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Abstract— In this paper, we study the capacity of spectrum
sharing (SS) multiple-input multiple-output (MIMO) systems
over Rayleigh fading channels. More specifically, we present
closed-form capacity formulas for such systems with and without
optimal power and rate adaptation. A lower bound on the
capacity is also derived to characterize the scaling law of the
capacity. Results show that increasing the number of antennas
has a negative effect on the system capacity in the low signal-to-
noise (SNR) regime and the scaling law at high SNR is similar
to the conventional MIMO systems. In addition, a lower bound
on the capacity of the SS keyhole MIMO channels is analyzed.
We also present a capacity analysis of SS MIMO maximal ratio
combining (MRC) systems and the results show that the capacity
of such systems always decreases with the increase of the number
of antennas. Numerical results are finally given to illustrate our
analysis.

I. INTRODUCTION

The demand of several new wireless communications ser-
vices is driving the development of new spectrum allocation
policies. To satisfy the spectrum demand, cognitive radio (CR)
was proposed. The basic idea of CR is to allow the unlicensed
users (secondary users) to share the spectrum with the licensed
users (primary users) under some power constraints. That is,
the interference caused by the secondary users at the primary
users should be controlled to an allowable level [1-3]. More
specifically, in [2], the authors have considered the channel
capacity under received power constraint for different fading
channels conditions. In addition, [3] studied the spectrum
sharing (SS) systems with multiuser diversity in which one
secondary user with the best channel condition is selected for
signal transmission.

So far most of the research results for SS systems focused
on the single antenna case. In this paper, we extend the
results of [2][3] to a multiple-input multiple-output (MIMO)
system. For instance, it is well known that applying multiple
antennas can provide higher spectrum efficiency for wireless
communications [4]. Thus, we check in this paper if MIMO
systems can still improve the capacity of SS networks. In par-
ticular, we investigate the capacity scaling laws of SS MIMO
systems. The contributions of this paper are summarized in
what follows.

We analyze single user SS MIMO systems in which the sim-
ple spatial multiplexing is used at the secondary transmitters.
We offer exact closed-form capacity expressions. Also, a lower

bound on the capacity is provided. With the availability of
the channel state information (CSI) at the transmitter, optimal
power and rate adaptation [5] can be applied. We present in
the paper an analysis for such kind of transmission and show
that the channel capacity of such kind of schemes is larger
than the capacity of systems with uniform power allocation.
Next, taking into account a realistic wireless environment, we
consider the keyhole effect [6] and we show that the capacity
of such channels can be lower bounded by an additive white
Gaussian noise (AWGN) channel. Finally, the capacity of a
SS network combined with MIMO maximal ratio combing
(MRC) transmission [7] is analyzed.

II. SYSTEM CHANNEL MODELS

We consider a SS network as shown in Fig.1 where all
the nodes are equipped with multiple antennas. For notation
simplicity, we assume that all the nodes have the same
number of antennas N . Let H and G denote the channel
gain matrices from the secondary transmitter to secondary
receiver and the primary receiver, respectively. We assume
that the secondary transmitter can obtain the full CSI of the
channel matrix H. This can be ensured by using an error-free
feedback link. All the entries of H and G are independent
and identically distributed (i.i.d) complex Gaussian random
variables with zero mean and unit variance. To ensure that
the interference constraint at the primary receiver is met, we
adopt the interference temperature Q. From [3], the maximum
transmitted power PT of the secondary transmitter can be
selected according to the rule

PT =

{
Q

‖G‖2
F

‖G‖2
F > Q

P

P ‖G‖2
F ≤ Q

P ,
(1)

where ‖·‖2
F is the squared Frobenius norm of the matrix and P

is the peak power of the secondary transmitter. As mentioned
in [3], for Q � P case, the effect of the interference tem-
perature Q disappears, which makes the performance analysis
for the secondary system related to the peak power P only
and the analysis in that case reduces to that of the traditional
MIMO system. Therefore, in this paper, like [2], we apply
PT = Q \ ‖G‖2

F as the total transmit power at the secondary
transmitter.
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For notation simplicity, let Y = ‖G‖2
F . Then, the received

signal at the secondary receiver is given by

y =

√
Q

NY
Hs + n, (2)

where n is the complex Gaussian noise with covariance matrix
IN and s denotes the transmit signal vector with covariance
matrix I

N
.

III. CAPACITY ANALYSIS

In this section, we consider the capacity of a single-user
SS MIMO system employing spatial multiplexing. Assuming
the knowledge of CSI at the secondary transmitter, we provide
closed-form capacity analysis for the optimal power allocation
scheme and MIMO MRC systems.

A. Capacity Analysis for a System with Uniform Power
Allocation

Based on the channel model (2), the instantaneous channel
capacity between the secondary transmitter and its receiver can
be written by

C = log2 det
(
IN +

Q

NY
HH†

)
, (3)

where † denoted the transpose conjugate. Compared with
the channel capacity of traditional MIMO system [4], the
difference is the term Y . Thus, we can use some analytical
techniques applied in the regular MIMO systems to evaluate
the capacity (3). By using the singular value decomposition
(SVD), (3) can be rewritten as

C =
N∑

n=1

log2

(
1 +

Q

NY
λn

)
, (4)

where λn are the unordered nonnegative eigenvalues of HH †

and we assume that λn are independent of Y . From [6], the
probability density function (PDF) of an unordered eigenvalue
λn is given by

fλn(λ)=
1
N

N−1∑
i=0

i∑
j=0

2j∑
l=0

(−1)l(2j)!
22i−ll!(j!)2

(
2i− 2j
i− j

)(
2j

2j − l

)
λle−λ.

(5)
In flat Rayleigh fading channels, Y is a sum of N 2 squared
complex Gaussian random variables and follows the Chi-
squared distribution with 2N 2 degree of freedom. Thus, the
PDF of Y is readily given by [8]

f
Y
(y) =

1
Γ(N2)

yN2−1e−y (6)

With (5) and (6) at hand, the ergodic capacity between
the secondary transmitter and the secondary receiver can be

evaluated with the help of [9, Eq.(6.455.1)][10, Eq.(78)] as

E[C] = log2(e)
N−1∑
i=0

i∑
j=0

2j∑
l=0

(−1)l(2j)!
22i−lj!j!

(
2i− 2j
i− j

)

·
(

2j
2j − l

) l+1∑
s=1

1
N2 + l + 1 − s

·2F1

(
1, N2;N2 + l + 2 − s; 1 − N

Q

)
, (7)

where 2F1(a, b; c;x) is the Gaussian hypergeometric function
defined in [9].

For the special case when N=1 and with the help of [9,
Eq.(9.121.6)], the capacity expression (7) reduces to

E[C] =
Q log2(Q)
Q− 1

, (8)

which is in agreement with the previously known result [2,
Eq.(24)]. Using the analyzing method in [11], E[C] can be
lower bounded as

E[C] ≥ N log2

[
1 +Q exp

(
1
N
E

{
ln det

(
HH†

Y N

)})]

= N log2

[
1 +Q exp

(
1
N
E
{
ln det

(
HH†)}

− E{lnY })] (9)

From [11], we know

E
{
ln det

(
HH†)} =

N∑
n=1

ψ(N − n+ 1) −N lnN (10)

and
E{lnY } = ψ(N2), (11)

where ψ(·) is the digamma function. Substituting (10) and (11)
into (9) yields

E[C] ≥ N log2

[
1 +Q exp

(
1
N

N∑
n=1

ψ(N − n+ 1)

− lnN − ψ(N2)
)]
. (12)

For high Q, (12) reduces to

E[C] ≈ log2(e)

[
N lnQ+

N∑
n=1

ψ(N − n+ 1)

−N lnN −Nψ(N2)
]
. (13)

Although the SS MIMO system can still achieve the multiplex-
ing gainN , we can see that the capacity of a SS MIMO system
is less than that of the traditional MIMO system in comparison
with the result in [11]. Note that in (13), Nψ(N 2) accounts
for the interference term. Also, from (13), we can see that the
increase of the number of antennas may have a negative effect
on the system capacity in the low signal-to-noise ratio (SNR)
regime. The reason is that the Nψ(N 2) term is dominant at
low SNR in contrast to the N lnQ term. But with the increase
of SNR, the channels with more antennas can provide higher



capacity. This is unlike the traditional MIMO system case in
which applying multiple antennas can yield a higher channel
capacity in the low and high SNR regime cases.

Fig.2 shows the average capacity of SS MIMO systems
when N = 1 and 3. The exact capacity and its lower bound
are plotted by using (6) and (12), respectively. As expected,
the simulation results perfectly match with their corresponding
analysis. Also the lower bound is tight at high SNR. It is
clearly observed that capacity of multiple antennas is less than
that of the single-antenna case at low SNR regime. However
at high SNR, the SS MIMO system provides higher capacity
like it is the case for traditional MIMO systems.

B. Optimal Adaptive Transmission
From (4), we can see that the CR MIMO channels are

decomposed into N parallel sub-channels. Now assume that
the transmitter can have access to the CSI on each sub-channel
and that every sub-channel can adjust its transmit power
Pi according to the channel variations while satisfying the
interference constraints Y

∑N
i=1 Pi = Q. As such, following

the optimization problem formulated in [5], the achievable
maximum capacity of the SS MIMO system under optimal
power allocation can be written as

E[C] = max N

∫ ∞

0

∫ ∞

0

log2(1 + P (λ, y)λ)fλ(λ)f
Y
(y)dλdy

subject to N

∫ ∞

0

∫ ∞

0

yP (λ, y)fλ(λ)f
Y
(y)dλdy,≤ Q

(14)

where fλ(λ) is the PDF of the unordered λn. Similar to [2], by
using the Lagrangian method, the solution to the optimization
problem (14) is a water-filling algorithm [12]

P (λ, y) =
[

1
η0Y

− 1
λ

]+
, (15)

where η0 is the cutoff value and chosen to satisfy the power
constraint as

N

∫ ∞

0

∫ ∞

η0y

y

(
1
η0y

− 1
λ

)
fλ(λ)f

Y
(y)dλdy ≤ Q. (16)

Substituting (5) and (6) into (16), we see that the cutoff value
must satisfy

η
−(N2+1)
0

Γ(N2 + 2)

N−1∑
i=0

i∑
j=0

2j∑
l=0

(−1)l(2j)!
22i−ll!(j!)2

(
2i− 2j
i− j

)(
2j

2j − l

)

· Γ(N2 + l+ 1)2F1

(
N2 + l+ 1, N2;N2 + 2;− 1

η0

)
= Q,

(17)

where the integral tables [9, Eq.(6.455.1), Eq.(9.137.18),
Eq.(9.131.1)] are used to obtain (17). From (17) with N = 1,
it can be easily verified that (17) reduces to [2, Eq.(12)].
Generally, numerical root finding technique is needed to obtain
η0. From (15), it is clearly observed that water-filling level is
inversely proportional to the gain Y . For arbitrary sub-channel
n, its cutoff value is η0Y . In Fig.3, we plot the cutoff values for
different number of antennas N . We can see that the cutoff

value lies in the range [0,1]. Also, for a given Q, we can
observe that the cutoff value is almost the same for all values
of N . This is unlike the observation in [5] where the cutoff
value is completely different for different numbers of antennas.
The reason is that the cutoff value of λ/Y is η0 and all nodes
are equipped with the same number of antennas N , which
means that λ increases and Y also increases. This results in
the variation of the ratio between λ and Y is not large.

Substituting (15) into (14) we obtain the capacity of a CR
MIMO systems with optimal adaptive transmission as

E[C] =
log2(e)
Γ(N2)

N−1∑
i=0

i∑
j=0

2j∑
l=0

(−1)l(2j)!
22i−l(j!)2l!

(
2i− 2j
i− j

)(
2j

2j − l

)

× Γ(N2 + l + 1)
∫ ∞

η0

ln
(

1
η0
x

)
xl

(x+ 1)N2+l+1
dx

(18)

Unfortunately, no simple closed-form expression is available
for the general case. However, when N = 1 and using
integration by part, (18) reduces to

E[C] = log2

(
1 +

1
η0

)
, (19)

which is in agreement with the previously known result given
in [2, Eq.(13)] for a single antenna spectrum sharing system.

With (8) and (19), we can investigate the capacity improve-
ment induced by the optimal power and date adaptation for
the N = 1 case. Let us define the capacity difference as

Cd = log2

(
1 +

1
η0

)
− Q log2(Q)

Q− 1
= log2

1 + 1
η0

Q
Q

Q−1

(20)

From [2, eq.12], we can see that 1/η0 > Q. Thus, for high
Q, we have

Cd > log2

1 +Q

Q
Q

Q−1

= log2Q
− 1

Q−1

(
1 +

1
Q

)
→ 0 (21)

The above equation shows that the advantage of the water-
filling algorithm is negligible in the high SNR regime.

Fig.4 shows the capacity of SS MIMO systems under
optimal or uniform power allocations strategies. Again, we can
note the same observation as the ones made based on Fig.2.
We note also that the optimal transmission scheme yields high
capacity, as expected.

C. SS MIMO Channels with Keyhole
The analysis for the previous subsections is based on the as-

sumption that the channels are i.i.d Rayleigh fading. However
in some realistic wireless communication environments, the
effect of keyhole channels may exist and degrade the channel
capacity [6]. In this section, we consider a keyhole MIMO SS
system where both of the links from the secondary transmitter
to the primary receiver and the secondary receiver undergo
the keyhole effect. According to the keyhole channels model
[6][13], the capacity of a MIMO CR system with keyhole
maybe can be expressed as

C = log2

(
1 +

QX1X2

NY1Y2

)
, (22)



where X1 = ‖α1‖2, X2 = ‖β1‖2 , Y1 = ‖α2‖2, and Y2 =
‖β2‖2 . The vectors αi and βi represent the scattering at the
transmit and receive antenna arrays, respectively. For Rayleigh
fading channels, these RVs all are Chi-square distributed with
freedom of 2N . Following the analyzing method in [13], a
lower bound for the average capacity can be written as

E[C] ≥ log2

(
1 +

Q

N
expE

{
ln
X1X2

Y1Y2

})
= log2

(
1 +

Q

N

)
.

(23)
Thus, it is interesting to observe that the SS MIMO system
with keyhole channels on both channels and under the same
number of antennas assumption can be lower bounded by the
capacity of an AWGN channel.

In Fig.5, we plot the curves for the capacity of SS keyhole
MIMO channels when N = 2, 3, and 4. We can see that the
lower bounds are very tight for all cases. Also, it is clearly
observed that the capacity of such channels is completely
inversely proportional to the number of antennas. Note that
there is no diversity gain and no multiplexing gain for such
kind of channels. This is unlike the traditional keyhole MIMO
system for which a diversity gain can still be obtained [6].

D. SS MIMO MRC System
The above analysis focuses on a spatial multiplexing system.

Now we turn to another transmission scheme, namely, the
MIMO MRC. Such a scheme is applied at the secondary users.
For the MIMO MRC scheme, both of the transmitter and the
receiver are weighted by the weight vectors and the signals
are combined in such a way that the SNR at the receiver
combiner output is maximized. Such scheme requires the CSI
is perfectly available at both the link ends.

Like [7], we can obtain the output SNR as

γ =
Q

Y
λ, (24)

where λ is the largest eigenvalue of HH†. The PDF of λ for
arbitrary numbers of transmit and receive antennas is given by
[7]

f(λ) =
N∑

k=1

2Nk−2k2∑
m=0

dk,m
km+1λme−kλ

m!
, λ > 0 (25)

where the coefficients dk,m have been defined in [7].
With (24) and (25), the average capacity of an SS MIMO

MRC system can be evaluated as

E[C] =
N∑

k=1

2Nk−2k2∑
m=0

m+1∑
s=1

dk,m log2(e)
N2 +m+ 1 − s

× 2F1

(
1, N2;N2 +m+ 2 − s; 1 − k

Q

)
. (26)

Fig.6 shows the capacity comparison between the SS spatial
multiplexing and the SS MIMO MRC system for N =
2, and 4. As expected, the simulations are in agreement with
the analysis. It is observed that the MIMO MCR scheme has
a little capacity improvement at low SNR in contrast to the
spatial multiplexing scheme (7). Also, we can see that applying

more antennas yields less capacity for the SS MIMO MRC
system. This can be directly observed from (24). Although
the maximal eigenvalue increase with the number of antennas,
the ratio Q/Y maybe decrease and in turn results in the
degradation of capacity.

IV. CONCLUSIONS

In this paper, we present a comprehensive analysis for spec-
trum sharing network with multiple antennas. More specifi-
cally, we derive some capacity expressions and use them to in-
vestigate the scaling law of SS MIMO systems under different
transmission schemes and channel propagation environments.
Results show that the SS MIMO systems operate well at high
SNR regime. SS MIMO systems subject to the keyhole effect
almost have little multiplexing gain and diversity gain. The
capacity of MIMO MRC system is inversely proportional to
the number of antennas over the whole SNR range.
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