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Abstract—Cooperation among several secondary users for suc-
cessful spectrum sensing defines an upper bound on the number
of channels that can be sensed. Consequently, the maximum
utilization is bounded by the number of sensing nodes ratherthan
the availability of the channels. Hence, a subset of the channels
should be selected based on the traffic requirements, and the
secondary users should be assigned to those channels for the
sensing task. In addition, secondary users experience different
channel conditions due to interference, noise, and geographical
location. Therefore, a secondary user should be assigned toa
channel for which its sensing metrics are satisfactory. In this
paper, we consider the problem of channel and user selectionfor
cooperative sensing task. We model the mentioned channel selec-
tion and user assignment problem as a non-linear optimization
problem and solve it using two alternative objectives to achieve
increased throughput and number of satisfied users.

I. I NTRODUCTION

Sensing is the most critical operation that enables the
utilization of cognitive radio (CR). Sensing quality is usually
measured by detection probability and false alarm probability.
Cooperative sensing is shown to be more robust than individual
sensing since it involves more sensors that are geographi-
cally apart and have different signal characteristics. On the
other hand, the spectrum is large and sensing all available
channels with limited number of secondary users (SUs) is
impossible. Hence, a clever mechanism to select channels that
can be sensed more accurately is needed together with the
assignments of secondary users to those particular channels
for sensing.

In addition, the transmission requirements of the SUs also
affects the channel selection, and should be taken into account.
If the channel capacities do not satisfy the user requirements,
the utilization and throughput will be low, significantly affect-
ing the performance.

Shen et al. study the optimization of cooperative spectrum
sensing in cognitive radio [1]. They also try to maximize chan-
nel throughput by making use of cooperative sensing strategy
[2]. They use energy detection for local sensing, and counting
rule for cooperative decision. Their goal is to find the settings
for sensing such that the channel throughput is maximized.
Fan and Jiang try to find the ideal sensing setting for a
multi-channel multi-user secondary network with cooperative
sensing [3]. The sensing setting includes the time dedicated
for the sensing task, and allocating that time to multiple chan-
nels. Zhang et al. use partially observable Markov decision

process for scheduling of cooperative spectrum sensing [4].
They employ the myopic policy, which may not always be
optimal. Moreover, they analyze the properties of the optimal
policy for some simple cases. Zhang et al. also look at the
cooperative sensing scheduling problem from an energy point
of view [5]. They maximize the useful energy consumption,
and use bisection search to find the optimal solution. Peh
et al. optimize throughput by employing cooperative sensing
[6]. They consider a single channel, and obtain the ideal
values of sensing time and type of logic to be used for hard
decision combining. They decompose the main problem into
two subproblems and obtain a local optimum solution. Song
et al. also study the single channel case and find the ideal
number of seconday users for sensing, and also ideal durations
for transmission and sensing [7].

These approaches do not differentiate between sensing
quality of different SUs [1-7]. However, thanks to interference,
noise and geographical location, an SU has different sensing
quality for different channels. Moreover, they assume all
channels can be sensed, which is not energy nor time efficient
considering the spectrum and operating range of a typical
cognitive radio network.

In this paper, we propose a system model together with
its optimization model for channel selection for transmission
and cooperative sensing that maximizes expected throughput
of the system. Subsequently, we solve the problem using
genetic algorithm along with CPLEX software, and evaluate
its performance for different operational parameters.

The rest of the paper is organized as follows: In section
II, we present the system model, define the decision variables
and construct the optimization model. Section III discusses
how non-linearity in the optimization problem is handled. The
results of the performance analysis are given in Section IV.
Finally, we conclude the paper and explore future research
directions in section V.

II. JOINT OPTIMIZATION OF CHANNEL AND USER

SELECTION

In this section, we formulate and solve the cooperative sens-
ing scheduling problem simultaneously with the transmission
scheduling for infrastructure based CR networks.
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A. System Model

In our system model, we assume that all channels operate
according to the frame structure given in Figure 1. A frame
starts with the revision of the transmission schedule for the
current frame. After the transmission schedule is revised,it
is announced to SUs by the secondary base station (BS).
Secondary BS gathers the requests for the next frame subse-
quently. Then, data transmission begins. We assume a TDMA
scheme withT slots for all channels. During data transmission
period, secondary BS works on the sensing and transmission
schedule for the next frame. When transmission period ends,
the sensing schedule is announced, which is followed by
a quiet sensing period where the SUs sense the channels
assigned to them. The secondary BS retrieves the sensing
results from the SUs, and based on those results it revises
the transmission schedule at the beginning of the next frame.
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Fig. 1. Frame Structure

At request collection phase, each SU that requires a trans-
mission opportunity for the next frame, informs the secondary
BS about the number of bits it needs to send during the next
frame. That is to say, the secondary BS knows all requirements
of the SUs and it tries to allocate channels based on those
requirements. However, in order to select the channels for
allocation, a subset of all the candidate channels must be
sensed. In this work, we are mainly focused on the joint
scheduling of cooperative sensing and transmission.

We employ cooperative sensing mechanism with hard de-
cision combining using majority logic since it is less error
prone compared to individual sensing. Furthermore, a couple
of criteria should be met in order to use a channel for
transmission. Firstly, the result of the sensing procedureshould
indicate that the channel is not occupied by a PU. Secondly.
the channel should be sensed accurately. LetQD

m and QF
m

denote the cooperative detection and false alarm probabilities
for channelm, respectively. If channelm is to be employed for
transmission, we require thatQD

m ≥ thQ
D andQF

m ≤ thQ
F

wherethQ
D andthQ

F are threshold values for probability of
detection and probability of false alarm, respectively. Inour
model, we assume that in order to successfully sense a channel
δ SUs are needed. Moreover, we let individual detection and
false alarm probabilities be different not only among SUs but
also for different channels for each SU.

B. Optimization Model

During the operation of the Cognitive Radio Network, we
would like to sense as many channels as possible in order
to obtain the maximum information about the status of the
channels. Since there are many channels and the number of
SUs is limited, sensing all channels is usually not an option.

Moreover, we also have to keep the cooperative detection, and
false alarm probabilities in compliance with their respective
thresholds for the channels that are used for transmission.
Hence we would like to successfully sense the channels that
are more likely to be used for transmission by the SUs, and
if there are still SUs unassigned for sensing, then sense other
channels for updating our information about those channels.

The parameters for the system are given in Table I. In
this table, the parameteram deserves some explanation. It
estimates the probability that channelm is not occupied by
a PU. The value ofam is calculated based on past data. To
accommodate for trends such as peak hours of the day, an
exponential smoothing procedure or a window based approach
can be used. The former takes all of the past data into account
whereas the latter takes only the last measurements within the
window.

TABLE I
MODEL PARAMETERS

M Number of channels
N Number of SUs
T Number of transmission slots in a frame
am Estimated probability that channelm is available for transmission
Rn Number of bits for usern that need to be sent at next frame
Cm Number of bits that can be sent in a slot using channelm

PD
mn Detection probability of usern for channelm

PF
mn False alarm probability of usern for channelm

QD
m Cooperative detection probability for channelm

QF
m Cooperative false alarm probability for channelm

thQ
D Threshold value for cooperative detection probability

thQ
F Threshold value for cooperative false alarm probability

After discussing the parameters, we give the decision vari-
ables for the optimization model. Let

ymnt =

{

1, if channelm is used for tx bySUn at slot t

0, o/w
,

rmnt = number of bits that will be sent bySUn using

channelm at slot t in the next frame,

xmn =

{

1, if channelm is sensed bySUn in this frame

0, o/w
,

vn =

{

1, if SUn transmits during next frame

0, o/w
,

um =

{

1, if channelm is to be sensed in this frame

0, o/w
,

zm =

{

1, if channelm is used for tx in the next frame

0, o/w
.

Then our problem becomes:

max w =

M
∑

m=1

N
∑

n=1

T
∑

t=1

amrmnt (1)



subject to
M
∑

m=1

ymnt ≤ 1 ∀n, t (2)

N
∑

n=1

ymnt ≤ 1 ∀m, t (3)

M
∑

m=1

T
∑

t=1

ymnt ≤
Rn

Cmin
vn ∀n (4)

rmnt ≤ Cmymnt ∀m,n, t (5)
M
∑

m=1

T
∑

t=1

rmnt = Rnvn ∀n (6)

vn ≤
Rn

R+

min

∀n (7)

M
∑

m=1

xmn ≤ 1 ∀n (8)

N
∑

n=1

T
∑

t=1

ymnt ≤ Tzm ∀m (9)

zm ≤ um ∀m (10)
N
∑

n=1

xmn = δum ∀m (11)

thQ
Dzm ≤ QD

m ∀m (12)

QF
m ≤ thQ

F + (1− zm) ∀m (13)

QD
m =

∑

A∈Hδ

δ
∑

k=⌈δ/2⌉

∑

B∈Ak

[
∏

i∈B

PD
mixmi

∏

j∈A\B

(1 − PD
mj)xmj ] ∀m (14)

QF
m =

∑

A∈Hδ

δ
∑

k=⌈δ/2⌉

∑

B∈Ak

[
∏

i∈B

PF
mixmi

∏

j∈A\B

(1 − PF
mj)xmj ] ∀m (15)

ymnt, xmn, vn, um, zm ∈ (0, 1) ∀m,n, t (16)

rmnt ≥ 0. (17)

The objective in (1) maximizes the expected throughput of
the system for a frame by favoring channels with largeam
values. Constraint (2) ensures that an SU can transmit in a
single channel at any given slot since we assume that all SUs
have single transceiver. Constraint (3) denotes that at most one
SU can transmit in a channel at a given slot. Constraint (4)
forcesvn to be1 if SU n transmits at least once during next
frame. In this constraintCmin denotes the minimum of allCm

values. Furthermore, this constraint also forcesymnt values of
usern to zero ifRn is zero. Constraint (5) expresses that the
number of bits sent over channelm at slot t should be less
than or equal to the channel capacity. Constraint (6) makes sure
that if a user transmits, its requirements are met. Constraint (7)
forcesvn to 0 if Rn = 0. In this constraint,R+

min is defined as

the minimum positiveRn value. Constraint (8) guarantees that
an SU can sense at most one channel. Constraint (9) forces
zm to be 1 if some SU transmits on that channel during the
frame. Constraint (10) expresses that if a channel is to be used
for transmission, it has to be sensed. We ensure that a channel
is sensed by exactlyδ users by constraint (11). Constraints
(12) and (13) are used for forcing cooperative detection and
false alarm probabilities meet the specified threshold criteria
if a channel is used for transmission.

The mathematical definitions ofQD
m andQF

m for majority
logic are given in constraints (14) and (15), respectively.Let us
focus on constraint (14). LetH be the set{1, 2, . . . , N}, and
let Hδ denote the set of all the subsets ofH with δ elements.
Similarly, Ak denotes the set of all the subsets ofA with k
elements. In constraint (14), we select a set B fromAk where
k ranges from⌈δ/2⌉ to δ for majority logic. The elements
in B are the ones that correctly sense the channel (success),
and contributePD

mi. The elements inA\B constitute the users
that sense the channel incorrectly (failure), and contribute (1−
PD
mj). We should state that in order for the product terms

be different than zero, allxmi and xmj values should be 1.
Hence, if we perform this task over all the subsets ofH with
δ elements, we find the probability of successful detection ofa
given channel for the majority logic with the given set of SUs
(with xmn = 1). The same arguments also apply for constraint
(15). Finally, constraints (16) and (17) merely define the types
of variables.

We also propose another problem with the same set of

constraints but with a different objective,max w =
N
∑

n=1

vn.

This objective tries to maximize the number of transmitting
SUs in a frame, that is to say it maximizes the number of
satisfied users. In order to achieve this task, it favors SUs
that has lowRn values whereas our first objective favors SUs
with high Rn values to maximize throughput. For a given set
of parameters, we solve both problems in order to compare
the results.

The model given above is highly non-linear thanks to
constraints (14) and (15) and cannot be solved to optimality
by commercial solvers.

III. TACKLING NON-LINEARITY IN THE OPTIMIZATION

MODEL

In the given optimization model, oncexmn values are
known, the problem becomes a standard binary linear problem
that can be solved by commercial solvers. Knowingxmn

values also enables us to knowum values. Furthermore, we
can calculate correspondingQD

m andQF
m values easily. Based

on those calculatedQD
m and QF

m values, we setzm = 1 if
they satisfy the thresholds. Otherwise,zm = 0, since that
channel cannot be used for transmission. We employ a genetic
algorithm to find the idealxmn andum values, and then solve
for the other variables using CPLEX solver. We now discuss
the details of the genetic algorithm.



A. Encoding

Encoding defines how we represent a solution. To represent
a solution we store the correspondingxmn values in matrix
form andum values in a vector form. As an example, with 4
channels, 5 SUs, and aδ value of 2, a possible solution is:

x =









0 0 0 0 0
0 1 1 0 0
0 0 0 0 0
1 0 0 0 1









, u =









0
1
0
1









.

Since there are5 users, at most2 channels can be sensed.
Hence, only two of theum values are1 in this case. That
would not be the case ifδ was 3.

B. Fitness Function

We use the objective value of the optimization problem as
the fitness value of an individual. As stated above, we employ
CPLEX solver to find the optimal value for givenx andu.

C. Initial Population

Before the algorithm starts, we findr, the number of
channels that can be sensed, which is given bymin ⌊N/δ⌋,M .
For each individual, we randomly selectr channels amongM
channels, and construct theu vector by assigningu values to1
for the selected channels. Then, for each channel to be sensed,
that isum = 1, we randomly assignδ users from the set of
unassigned ones for the sensing task and obtainzm values.
Then, we calculate the fitness value for each individual.

D. Crossover

Crossover operator produces offspring that will be added
to the population for the next generation. In our algorithm,
two parents are used for producing two children. We use
roulette wheel selection together with 3-tournament strategy.
In other words, for each parent three candidate individualsare
inspected. The selection of candidates is done randomly, but
candidates with better fitness values have more chance to be
selected. Among the three candidates, the best one is selected
as the parent.

After the parents are selected, the actual crossover procedure
begins. We first selectr channels to be sensed among the
channels sensed by either the first or the second parent. That
is to say, we first form theu vector. Then, for eachum = 1
for the new child, we look at theum value of the parents.
There are two cases to consider:

• Only one of the parents haveum = 1: We directly copy
thexmn values of that parent at rowm to the child.

• Both parents haveum = 1: This time, we randomly select
a parent and perform the same procedure.

For instance, letp1 andp2 be two parents defined byx1 and
u1, x2 andu2, respectively as follows:

x1 =









0 0 0 0 0
0 1 1 0 0
0 0 0 0 0
1 0 0 0 1









, u1 =









0
1
0
1









;

x2 =









1 0 0 0 1
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0









, u2 =









1
0
1
0









.

Then their childrenc3 that is defined byx3 and u3,
and c4 that is defined byx4 and u4 may look like:

x3 =









1 0 0 0 1
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0









, u3 =









1
1
0
0









;

x4 =









0 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 0









, u4 =









0
1
1
0









.

We observe thatc3 is a feasible child whereasc4 is not, since
SU3 needs to sense two channels at the same time. Let’s now
focus on how an infeasible child is transformed into a feasible
one.

• Step 1: An SU may be assigned to 0, 1, or 2 channels for
sensing. We find the SUs that are assigned to 2 channels
and randomly reverse one of those assignments. Thus,
after this stepc4 may look like:

x4 =









0 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 0









, u4 =









0
1
1
0









.

• Step 2: Even though we solve the double assignment
problem, this time there may be channels with less thanδ
users for sensing. To alleviate the problem, we randomly
select from unassigned SUs and assign them to those
channels until there areδ users for each channel that is
to be sensed. After this stepc4 may look like:

x4 =









0 0 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 0 0









, u4 =









0
1
1
0









.

After these two steps, a child is guaranteed to be feasible since
each SU is assigned to at most one channel, and all channels
to be sensed haveδ users assigned to them.

E. Mutation

When we generate offspring population, we perform mu-
tation operation on each new member with some probability
pm. Mutation operation is defined as randomly exchanging
two rows of the child. For instance, mutation operator applied
to c4 may result in:

x4 =









0 0 0 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 1 1









, u4 =









0
1
0
1









.

F. Replacement

We use the elitist strategy to perform replacement. We add
all offspring to the current population and we discard the ones
with worse fitness values such that the original population size



is maintained in order to form the next generation. However;
when adding an offspring to population, we check that if there
is an individual with the same chromosome. If that is the case,
we do not include that offspring in the population even if it
has a good fitness value, to preserve the diversity.

The algorithm runs for a predefined number of iterations.
The parameters that are used for the genetic algorithm are
given in Table II.

TABLE II
PARAMETERS FOR THE GENETIC ALGORITHM

Population Size 100
Number of Iterations 100
Offspring Population Size 20
pm 0.1

IV. EVALUATION OF THE METHOD

For performance evaluation of the proposed method, we
assign a uniform random value between (0, 1) foram values.
PF
mn is also uniform random between (0.1, 0.4) for each

channel-user pair. We assume a Rayleigh channel model with
mean SNR,µSNR. Then for each user and channel, we assign
an exponential random SNR value. Based on that value and
PF
mn, we calculate the corresponding detection threshold (∆)

andPD
mn. Furthermore, we assign a random channel capacity

(Cm) to each channel that is uniformly distributed between
(0.125, 2) Mb. Each SU generates traffic for a given frame
randomly based on an activity ratio,β. If the random number
is smaller thanβ, we also assign a uniform randomRn value
between (0.125, 5) Mb. The sameRn, Cm, am, PF

mn values
are used throughout the runs for consistency. In addition, the
same SNR value is used for each channel-user pair for a given
µSNR. The other parameters are given in Table III. All values
shown in the figures are the average of ten runs.

TABLE III
MODEL PARAMETERS

M 20
N 100
T 10

thQ
D 0.9

thQ
F 0.1

δ {5, 7, 9, 11, 13}
β {0.2, 0.4, 0.6, 0.8, 1}
µSNR {4dB, 5dB, 6dB, 7dB, 8dB}

The effect of µSNR on expected throughput (ET) and
transmitter count (TC) for different values ofδ for throughput
maximization (TPM) and transmitter maximization (TXM) is
shown in Figures 2, and 3, respectively. For a givenPF

mn,
higher SNR implies higherPD

mn. Both performance metrics
favor largeδ values whenµSNR is low. However, asµSNR

increases both metrics increase for differentδ values, the rate
of increase for smallerδ being more significant. This is due
to the fact that with higherPD

mn, more channels can be sensed

accurately whenδ is low. For instance, for aµSNR of 4dB,
takingδ = 5 leads to zero ET since no channel is sensed with
adequate accuracy. On the other hand, whenµSNR = 8dB,
a δ value of 5 leads to the maximum ET. Thus, selection of
the idealδ value heavily depends onµSNR. Another point to
note is that, even though ET does not differ significantly for
the two objectives, the same argument does not apply to TC,
especially for low values ofµSNR.
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Fig. 2. Expected throughput and transmitter count for TPM (N = 100,
β = 0.6)

The performance metrics for changingβ and δ values are
given in Figures 4, and 5. As we can see from Figure 4(a), ET
almost saturates afterβ = 0.6 for TPM. On the other hand, ET
first increases then slightly decreases for increasingβ values
for TXM as shown in Figure 5(a). This can be attributed to
the fact that beyond a saturation point, increasingβ adds more
users with smallRn values. By favoring those users, although
ET slightly decreases, TXM objective increases TC. This fact
is also observed from Figure 5(b). It should be noted that for
this caseδ = 9 always achieves the best performance.

V. CONCLUSION

In this paper a joint transmission and sensing scheduling
problem is defined in terms of its mathematical model together
with two alternative objectives. Due to its non-linear nature,
the optimization problem is solved by using genetic algorithm
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Fig. 3. Expected throughput and transmitter count for TXM (N = 100,
β = 0.6)
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Fig. 4. Expected throughput and transmitter count for TPM (N = 100,
µSNR = 6dB)
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Fig. 5. Expected throughput and transmitter count for TXM (N = 100,
µSNR = 6dB)

together with CPLEX. For this task, building blocks of the
genetic algorithm such as crossover and mutation strategy are
defined. Then, both problems are solved for varying set of
parameters.

For future work, we plan to model the same problem for
a general case by incorporatingδ and decision logic into the
model. Hence, it will be possible to select the idealδ and
decision logic for each channel.
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