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Abstract— Detecting primary signals with very low Signal-to-
Noise Ratio (SNR) is a very important problem in cognitive radio 
(CR) systems. Small parameter uncertainties are unavoidable in 
any  practical  system,  and  especially  the  noise  variance  
uncertainty has great effect on the performance of the most basic 
spectrum sensing method, energy detection. This has motivated 
the need for advanced spectrum sensing algorithms, like 
eigenvalue based spectrum sensing, which can be used to 
overcome the effects of parameter uncertainty in very low SNR 
cases. In this paper we study the effects of channel frequency 
selectivity, in combination with noise uncertainty, in case of 
energy detector and eigenvalue based spectrum sensing. It is 
demonstrated that channel frequency selectivity significantly 
enhances the performance of eigenvalue based spectrum sensing 
techniques.  

Keywords-component; Energy detector based spectrum sensing, 
eigenvalue based spectrum sensing, AWGN, frequency selective 
channel and noise uncertainty 

I.  INTRODUCTION  
ncreasing traffic rates, limited system capacity and 
inefficient spectrum utilization are very important 
challenges in the future development of wireless 

communications [1]. In solving these challenges, cognitive 
radio (CR) and advanced signal processing techniques have 
recently been studied extensively [2, 3, 4, 5, 6]. Spectrum 
sensing is a fundamental component of CR systems. Hence, 
different spectrum sensing algorithms have been developed 
with different characteristics regarding detection sensitivity 
and tolerance against various imperfections which are 
unavoidable in practical sensing devices.  

There are many problems which affect the performance of 
spectrum sensing in practice. The first problem is that reliable 
sensing has to be achieved with very low signal-to-noise ratio 
(SNR). Secondly, the multipath fading and shadowing cause 
power fluctuation of the received signal [7]. Variation and 
unpredictability of the precise noise level at the sensing device 
is another critical issue, which is called “noise uncertainty”. In 
many studies, the noise variance is assumed to be exactly 
known according to previous measurements [8], but in 
practice it is often very difficult to estimate the noise level 
accurately. Especially, the performance of the traditional 
energy detector based spectrum sensing methods significantly 
decreases under noise uncertainty [7]. 

Alternative spectrum sensing methods have been 
investigated to overcome these challenges. Eigenvalue and 
covariance based spectrum sensing techniques are very 
interesting alternative solutions for the noise uncertainty case, 
in spite of relatively high computational complexity. While the 
noise variance knowledge is not required for eigenvalue and 
covariance based spectrum sensing techniques, small changes 
or uncertainty on noise variance have no effect on the 
spectrum sensing performance [9,10]. 

So far, most of the spectrum sensing studies have focused 
on the AWGN channel model. While most of CR systems 
work under frequency selective channel, investigation of 
frequency selective channel effects on spectrum sensing 
algorithms is a very important topic.  

The goal of this paper is to investigate the effects of 
frequency selective channel, considering also the noise 
uncertainty effects, using traditional energy detector and 
eigenvalue based spectrum sensing. We consider a simplified 
signal scenario, where only Gaussian signal model is used 
under Indoor, SUI-1 and ITU-R Vehicular A multipath delay 
profiles [11]. The applications of cooperative sensing 
approaches, which are very essential for reliable overall 
spectrum sensing schemes, are left as topics for future studies.  

The rest of the paper is organized as follows. In Section 2, 
signal models are given for different frequency selective 
channels and analysis of energy detector and eigenvalue based 
spectrum sensing are summarized. Section 3 gives simulation 
results for the channel models considered, and finally, some 
concluding remarks are given about the performance of these 
methods and about the effects of channel frequency selectivity 
on the performance of eigenvalue based spectrum sensing 

II. SPECTRUM SENSING TECHNIQUES 

A. Energy detector based spectrum sensing with noise 
uncertainty  

The analysis of energy detector based spectrum sensing, 
considering also the effects of noise uncertainty, is given in 
this  section  based  on  [7].  The  two  hypotheses  regarding  the  
absence or presence of a primary transmission in the received 
signal, can be expressed as  

I

CROWNCOM 2012, June 18-20, Stockholm, Sweden
Copyright © 2012 ICST
DOI 10.4108/icst.crowncom.2012.248467



 

2

( )

2 2

0 : ( ) ( ) (0, )

1: ( ) ( ) ( ) ( ) (0, )

w

x n

x w

H y n w n N

H y n s n c n w n N
 (1) 

 
When the AWGN only is present, the white noise is modeled 

as a zero-mean Gaussian random variable with variance 2
w , 

i.e., 2(0, )ww N . Signal can also be modeled as a zero-mean 
Gaussian variable 2(0, )xx N  where, 2

x is the variance 
(power) of the received primary user signal, including the 
effects of the channel fading and frequency selectivity. 

For this case, the decision statistics can be obtained as [3] 
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As y has complex Gaussian distribution, the probability 
distribution functions (PDF) of the outputs of test statistic yT
can be approximated as Gaussian distributions under 0H and

1H [7]. Hence, the probability distribution of test statistic yT
can be modeled as  
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There are two vital probabilities, the probability of detection 

DP  and probability of false alarm FAP .  When there is a signal 
in the sensing spectrum interested, DP  is considered and it can 
be defined as 

 1( | )D yP P T H  (4) 
where  is the threshold value for detection. The false alarm 
probability FAP gives the probability for the event that the 
primary signal is absent, but the decision device decides 
incorrectly that there is a signal.  It can be formulated as [3] 

 0( | )FA yP P T H  (5) 

   The threshold value can be obtained according to the target 
false alarm probability and noise variance assumed. The 
threshold value and the actual false alarm and detection 
probabilities can be expressed as follows  

 1 4 21( )FA w wQ P
N

 (6) 
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The optimum threshold value is calculated according to 

the noise and primary signal variances information. It is very 
difficult to actually know the signal variance due to the 
channel environment characteristics. Hence, threshold value 
always is calculated from the noise variance which is assumed 
to be known according to the previous measurements or 
special noise calibration techniques possibly applied in the 

receiver. In practice, the estimation of exact noise variance is 
not possible. The detection and false alarm probabilities as 
functions of the SNR depend critically on the accuracy of 
noise variance estimate.  In practice, the noise variance can be 
expected to be in the range 2 2 2[(1/ ) , ]w w w  where 1  
is a parameter that quantizes the size of the uncertainty. The 
noise uncertainty is usually expressed in dB units as

1010logx . In the presence of noise uncertainty, the 
expressions for FAP  and DP  are  modified as follows [7] 
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The noise uncertainty introduces the so-called SNR wall: with 
a given uncertainty  there is a minimum SNR value under 
which a primary signal cannot be reliably detected, no matter 
how long time record is used.  

B. Eigenvalue based spectrum sensing  
Eigenvalue based spectrum sensing algorithms can be 

applied for different kind of signals without noise variance 
knowledge. Hence, these algorithms are very robust, 
overcoming the noise uncertainty problem, and can even 
perform  better  than  energy  detection  when  the  signals  to  be  
detected are highly correlated.  In the following we review the 
eigenvalue based algorithms based on [9,10]. 

  
The signal model of eq. (1) is valid also in this case. We 

considering L  consecutive symbol intervals with M  samples 
within each interval. Within each symbol interval, the signal is 
highly correlated. M is called the oversampling factor.   Now 
the sequences of received signal, primary signal, and noise are 
defined as 
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The statistical covariance matrices of the signal and noise 
are defined as 
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Eigenvalues of yyR  and †
ssHR H are defined as

1 2 ... ML  and 1 2 ... ML , respectively.  



1) Algorithm 1: Max-Min eigenvalue based sensing 
(MME) 

Compute the maximum and minimum eigenvalues 
max min( , ) of the covariance matrix ( )yy NR . The covariance 

matrix is obtained by averaging N sample covariance matrices 
(here n indicates the first sample used in the calculation of 
each covariance estimate) 
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      The ratio of max min, is compared with the threshold 1
which is calculated according to the distribution of covariance 
matrix of noise, when the signal is absent 
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( )ww NR  is nearly a Wishart random matrix [12]. The 
distribution of the eigenvalues has been investigated to define 
the threshold value. In [13, 14] the Tracy-Widom distributions 
were studied and 1F , the cumulative distribution function 
(CDF) of the Tracy-Widom distribution of order 1 was derived 
to get closed form expression  

 2
1

1exp ( ( ) ( ) ( ))
2 t

F q u u t q u du  (15) 

where ( )q u  is  the  solution  of  the  nonlinear  Painleve  II  
differential equation 

 3''( ) ( ) 2 ( )q u uq u q u  (16) 
Table 1 gives the values of 1F  at some points. Also 1

1F  
can calculated using same table  

TABLE I 
NUMERICAL TABLE FOR THE TRACY-WIDOM DIST. OF ORDER 1 

t -3.90 -3.18 -2.78 -1.91 -1.27 -0.59 0.45 0.98 2.02 
F1(t) 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99 

     Utilizing the table or numerical method for calculating the 
values for 1

1F ,  together  with  values  of  N  and L , the 
threshold 1 can be formulated as  
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When max min 1( / ) ,  the  primary  signal  is  deemed  to  be  
present, otherwise it is assumed that there is no signal in the 
band of interest. 

It is very intractable mathematically to get theoretical 
detection probabilities for the max/min eigenvalue based 
spectrum sensing algorithm. Hence, approximated value has 
been obtained using an empirical mode [9]. This 
approximation is given for Algorithm1 as follows 

 † † 2
yy ss ww ss wR HR H R HR H I  (18) 
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In equation (20), according to the random matrix theorem 
[12], and v are calculated as 2( 1 )N ML  and 

1/ 3
1 (1 / 1) (1/ )N ML N ML . 

 
2) Algorithm 2: Energy with min eigenvalue based sensing 

(EME) 

Compute the minimum eigenvalue min  of the covariance 
matrix ( )yy NR  in the same way with Algorithm 1. Then, 
compute average power of the received signal as 
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Threshold value 2 is calculated with the inverse q-function 
1Q  as follows 

 1
2 2
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 (21) 

When min 2( ( )/ )T N , the signal is assumed to be 
present, otherwise it is expected that there is no signal in the 
band of interest. 
    While the thresholds can be pre-computed based only on N
, L and FAP  , there is no need to estimate noise variance 
according to the previous measurements. Hence, it can be seen 
that these two algorithms are very robust to noise uncertainty. 

Similar theoretical difficulties are encountered when 
calculating the probability of detection for Algorithm 2. 
However, the following numerical expression has been 
established [9] 
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Due to the approximation, there are some differences 
between theoretical and simulation results of the two 
algorithms.  

 
The effects of channel frequency selectivity appear into the 

detection probability expressions (20) and (23) through the 
eigenvalues. The eigenvalue spread is a metric for the 
correlatedness of the sample sequence used in detection. 
Naturally, flat signal or noise spectra correspond to 
uncorrelated sample sequences, in which case the covariance 
matrix approaches a scaled unit matrix and the eigenvalues are 



identical. Correlations are introduced to the possible primary 
signal spectrum through the characteristics of the transmitted 
waveform, e.g., by pulse shaping or channelization filtering. 
Additionally, frequency selective channel introduces 
correlations (i.e., a non-flat power spectrum) to the received 
sample sequence. With non-oversampled signal model, the 
waveform generation related correlations disappear if the 
signal spectrum is flat within the used signal band. Still the 
channel frequency selectivity based correlations may be 
sufficient for detecting the primary signal. This idea is tested  
in the following through numerical examples.  

III. SIMULATION RESULTS 
Simple Gaussian signal models which includes both non-

oversampled and 2x-oversampled signal are shown as seen 
figure  1.  In  this  figure,  the  signals  are  shown  for  the  ITU-R  
Vehicular A channel case [11]. In our signal model, the 
bandwidth is chosen as 20 MHz. The Vehicular A channel 
model has 6 taps the maximum delay spreads is about 2.5 s.  

 
Figure 1.  Examples non-oversampled and 2x-oversampled spectral models 

under Vehicular A channel and AWGN noise. 

 For realistic Indoor channel model, we use the 16-tap 
model with 80 ns rms delay spread such as from [15]. The 
third channel model used in this study is the SUI-1 model [11]. 
This model has 3 Ricean fading taps and 0.9 s delay spread, 
and it is clearly less frequency selective than the other two.  
These different cases are presented in the following 
subsections. Theoretical results with channel effects are 
obtained using the model of eqs. (9) and (10) for energy 
detection with noise uncertainty and eqs. (20) and (23) for 
eigenvalue based spectrum sensing. The simulation results, as 
well as theoretical results are averaged over 1000 channel 
instances. 

A. Indoor channel case for both non-oversampled and 
oversampled Gaussian signal model 

Figure 2 shows detection probabilities of traditional energy 
detector and eigenvalue based spectrum sensing with Indoor 
channel [15] in the non-oversampled case. The 1 dB noise 

uncertainty case is considered as the worst-case scenario in 
terms of channel noise variance estimation.  The time record 
length is 10000 complex samples. With this number of 
samples and 1 dB noise uncertainty, eigenvalue based 
spectrum sensing has still better performance compared to the 
energy detector based spectrum sensing with frequency 
selective channel. Similar results are shown for 2x -over-
sampled signal using the same channel instances as in figure 3.  

 

Figure 2.  Detection probability of energy detector and eigenvalue based 
spectrum sensing under 1 dB  uncertainty using Indoor channel with non-

oversampled signal. 

 

Figure 3.  Detection probability of tenergy detector and eigenvalue based 
spectrum sensing under 1 dB uncertainty using Indoor channel with 2x-

oversampled signal. 

The actual false alarm probabilities of eigenvalue based 
spectrum sensing for both non-oversampled and oversampled 
signals are given in figure 4. We notice that the false alarm 
probability is independent of SNR, as expected [9, 10]. While 
the simulated false alarm probability in the non-oversampled 
signal case becomes quite significant, the actual false alarm 
probability under oversampled signal model becomes very 



small. Very similar performance is obtained also for SUI-1 
and Vehicular A channel cases, as can be seen from the 
‘floors’ of the detection performance curves. Thus the actual 
false alarm probability is not related to channel effects in 
eigenvalue based spectrum sensing. The same detection 
threshold is used in non-oversampled and oversampled cases. 
Based on these results, there is the possibility to reduce the 
detection threshold in the oversampled case to improve the 
detection performance, while maintaining a realistic false 
alarm probability. 

 
Figure 4.  Actual false alarm probability of eigenvalue based spectrum 

sensing techniques. 

B. Vehicular A  channel case for both non-oversampled and 
oversampled Gaussian signal model   

Vehicular A channel model [11] is applied for both non-
oversampled and oversampled signal models in figure 5 and 
figure 6, respectively. The same signal parameters are used as 
in the Indoor channel case. Significant performance 
differences can be seen due to the difference of channel 
models.  

 
Figure 5.   Detection probability of energy detector and eigenvalue based 
spectrum sensing under 1 dB uncertainty using Vehicular A channel  with 

non-oversampled signal. 

 

Figure 6.  Detection probability of energy detector and eigenvalue based 
spectrum sensing under 1 dB uncertainty using  Vehicular A channel with 

oversampled signal. 

C. SUI-1 channel case for both non-oversampled and 
oversampled Gaussian signal model   

In figures 7 and 8, the channel model is chosen as SUI-1 [11] 
for both non-oversampled and oversampled signal models, 
respectively. Comparing the results of non-oversampled and 
oversampled signal cases, significant difference of detection 
probability can be seen with eigenvalue based spectrum 
sensing. In the oversampled signal case, the correlation 
between consecutive samples is increased. In case of 
traditional energy detector, the detection performance is 
somewhat reduced with oversampling due to increased noise 
bandwidth.   

 
Figure 7.  Detection probability of energy detector and eigenvalue based 
spectrum sensing under 1 dB uncertainty using SUI-1 channel with non-

oversampled signal. 



 

Figure 8.  Detection probability of energy detector and eigenvalue based 
spectrum sensing under 1 dB uncertainty using SUI-1 channel with 

oversampled signal. 

IV. CONCLUSIONS 
We have analyzed the performance of the traditional energy 

detector and eigenvalue based spectrum sensing techniques 
under different frequency selective channels, the Indoor, ITU-R 
Vehicular A and SUI-1 channel models in particular. Actually, 
the frequency selective channel can help to increase detection 
probability when using eigenvalue or covariance based 
spectrum sensing algorithms. 

It was seen that max/min eigenvalue approach gives 
consistently better detection performance that energy/min 
eigenvalue approach. Especially, in simulation based results 
with oversampling the difference is significant.  

We have seen that eigenvalue based spectrum sensing 
clearly exceeds the performance of energy detector with 1 dB 
noise uncertainty with Indoor and Vehicular-A channel models, 
whereas with SUI-1, the difference is rather small. Using 
oversampled signal model in detection clearly reduces the false 
alarm probability with eigenvalue based sensing. With SUI-1, 
also the detection performance is significantly improved when 
oversampled signal is used in eigenvalue based detection, 
whereas with Indoor and Vehicular-A channel models, the 
detection performance is slightly degraded in the oversampled 
case.  

The above observations are explained by the fact that SUI-1 
is much less frequency selective than the other channel models 
used. Thus in this case the channel creates less correlations to 
the received signal, and the correlations due to the spectral 
shaping of the transmitted signal are much more important in 
the eigenvalue based detection than in the more frequency 
selective cases. 

One related general aspect regarding spectrum sensing is 
the following: When the sensing station has a line-of sight 
(LOS) connection, the channel can be expected to be mildly 
frequency selective, but also the power level is high due to 
lower path loss. When the sensing station does not have a LOS 
connection, the signal level is lower, but also the channel can 

be expected to be highly frequency selective. Thus, in case of 
shadowing, the PU signal can be detected using the eigenvalue 
based approach without essential limitations due to noise 
uncertainty. In case of LOS channel, simple energy detection 
based approach might be sufficient.  

While Gaussian signal model is used in this study, similar 
techniques and similar conclusions can be also applied for 
spectrum sensing with other primary systems. In the future 
work, to complete the picture, we will consider the effects of 
the spectrum sensing using real-life signal models such as 
WLAN and Bluetooth. It would be interesting also to quantify 
analytically the correlations introduced by the waveform and 
channel in different scenarios. Another topic is to apply low-
complexity covariance matrix based methods, instead of the 
relatively complicated eigenvalue based approaches.  
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