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ABSTRACT

We propose a novel compressive sensing algorithm for cogni-
tive radio networks, based on non-uniform under-sampling. It
is known that the spectrum of uniformly under-sampled sig-
nals exhibit frequency aliasing, whereby the frequency loca-
tion is impossible. To alleviate aliasing, non-uniform sam-
pling can be used. This, however, generates a high level of
frequency leakage that prevents detection of weaker signals.
To alleviate this problem, we introduce a novel iterative fre-
quency excision technique that allows to detect tones or mod-
ulated signals below the original noise floor due to leakage.
This method can be used in cognitive radio sensing engines,
allowing to sense very wide bandwidths with a relatively low
average sample rate. 20dB of leakage reduction can easily be
achieved with this method.

Index Terms— spectrum sensing, cognitive radio, sub-
Nyquist sampling, undersampling, frequency leakage, signal
detection, compressive sensing.

1. INTRODUCTION

In the future, many cognitive radio networks may rely on
spectrum sensing to monitor and coordinate the instantaneous
use of the spectrum. Indeed, several authors and regulatory
bodies have reported that the utilization of the radio spectrum
by licensed and unlicensed wireless systems, e.g., TV broad-
casting, cellular systems, wireless local area networks, etc ..
is actually is quite low [1]. Specifically, the instantaneous
usage of many frequency bands is very irregular. This has
triggered the idea of reusing the unused portions of the spec-
trum by secondary users in an opportunistic way with cogni-
tive radios (CR) [2], [3]. For CR to be able to reuse unused
frequency bands, spectrum sensing is a necessity. Since large
bands of several GHz may have to be sensed in the near future,
sampling at the Nyquist rate can be prohibitive. Fortunately,
because the spectrum is largely under-utilized, the signal to
be sensed is sparse in the frequency domain. Compressive
sensing exploits this sparsity.

In many implementations, it is desirable or even unavoid-
able to reduce the number of samples from the input signal

without changing its characteristics. If the number of sam-
ples taken is reduced below the Nyquist rate, aliasing occurs
and perfect reconstruction is no longer possible [4]. However,
if the sampling instants are not taken at a constant rate or, in
other words, if the sampling instants do not lie on a regular
grid, it is still possible to reduce or completely avoid alias-
ing [5]. Perfect signal reconstruction is even possible under
certain conditions, one of them stating that the average sam-
pling rate must be higher than the so-called Landau-Nyquist
rate (twice the sum of the bandwidths of all signals) and the
sampling instants must be chosen in a special way [6] and [7],
which is a challenging problem; hence, non-uniform random
sampling is usually applied. However, doing so, significant
leakage is created in the spectral estimate of the signal, which
results in a degraded SNR.

When an undersampled signal must be reconstructed, the
framework of compressive sensing [8] can be used. The cen-
tral results of CS state that a sparse undersampled signal can
be recovered by solving a convex (and rather complex) pro-
gram. For detection or sensing, however, perfect reconstruc-
tion is not necessary. What is needed is that the spectrum
estimate is sufficiently reliable to decide correctly about the
presence or absence of signals. This is precisely the scope of
this work: to analyze how tone or signal detection is possible
based on samples of a signal that are taken much below the
Nyquist rate. We convert the undersampled signal to the fre-
quency domain where significant leakage masks the weaker
signals, hence preventing their detection. We then rely on a
novel frequency-domain excision technique to reduce gradu-
ally the frequency leakage, thereby making the detection of
the weaker signals possible.

The structure of this paper is as follows: Section 2 de-
scribes the spectrum of an undersampled signal and Section
3 describes the non-uniform DFT estimators. Section 4 intro-
duces the tone detection technique and simulation results are
provided in Section 5. We conclude in Section 6.1

1Notational conventions: we use normal latin characters for time-domain
signals (a) and tilde characters for frequency-domain signals (ã); vectors and
matrices are denoted by a single and double under-bar respectively (a and A);
the superscripts T and H denote the matrix transpose and complex conjugate
transpose respectively (AT and AH ); the superscript † is used to indicate the
pseudo-inverse (A†).
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2. NON-UNIFORM SAMPLING - TIME AND
FREQUENCY DOMAIN REPRESENTATIONS

Given a continuous-time signal xc(t), sampling is achieved
by element-wise multiplication with a sampling function s(t)
which is a series of dirac pulses, yielding the sampled signal
xs(t) and its frequency-domain counterpart Xs(f):

xs(t) =

∞∑

k=−∞
xc(t)δ(t− kTS) (1)

Xs(f) =
1

TS

∞∑

k=−∞
Xc(f − k

TS
). (2)

In the case of non-uniform sampling, sampling occurs at times
ts(k) = tk that do not lie on a regular grid; we have the
following time and frequency-domain representations:

xs(t) =

∞∑

k=−∞
xc(t)δ(t− tk) (3)

Xs(f) =
1

TS

∞∑

k=−∞
xc(tk)e

−j2πftk . (4)

The familiar form of the spectrum in (2) shows that the main
spectrum is replicated at every integer multiples of the sam-
pling rate FS = 1/TS . On the contrary, nothing can be
said about the (non-)periodicity of the spectrum of a non-
uniformly sampled signal as given in (4). The PSD of a non-
uniformly sampled sequence has been studied by several au-
thors [5], [9]. The main conclusions are as follows: the PSD
contains both attenuated replicas and frequency leakage. If
the observation time is long enough and the time instants tk
are sufficiently random, it can be shown that all spectral repli-
cas disappear.

3. FROM THE CONVENTIONAL DFT TO THE
NON-UNIFORM SUB-NYQUIST DFT

We will now illustrate the difference between conventional
DFT-based spectral estimation and the non-uniform sub-
Nyquist DFT. We define the following extended DFT for
non-uniformly undersampled signals:

X(n) =
1√
N

N−1∑

k=0

x(tk)e
−j2π(tk)(

n
N FS)

n = −m
N

2
· · ·mN

2
− 1. (5)

Equation (5) simplifies to the conventional uniform, Nyquist
sampled DFT (U-DFT) when m = 1 and tk = kTS

2. When
m > 1 and tk = kTS , we have an extended uniform DFT

2We have chosen to define, without loss of generality, the DFT over the
interval [−mN

2
· · ·mN

2
− 1] rather than [0 . . .mN − 1]
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Fig. 1. DFT spectra for the example. (a) tones; (b) con-
ventional uniform DFT; (c) uniform extended DFT; (d) non-
uniform extended DFT

(U-eDFT), which corresponds to uniform undersampling. Fi-
nally, for m > 1 and tk �= kTS , we have a non-uniform ex-
tended DFT (NU-eDFT). In this case, the average sampling
rate FS,av is made equal to FS = 1/TS .

We illustrate the properties of these DFTs with an ex-
ample. We generate a signal consisting of six complex
exponentials at different frequencies within the interval
[−mN

2 · · ·mN
2 − 1], with m = 4. The tone magnitudes

and frequencies and all DFTs are plotted in Figure 1. Figure
1b shows the conventional U-DFT that has a frequency range
limited to [−FS/2, FS/2] and aliases frequencies outside this
range. The U-eDFT in Figure 1c does not provide additional
information. Rather, the aliased spectrum of Figure 1b is
repeated m = 4 times. The NU-eDFT as per (5) is plotted in
Figure 1d. We observe that the aliasing is indeed eliminated
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and the amplitudes of the peaks are only approximately cor-
rect. In addition, there is a significant amount of frequency

leakage. This phenomenon is actually one of the most severe
limitations of non-uniform sub-Nyquist sampling because it
can mask weak signals in the PSD.

4. TONE DETECTION

4.1. Basic Tone Detection

We consider a signal consisting of the sum of M complex
exponentials (each defined by their complex amplitude wi and
frequency fi) and additive complex white gaussian noise of
variance σ2

n. After sampling, this signal has the following
time (x) and frequency (x̃) domain representation:

x =
M∑

i=1

wie
j(2πfit) + n (N × 1) (6)

x̃ = F · x (mN × 1) (7)

where t is the (N × 1) vector of the sampling time instants
[t0 . . . tN−1], f is the (mN ×1) vector of the frequency coor-
dinates [−m/2 . . .m/2 − (1/2N)] at which the spectrum is
evaluated and F is the (rectangular) NU-eDFT matrix

F =
1√
N

e−j(2πf ·tT ) (mN ×N). (8)

Our goal is to detect the presence of all the components of the
signal with a reasonable probability of detection and proba-
bility of false alarm. The NU-eDFT for a signal consisting
of 10 tones is shown in Figure 2, showing that a simple peak
search on the magnitude will not allow to make a proper tone
detection for all 10 tones: the weaker tones are buried in the
noise-like leakage. To overcome this problem, we have devel-
oped two leakage reduction techniques relying on peak exci-
sion that are detailed in the following sections.

4.2. Peak Excision by frequency-domain peak search -
Method 1

In order to allow detection of lower amplitude peaks, our
method removes the stronger peaks together with the leak-
age that they create. The rationale for this is that stronger
tones contribute the most to the leakage. Hence, once their
frequency and complex amplitude is estimated, we can elim-
inate each tone from the received signal and continue search-
ing for lower magnitude tones.

We start by detecting the strongest peak in the frequency
spectrum, which provides an estimate of its frequency f̂1 and
complex amplitude ŵ1. The contribution of this tone to the
global signal can be expressed in the time-domain as:

p
1
= ŵ1e

j2πf̂1t = w1y1. (9)
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Fig. 2. Extended DFT spectrum with non-uniform sampling
with m = 4. 10 tones were generated, some are masked by
the leakage.

The signal after the first excision is described by:

x1 = x− p
1

(10)
x̃1 = F · (x− p

1
) = x̃− F · p

1
(11)

which shows that the excision can be performed in either the
time or frequency domain. This process can then be repeated
with the second strongest peak and so on until some conver-
gence criterion is met (see Section 4.4). Note that, in this
method, the estimation of both the frequency f̂j and the com-
plex amplitude ŵj are performed in the frequency domain.

4.3. Peak Excision by frequency-domain peak search and
least-squares leakage minimization

4.3.1. Excision of a single tone - Method 2

In the previous method, the complex amplitude ŵj is esti-
mated in the frequency domain. Actually, because of the leak-
age generated by all the other signals on the currently detected
peak, this complex amplitude estimation is degraded. Hence,
we estimate the complex amplitude ŵj by minimizing a least-
squares criterion as follows. Assuming that the frequency f̂j
is correct, the leakage L1 after excision of the first tone is

L1 = |A · x̃1|2
= xH

1 ·G · x1

= (x− w1y1)
H ·G · (x− w1y1). (12)

where G = FH ·AH ·A ·F and A is an identity matrix except
for some zeros at the indices corresponding to the frequency
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f̂j and its close neighboring frequencies (e.g. 3 frequency
bins at each side). Those zeros avoid the peak due to p

1
in

the estimation of the leakage caused by p
1

itself. The com-
plex amplitude w1 that minimizes the leakage, given f̂1, is the
value of w1 for which the derivative of L1 is zero:

∂

∂w1
(L1) = −xHGy

1
+ w∗

1y
H
1
Gy

1
= 0. (13)

The optimal value of w1 follows directly:

w∗
1 =

xHGy
1

yH
1
Gy

1

. (14)

This process is then repeated with the second strongest peak
and so on until some convergence criterion is met (see Section
4.4).

4.3.2. Excision of multiple tones at once - Method 3

It is further possible to estimate jointly the complex ampli-
tudes of multiple tones in a single operation if several peaks
have been detected. The method developed in the previous
section must be augmented with one dimension to handle
multiple tones. Assuming we want to excise Q tones, we
have

p = Y · w (15)

where Y is a matrix whose qth column is a complex expo-
nential at frequency fq and w is a vector containing the corre-
sponding Q complex amplitudes wq . The optimization prob-
lem can then be written as

ŵ = arg min
w

tr{G · (x− Y ·w) · (xH −wH · Y H)} (16)

where G = FH · AH · A · F as for the single tone case but
A is an identity matrix except for some zeros at the Q indices
corresponding to the frequencies fq and their close neighbor-
ing frequencies. The solution is obtained by setting all partial
derivatives to zero:

∂

∂w
(L) = 0. (17)

After some lengthy calculus, the solution is found as:

w = [Y H ·G · Y ]−1 · Y H ·G · x (18)

which is a generalization of (14). This process is also repeated
until some convergence (see Section 4.4).

4.3.3. Comparison with previously known methods

The technique proposed in this work should not be confused
with the Matching Pursuit (MP) [10]. Indeed, when estimat-
ing the complex magnitudes of the detected signals, MP is not
able to take into account the minimization of the frequency
leakage introduced by the detected signals themselves. This
is the key feature of our proposed frequency excision tech-
nique.
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Fig. 3. Performance curves for Scenario 1. (Ten tones, m=4,
Methods 1, 2 and 3).

4.4. Convergence criterion

To avoid false detections and false alarms, we must provide
our excision scheme with two tests that are performed after
each iteration:

1. The first test is a leakage reduction criterion. It consists
in measuring the leakage power before and after an excision.
As long as the excision reduces the leakage power, the itera-
tions can continue. Otherwise, the last peak detection (which
would result in a bad excision) is not used for excision and
the process is halted. This test mostly avoids wrong detec-
tions after several peaks have been eliminated.

2. The second test is a ”peak quality” criterion. It consists
in estimating by how much the currently detected strongest
peak is higher than the power of the rest of the spectrum. This
test is useful for terminating the iterations but also to avoid
starting iterations when noise only is present.

5. SIMULATION RESULTS

We have carried out some simulations to analyze the perfor-
mance of the spectrum sensing with non-uniform undersam-
pling and our excision schemes. We considered three scenar-
ios:

Scenario 1: ten tones, m=4, Methods 1, 2 and 3. This
corresponds to the detection of a few narrowband signals.

Scenario 2: three broadband signals that are each ten tones
wide, m=4, Methods 1, 2 and 3. This corresponds to the sens-
ing of modulated signals with moderate bandwidth, with a
low spectrum usage.

Scenario 3: three signals, each two tones wide, and three
signals, each 20 tones wide, m=4, Methods 1, 2 and 3. This
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Fig. 4. Performance curves for Scenario 2. (Three broadband
signals, each ten tones wide, m=4, Methods 1, 2 and 3).

corresponds to the sensing of a more ”crowded” environment
with a mix of narrowband and broadband modulated signals.

The results for the three scenarios are shown in Figure 3,
4 and 5. They highlight the superior performance of the meth-
ods that minimize the frequency leakage (methods 2 and 3).
When the number of signals increases, the detection proba-
bility of Method 1 starts to saturate because it does not cope
well with the leakage. We can also observe that, thanks to
the convergence criteria, the level of false detections for all
methods is kept to a small value.

6. CONCLUSION

In this work, we have proposed a method to perform spectrum
sensing on non-uniformly under-sampled signals. The non-
uniform sampling is helpful because it allows to suppress the
frequency domain aliasing that normally comes along with
under-sampling. On the other hand, it introduces frequency
leakage that masks weaker signals. Our contribution was to
devise novel frequency excision methods that reduce the im-
pact of this leakage. We have shown by simulation that our
method is applicable to tones, narrowband and wideband sig-
nals and mixtures thereof; hence, it is useful for a wide range
of spectrum sensing scenarios. This technique is especially
attractive for the sensing of a wide RF band with a fast ADC
that is driven much below the Nyquist rate to save power.
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