in order to do things such as 

media type transformation, protocol reduction, or anonymity 

filtering [20].   

A potential alternative approach would be to leverage different 

classes of hashing techniques in order to account for slight 

variations in payload alterations.  For example, fuzzy hashing 

may be able to match payloads that have been slightly altered, 

as in the case of non-transparent proxies or deep packet 

inspection platforms.  Fuzzy hashing is similar to traditional 

cryptographic hashing; with the exception that it produces a 

result value that is reflective of how similar the original data is 

to the altered data.  

V. CONCLUSION 

The ability to identify the true source of packet transmission 

through a boundary will provide significant benefits to 

network security.  Although this is not an end-all solution to 

the origin discovery of malicious content, it does provide a 

way to quickly identify nodes that are infected with malicious 

content which will allow the network administrator to better 

identify the scope of the malicious incident.  

The process we display here is highly modular and can be 

implemented atop open source technology on commodity 

hardware, and provides a stable foundation for building tiered 

enterprise network architectures with an inherent capability for 

attribution of malicious activity.  Enterprises with significant 

visibility and monitoring investments into the network 

backbone can utilize this technique to attribute malicious 

activity sensed at the edge of a network back to its original 

source. 
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