
Identifying Network Packets Across Translational

Boundaries

Dr. Napoleon Paxton, Joseph Mathews

Center for High Assurance Computer Systems

US Naval Research Laboratory

Washington, DC 20375

Abstract— A translational boundary is any computer network

system which performs network address translation in order to

act as an intermediary between client requests and server

responses. Since boundaries essentially hide networks from the

world by acting on their behalf, a sensor monitoring traffic for

malicious activity outside of a boundary would attribute the

boundary itself as the target of an attack rather than the actual

host affected behind the boundary. This challenge is exacerbated

inside of tiered network architectures and drives the need for a

capability to track network communications across boundaries.

While several attempts have been made at addressing this

problem space, existing approaches are often difficult to

implement or fundamentally problematic. We propose a novel

method for tracking communications across boundaries based on

the fact that the message being transmitted must remain constant

and intact in order for it to be successfully interpreted by a

server. The proposed method leverages cryptographic hashing

techniques applied towards the application layer payload of

network packets from two different perspectives on the network,

enabling correlation before and after the packet headers are

modified by the boundary. The technique can be implemented

atop open source technology on commodity hardware, and

provides a stable foundation for building tiered enterprise

network architectures with an inherent capability for pinpointing

malicious activity.

Keywords-source identity; translational boundary; packet

marking

I. INTRODUCTION

 A translational boundary, referred to from here on as

simply a boundary, is any computer network system that

performs network address translation in order to act as an

intermediary between client/server transactions. When a client

attempts to connect to a server in order to access some

resource, the boundary intercepts, alters, and relays the request

on behalf of the client. Doing this allows the boundary to

impersonate the client and provide transparent routing to the

packet’s intended destination. The boundary also provides the

response back to the client on behalf of the server. The

boundary’s existence, with few exceptions, is transparent to

both the client and server application.

A. Network Address Translation

 Boundaries implement a technique known as Network

Address Translation (NAT). NAT is an Internet Engineering

Task Force standard used to allow multiple computers on a

network to share an Internet Protocol (IP) address [1, 2]. It

was originally introduced as a means to continue the Internet’s

growth despite rapid depletion of the IPv4 address space [3].

Its ancillary intent was to hide a network’s internal topology

and architecture from the world by 1) using unique, discrete

address spaces for both the internal and external network

segments as well as 2) mediating all inbound and outbound

communications between those segments.

B. Communication Through A Translational Boundary

 A boundary sits in the path of communication between a

client and server so that it can intercept and relay the client’s

request to the server as well as the server’s response to the

client. Fig. 1 illustrates the flow of data between a client and

server through a boundary.

Client Boundary Server

Figure 1 – Topology of a Client/Server transaction through a Translational

Boundary

When an application on a client needs to communicate with a

service on a server, it will open a network socket in order to

transmit its message over an Internet Protocol (IP) network.

The network socket is characterized by a source IP address,

source port, destination IP address, destination port, and

network protocol, which are used to address an IP packet

header. The source IP address defines the client while the

destination IP address defines the server. Likewise, the source

port defines the client application where requests originate,

while the destination port defines the service where the server

application processes the request and issues a response. The

network protocol indicates whether the resulting packet (and

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257685

session) is connection-oriented via the Transmission Control

Protocol (TCP) or connection-less via User Datagram Protocol

(UDP) [7].

The IP packet, which encapsulates the message, is intercepted

by the boundary. The boundary alters the contents of the

packet header by replacing the source IP address and source

port with its own boundary IP address and boundary-assigned

application port. The assignment of a unique application port

is used to disambiguate clients’ sessions. The boundary

actively maintains a translation table of mappings for each

connection from every client it serves [4].

Once received and processed, the server addresses its response

back to the boundary IP address and boundary-assigned

application port, which is the perceived origin of the original

request.

The boundary compares incoming response packets to its

established translation table. If the server’s response packet

header has a source IP address (server IP address), source port

(server application), and network protocol which match the

destination IP address (server IP address), destination port

(server application), and network protocol of a record in the

translation table, the boundary performs a reverse translation.

The boundary replaces the packet’s destination IP address

(boundary IP address) and destination port (boundary-assigned

application port) with the matching record’s source IP address

(client IP address) and source port (client application).

The boundary transmits the modified packet back to the client.

Subsequent packets from the same session are translated in the

same manner. It’s important to note a supplementary effect of

this process is that the boundary prevents unsolicited packets

from entering a client’s network. Since an unsolicited packet

would have no record in the boundary’s translation table, it

would simply be discarded.

Figure 2 - Connection sequence between a Client and Server through a

Translational Boundary

Table 1 - Contents of an IP Packet Header through a Translational Boundary

Fig. 2 illustrates a time line of client to server connections for

both the UDP and TCP protocols through a boundary. The

boundary intercepts, alters and relays packets from the client

to the server and vice versa. The sequence of transactions

illustrated in Error! Reference source not found., as seen

from the packet header’s perspective, is enumerated in Table

1. While client requests are sourced from the client, boundary

requests are altered to appear from the boundary. Likewise,

server responses are addressed to the boundary, whereas

boundary responses are altered to appear addressed directly to

the client.

C. Types of Network Address Translation

 Though there are many implementations found in a myriad

of network devices, there are fundamentally two distinct ways

of characterizing NAT. They are based upon where the

boundary intercepts the transaction between the client and

server, or in other words whether the boundary exists on the

client’s network or on the server’s network [6].

When NAT is performed on the client’s network, the boundary

alters egress communication originating from internal clients.

This process is also referred to as “IP Masquerading”, “Port

Address Translation”, “Network Address and Port

Translation”, “Many-to-One NAT”, or “NAT Overload”. The

boundary hides the entire IP address space of the client’s

network behind a single unique IP address
1
. The boundary

alters the source IP address, the source application ports and

1
 In rare circumstances, clients may map to more than one unique

IP address.

IP Packet Header

 Source

IP

Address

Source

Port

Dest IP

Address

Dest Port

Client

Request

Client IP

Address

Client

app port

Server IP

address

Server app

port

Bound

Request

External

Bound IP

address

Bound

assigned

app port

Server IP

address

Server app

port

Server

Response

Server IP

address

Server

app port

External

Bound IP

address

Bound

assigned

app port

Bound

Response

Server IP

address

Server

app port

Client IP

address

Client app

port

their associated checksums within each packet header. A

translation table is established and dynamically maintained in

order to disambiguate sessions. Fig. 3 illustrates how the

source address changes across a boundary. The upper screen

capture depicts a session before it was modified by a

boundary, whereas the lower screen capture depicts the same

session after it was modified by a boundary. While the

destination IP address of the server remains constant, the

source address was altered from a 172 prefix to a 132 prefix

by the boundary. When NAT is performed on the server’s

network, the boundary alters ingress communication

originating from external clients. This process is also referred

to as “Port Forwarding”, “Static NAT” or “Destination

Network Address Translation”. The boundary hides the entire

IP address space of the server’s network behind a single

unique IP address. The boundary alters the destination IP

address and the associated checksums within each packet

header. This translation is performed either through static

configuration of the boundary or dynamically through NAT

Traversal.

D. Examples of Boundary Devices

Boundaries were traditionally used to connect an isolated

network with private unregistered addresses to an Internet with

publicly registered and globally unique addresses. The

practice of assigning reusable IP addresses in combination

with NAT served as an effective tool for alleviating the

consequences of IPv4 address exhaustion [1, 2, 3, 6, 7, and 8].

NAT’s inherent ability to filter out unsolicited traffic led to its

perception as a rudimentary network security mechanism.

Boundaries have since become a common, indispensable

feature ubiquitously found in a plethora of network devices

designed to govern network connections.

 Routers forward packets between computer networks.

Address information from a packet header is read by the

router and used to direct the packet to its intended

destination. This is accomplished through a routing table,

which defines what networks are connected to which of

its physical interfaces. Though by strict definition routers

only pass packets between interfaces, most modern

routers have an integrated capability to perform NAT as

well as rudimentary packet filtering [9].

 Firewalls regulate packets entering and exiting a computer

network based upon some set of security criteria defined

by a policy [10]. Modern firewalls can route packets in a

similar manner to routers, albeit with fewer interfaces for

segments of the network where packets must be inspected.

Almost all modern firewalls have the ability to implement

NAT [11].

 Network proxies are systems which act as an intermediary

between client requests and server responses. Forward

proxies act on behalf of a client requesting resources,

whereas reverse proxies act on behalf of a server

providing resources. Proxies serve a variety of purposes,

including but not limited to: content filtering, caching,

content modification, insertion, and content

customization.

Proxies further be characterized as transparent, those

which are invisible to the client and server application, or

non-transparent, those which require the client to know

about their existence and embed additional information in

the packet payload. For example, a web browser allows a

user to manually configure a non-transparent proxy server

for which to send its requests to.

 Internet Gateway Devices connect computer networks,

usually residential broadband networks, to an Internet

Service Provider (ISP) backbone. They can be small

hardware appliances such as cable modems or software

implementations such as Internet Connection Sharing

found in Microsoft Windows XP. They typically

implement a combination of features found in firewalls,

routers and sometimes proxies.

 IPv6 Gateways connect networks running the v4

implementation of the IP stack (IPv4) to a network

running IPv6. The gateway merely translates packets

between the stacks, with little regard to which version is

run on the internal or external segments of the network.

This is opposed to gateways which simply tunnel IPv4

traffic within IPv6 connections. These gateways

implement a variant of NAT known as “NAT64” which

replaces an IPv6 address on side with an IPv4 address on

the other.

 Unified Threat Management Appliances are hardware or

software appliances which combine features from all of

the above device categories and more. They will usually

have enhanced port density in order to accommodate

connections between multiple networks, both as a firewall

and as an intrusion prevention sensor.

Practically speaking, interception is accomplished through

strategic placement in the network architecture (routers,

firewalls, transparent proxies, gateways) or static

configuration of the client itself (non-transparent proxies).

http://en.wikipedia.org/wiki/IPv4_address_exhaustion
http://en.wikipedia.org/wiki/Data_packet
http://en.wikipedia.org/wiki/Computer_network

Boundaries serve a variety of purposes: They provide a cost

effective method of connecting multiple hosts to a network

under one Internet Protocol (IP) address. They can boost the

perceived speed of the network by caching content for their

clients. They can enforce security policy on network services

or application layer content. They can audit and log network

activity. They can try to detect malicious content. These

attributes account for the pervasiveness of boundaries, both as

a functional component of network architectures as well as a

network security mechanism.

E. Tiered Network Architectures

 Many enterprises employ tiered architectures, where the

network can be topologically described as comprised of

hierarchically interconnected enclaves [4]. This concept is

illustrated in Fig. 4. The core layer is comprised of assets

which form the backbone infrastructure of the network. The

distribution layer interconnects the access layer to the core

layer. The access layer provides connectivity to clients. This

model may be applied towards networks of all sizes. The

model is purely notional and need not be limited to three

layers.

In a simple, physically collocated network such as a single

building, the core layer would be comprised of a backbone

router which serves as the Internet gateway. The access layer

could be comprised of switches for each connected story of the

building. The distribution layer in turn would be comprised of

switches (or VLANs) to connect individual offices to the

access layer.

In a complex, geographically diverse network, the core layer

could be comprised of a large routing infrastructure. The

access layer would serve as a step site to provide connectivity

to geographically disparate points of presence. The

distribution layer in turn would provide access to clients on a

particular location [12].

Since each layer may represent independent enclaves of the

Enterprise, each enclave may employ its own boundary device

for any number of reasons discussed in the previous section.

For example, consider a global network where the core,

distribution and access layers are interconnected through

leased circuits from an ISP. Since each layer has to pass

traffic through the Internet, it is often in their best interest to

employ a boundary protection mechanism.

II. CHALLENGES

 NAT fundamentally breaks the originally envisioned model

of end-to-end connectivity across the Internet. Boundaries

hide their clients from the world by acting on their behalf.

When a client communicates with a server, the server

perceives the boundary as the client, rather than the actual

client. This is true regardless of whether the communication

itself could be characterized as benign or malicious.

The detection of malicious activity on a network is primarily

accomplished through a myriad of sensing technologies [5].

Network Intrusion Detection/Prevention sensors inspect

network traffic in order to identify and alert on policy

violations or malicious activity. Whereas firewalls deny

Figure 3 – Source IP is altered by the boundary and Destination IP remains constant

http://en.wikipedia.org/wiki/End-to-end_connectivity

traffic by default and allow by exception, sensors allow traffic

by default and deny by exception. Positive identification of

malicious activity is accomplished through signatures that

identify unique patterns found in network traffic indicative of

vulnerabilities or exploits.

Active sensing technology (intrusion prevention) accesses

network traffic through inline placement on the network.

Passive sensing technology (intrusion detection) accesses

network traffic through passive mirroring of traffic via a hub,

tap, or port mirroring switch. In either case, sensor placement

is a strategic concern in the design of secure network

architectures [5, 11].

If packets were intercepted between the client and boundary,

one would expect to observe the true address of the client and

server. If the packets were intercepted between the boundary

and the server, one would expect to observe the address of the

boundary and server. Applied to tiered network architectures,

inspecting packets at the core or distribution layers will not

provide adequate visibility into the particular client

communicating at the access layer, since they are in effect

hidden by the boundary at that layer. For example, consider a

home network comprised of a desktop PC, laptop, tablet,

phones, and other network/Wi-Fi enabled devices. All devices

sit behind an Internet Gateway Device provided by the ISP

which performs NAT. The ISP for the residential network

would not be able to easily pinpoint which device is

communicating since all communications appear to be sourced

from the gateway device.

This problem is further exacerbated in distributed networks

where each subordinate tier runs its own boundary. The

distribution layer would have inadequate visibility into the

access layer, and the core layer would have inadequate

visibility into both the distribution and access layers. While

this challenge can be solved through adequate placement of

sensors, there are usually external factors such as bandwidth

limitations and enclave ownership which prevent full sensor

coverage.

This is a significant problem for the defence of networks with

tiered architectures, especially since an introspective look

behind a translational boundary violates the security policy in

almost all cases. When malicious activity is detected, the first

step in an incident response protocol is to gauge the scope and

impact of the incident by identifying the relevant parties

involved. One cannot isolate the affected hosts if they are

hidden by a translational boundary.

III. CURRENT APPROACHES

 The challenge of identifying the true source of an event on

the network falls in to the realm of a larger problem space

known as the IP trace-back problem. Most solutions for this

problem are expensive to implement or fail to accurately

attribute activity behind boundaries.

First and foremost, any discussion around NAT almost

inevitably yields an immediate response indicating how fully

ubiquitous adoption of IPv6 will supersede any continued need

for NAT. While it is true that homogenous adoption of IPv6

and the subsequent deprecation of IPv4 will theoretically

render NAT obsolete, it does not address the reality of

networks that run dual stack. Any general purpose IP protocol

stack that supports IPv6 will also support IPv4 in order to

ensure any two parties can have a conversation, even if one of

them only speaks IPv4. Since running dual stack is a key

milestone to full adoption of IPv6, NAT is absolutely critical

in order to provide every network interface both an IPv6 and

an IPv4 address [13]. This is so because IPv6 possesses a

significantly larger address space than IPv4, whereas

addresses for both stacks are needed. IPv6 addresses this

through its specification for carrier grade NAT (sometimes

referred to as large scale NAT).

Probabilistic packet matching involves setting aside a fixed

number of unused or rarely used bits in the packet header (or

an entirely new packet) in order to mark packets as they

traverse routers [14, 15]. The first problem with this approach

is that the vast majority of routers that make up the Internet are

commercial-of-the-shelf devices, which do not implement

custom capabilities such as packet tagging. Moreover, while

there are a number of statistical approaches on tagging

methods, each approach requires a fixed number of packets to

be observed before accurately reconstructing a path. More

often than not, the number of packets is usually high, limiting

its practical effectiveness to detecting distributed denial of

service or flooding attacks. Further, approaches which require

Figure 4 - Tiered Network Architecture

tagging packets with the IP address of the router traversed by

the packet do not provide much value added in tiered networks

that heavily leverage private IP addresses. Packets may

traverse multiple routers with the same reusable private IP

addresses. The final drawback of this approach is mark

spoofing, where an attacker intentionally injects packets with

known false tags in order to throw off path reconstruction

algorithms.

Deterministic packet marking operates similarly to

probabilistic packet matching, with the exception that packets

are tagged with the network’s ingress address. That is to say,

it treats router interfaces as an index for trace-back as opposed

to the router itself. The largest advantage of this approach is

that it separates inbound and outbound packets, accounting for

asymmetrical route paths [16]. While deterministic packet

marking generally requires fewer packets to be observed in

order to reconstruct a path, it still requires a custom tagging

capability not readily available in commercial off the shelf

devices [17].

State table analysis involves exposing the translation table

generated by a boundary to the outside world. If the state

table, which contains an index of the true client for each and

every transaction, were exposed it would enable ad-hoc

queries in order to identify the true source IP address or source

application port of an open session [18]. There are several

problems with this approach. First off, most boundaries are

commercial devices and purposely do not support such a

capability in light of performance considerations. Next, the

contents of the state table are highly dynamic and change

frequently based upon how many active sessions they are

translating. Closed sessions are expired from the state table,

rendering any human driven ad-hoc queries futile. Finally,

exposing a service interface on a boundary, which typically

serve as protection mechanism for networks, open up a

potential attack vector for external entities unless properly

mitigated through separation of the management and data

paths.

Time-To-Live (TTL) analysis focuses on inferring path by

observation of the IP protocol TTL field. TTL indicates how

many hops a packet may route through before being expired

and discarded. Each IP forwarding device reduces the value

of the TTL field by 1 before relaying the packet to its next

hop. The value of this assignment depends upon the

implementation of the network stack [19]. In Microsoft

Windows operating systems, it is usually 128, whereas on

Linux operating systems, it is usually 64. If a client is directly

connected to an ISP, then the ISP's edge router will always see

TTL values of 128 (or 64). If there is a boundary in the path,

the ISP will see TTL values of 127 (or 63). This approach

provides little value for packets which are routed through

multiple hops and does nothing for identifying their true

source address. Moreover, there are implementations of NAT

which do not modify the TTL field on purpose in order to

remain stealth.

Similarly, IP identifier analysis makes it possible to ascertain

whether or not a client is a boundary or not, as well as estimate

how many clients they are serving. When a client originates

an IP packet, it creates a 16 bit ID number in the ID field of

the IP packet header. ID numbers from a single client are

usually assigned in sequence. If multiple clients are

multiplexed through a boundary, a unique number of

sequences will be observed, one for each client transaction.

Inferring the number of sequences may serve to estimate how

many clients the boundary services. Again, this will not aid

identification of a client’s true source address.

IV. PROPOSED APPROACH

 Despite the challenge of a boundary replacing a client’s

network address with its own, there is a constant for the

majority of packets: the actual message being transmitted, or

the application layer payload of the packet. The application

layer payload must remain completely intact both inside and

outside of the boundary in order for a packet to be successfully

received and interpreted by a server. Since the payload

remains constant between the client and server, we

hypothesize and validate that it can also be used as a unique

identifier in and of itself.

Our proposed solution leverages cryptographic hashing

techniques applied towards the application layer payloads of

network packets from at least two different perspectives on the

network (both sides of the boundary). By analysing the

payload from two different perspectives, one can match an

observed packet before and after it is modified by a

translational boundary. Fig. 5 presents a framework to

accomplish this.

Figure 5 - Framework Diagram

Figure 6 - FIFO approach to hash matching

A. Cryptographic Hash Calculation

 We rely on two commodity servers running full packet

capture in promiscuous mode via open source software. While

a single server with two network interfaces would suffice, the

process was implemented in a distributed fashion in order to

scale to the demanding requirements of full packet capture,

especially on high bandwidth links. The first server is referred

to as “inside”, which passively records traffic on the client

network, before the contents are altered by a boundary. The

second server is referred to as “outside”, which passively

records traffic externally, after it has been modified by the

boundary. Cryptographic hashes are independently calculated

on both sides of the boundary. Results are only correlated

after all the packets from both sides have been analyzed.

In theory, any cryptographic hashing algorithm can be used to

identify unique payloads. The hash selected for proof of

concept implementation is MD5 hash. MD5 was chosen

because it is relatively easy to compute, it does not require a

large memory footprint, and it produces a unique resulting

value.

The hash value from each payload is stored in a database

along with the IP address and timestamp of when it was

sensed. While this occurs on both the inside and outside

sensors, a separate process mirrors the contents of each

server’s database into a single instance on the inside sensor.

This is done in order to construct a unified location for data in

order to match payloads.

B. Correlating Results

 Payloads are matched based on three criteria; hash, time,

and IP address. When an identical hash is observed on the

outside and inside, there is a high probability that the hashes

belong to the same payload. A First-In-First-Out approach is

leveraged in order to match outside and inside hashes with

respect to their observed timestamp. After a hash is observed

on the outside, the closest matching hash (with respect to the

timestamp) on the inside is identified as the corresponding

match.

Fig. 6 depicts an example of four packet payloads that have

been hashed by both the inside and outside sensors. Here we

show that after the outside hash is computed, the match

program will search for the first hash from the inside it can

find that occurs after the outside value was computed.

C. Proof of Concept

 A proof of concept implementation was constructed in the

C programming language. Data is stored and retrieved from

SQL databases, and the entire framework is operated atop

commodity hardware. The proof of concept has two operating

modes: live packet capture and file upload. Live packet

Figure 7 - One match generated by our framework

capture allows the user to generate hash values from packet

payloads observed on the network interface in near real-time.

File upload hashes packet payloads from a capture file that has

been previously recorded and stored on a file system. Figure 7

shows one match from the output of the framework.

D. Challenges

 The proposed approach for matching cryptographically

hashing payloads has one critical assumption: that the

payloads sensed both inside and outside are identical. If either

payload has been altered in any way, the computed hash will

not be the same and therefore will not match. One example of

this is non-transparent proxies which make slight

modifications to the payload in order to do things such as

media type transformation, protocol reduction, or anonymity

filtering [20].

A potential alternative approach would be to leverage different

classes of hashing techniques in order to account for slight

variations in payload alterations. For example, fuzzy hashing

may be able to match payloads that have been slightly altered,

as in the case of non-transparent proxies or deep packet

inspection platforms. Fuzzy hashing is similar to traditional

cryptographic hashing; with the exception that it produces a

result value that is reflective of how similar the original data is

to the altered data.

V. CONCLUSION

The ability to identify the true source of packet transmission

through a boundary will provide significant benefits to

network security. Although this is not an end-all solution to

the origin discovery of malicious content, it does provide a

way to quickly identify nodes that are infected with malicious

content which will allow the network administrator to better

identify the scope of the malicious incident.

The process we display here is highly modular and can be

implemented atop open source technology on commodity

hardware, and provides a stable foundation for building tiered

enterprise network architectures with an inherent capability for

attribution of malicious activity. Enterprises with significant

visibility and monitoring investments into the network

backbone can utilize this technique to attribute malicious

activity sensed at the edge of a network back to its original

source.

REFERENCES

[1] Network Working Group (1994). RFC 1631: The IP network

address translator (NAT).
http://tools.ietf.org/html/rfc1631

[2] Network Working Group (1999). RFC 2663: IP network address

translator (NAT) terminology and considerations.

http://tools.ietf.org/html/rfc2663

[3] Network Working Group (1996). RFC 1918. address allocation for

private Internets.
 http://tools.ietf.org/html/rfc1918

[4] Donohue, Gary A. (2011). Network warrior, 2nd Edition.

 O’Reilly Media, Inc.

[5] Bejtlich, R. (2004). The tao of network security monitoring.

 Addison Wesley.

[6] Davidoff, Sherri & Ham, Jonathan. (2012). Network forensics:
tracking hackers through cyberspace. Prentice Hall.

[7] Stevens, R.W. (1994). TCP/IP illustrated, volume 1: The

 Protocols. Addison Wesley.

[8] Microsoft Technet. (2005). Overview of network address

 translation (NAT) in Windows XP. |

 http://technet.microsoft.com/en-us/library/bb457077.aspx

[9] RFC 1812. (1995). Requirements for IP version 4 routers.

https://tools.ietf.org/html/rfc1812

[10] Cheswick, W.R, Bellovin, S.M., Rubin (2003). Firewalls and
Internet security: repelling the wily hacker. Addison-Wesley

Longman Publishing Co, Inc Boston MA.

[11] Ackerman, R., Roedig, U. and Steinmetz. (2004). Evaluating and
improving firewalls for IP-telephony environments. IP Telephony

Workshop (IPTel).

[12] Fowler, M. (2002). Patterns of enterprise application architecture.

[13] Mullins, R. (2012). Deploying dual-stack IPv4 and IPv6networks.

[14] Goodrich, M.T. (2002). Efficient packet marking for large-scale IP
traceback. ACM CCS. Washington DC.

[15] Li, J., Sung, M., Xu, J., Li, L. (2004). Large-scale IP traceback in

high-speed Internet: practical techniques and theoretical
foundation. Proceedings IEEE Symposium on Security and

Privacy.

[16] Belenky, A., Ansari, N. (2003). IP traceback with deterministic
packet marking. IEEE Communications Letters Vol 7, no 4.

[17] Park, K., Lee, H. (2000). On the effectiveness of probabilistic

packet marking for IP traceback under denial of service attack.
Computer Science Technical Reports, Paper 1491,

http://docs.lib.purdue.edu/cstech/1491

[18] Afanasyev, A., Tilley, N., Longstaff, B.,Zhang, L. (2009). BGP
routing table: trends and challenges

.http://lasr.cs.ucla.edu/afanasyev/data/files/Afanasyev/BGP%20Ro

uting%20Table%20Trends%20and%20Challenges.pdf

[19] Zander, S., Branch, P, Armitage, G. (2007). Error probability

analysis of IP time to live covert channels. IEEE Communications

and Information Technologies.

[20] Rabinovich, M, and Spatscheck, O. (2002). Web caching and

replication. Addison Wesley; 1st edition

http://tools.ietf.org/html/rfc1631
http://tools.ietf.org/html/rfc2663
http://tools.ietf.org/html/rfc1918
http://technet.microsoft.com/en-us/library/bb457077.aspx
https://tools.ietf.org/html/rfc1812
http://docs.lib.purdue.edu/cstech/1491
http://lasr.cs.ucla.edu/afanasyev/data/files/Afanasyev/BGP%20Routing%20Table%20Trends%20and%20Challenges.pdf
http://lasr.cs.ucla.edu/afanasyev/data/files/Afanasyev/BGP%20Routing%20Table%20Trends%20and%20Challenges.pdf

