A Semantic Layer for Knowledge-Based Game
Design in Edutainment Applications

Andrea Repetto, Chiara Eva Catalano
CNR-IMATI Ge
Via De Marini, 6
16149 Genova, Italy
Email: {andrea.repetto,chiara.catalano} @ge.imati.cnr.it

Abstract—Creating and maintaining complex and realistic
virtual worlds is still a challenge in game design. Realism is
not only related to visual appearance but also to the interactions
and situations in the game. This issue is particularly crucial
in edutainment applications where realism impacts the learning
aspect of the game experience. Introducing semantics in virtual
worlds helps define intelligent objects and interactions which
would turn into a more realistic game. In this work, we propose to
decouple the semantic definition of the game world from its actual
implementation in a general-purpose game engine. A semantic
layer has been developed to bridge the semantics formalized
by ontologies with its realization in the engine. Thanks to this
software library, semantics can be specified in a separate formal
module and reused in different projects. The proposed approach
has been tested to design a serious game concept set in the marine
environment.

Keywords—Semantics, object interaction, ontologies, edutain-
ment, natural heritage.

I. INTRODUCTION

Recent advances in game development technologies have
made it possible the creation of virtual worlds with a high
level of realism, both in visual appearance and in interactions.
In games for leisure, realism helps immersion and engagement
of the player; in edutainment applications, it may be not only
desirable but even crucial to represent real-world situations
and convey some specific message to the player. Realism in
the game world is usually due to the skills of developers, able
to express it in the environment, in the characters and in the
interactions, and encode it explicitly in the game. Introducing
the concept of semantics in games helps to obtain such realism
more “naturally” [1].

According to [2], semantics in the context of virtual envi-
ronments is defined as “the information conveying the meaning
(of an object) in a virtual world”. Semantics can be defined
at different levels: the object semantics, which is related to
the single object; the object relationship, which describes the
possible interactions between objects; the world semantics,
which is about the status of the whole world. These three
levels are interconnected.

In a typical game development scenario, ad-hoc solutions
are used to define the semantics of a virtual object, such as
mark-up languages or behavior scripts. Thus, object semantics
and object relationships are hard-coded, and this represents a
limitation in terms of achieving “intelligent”, i.e. natural and

automatic, interactions in a virtual world, and ultimately in the
development of emergent gameplay mechanics.

A widely adopted technology to represent semantics is given
by ontologies and can be also applied to express formally the
semantics of virtual objects in a game context. Gruber [3]
defined an ontology as “a formal specification of a shared
conceptualization”. Ontologies provide a flexible, yet machine-
understandable, form to express a hierarchy of concepts, called
classes, and how they relate to each other by a set of logical
axioms. An ontology may also contain a set of individuals,
which are instances of some classes. Individuals constitute
the ground level of ontologies: they are concrete objects, for
which ontologies provide a formalization. The combination of
an ontology and the corresponding set of individuals forms a
knowledge base. Besides, using a software component called
semantic reasoner, additional knowledge encoded by axioms
can be exploited.

From a technical standpoint, a game is developed by means
of a game engine, which contains all the functionalities related
to the various aspects of the game, like input, graphics, sound,
assets, and behavior. A game company usually either develops
its own engine or uses a general-purpose one. In both cases, the
adoption of ontologies to express the semantics of objects and
relationships in a virtual world poses the problem of translating
such representation into the engine to design intelligent objects
and interactions.

In this paper, we present the semantic layer we developed
to create a bridge between the semantic representation of the
game elements and their usage (i.e. semantic data) in a general-
purpose game engine. Thanks to this software library, we are
able to:

1) Specify semantics independently of a particular game
engine: this is made it possible by the semantic layer,
which associates the semantic representation of game
objects to the corresponding objects in the game engine;

2) Provide semantic data to the game engine in a
machine-understandable way: this allows high-level
reasoning on the role of an object inside the game world,
making its interaction capabilities with other objects
potentially higher;

3) Modularize semantic data: instead of structuring the
knowledge base as a monolithic entity, we could keep
the aspects related to different knowledge domains sep-

INTETAIN 2015, June 10-12, Torino, Italy
Copyright © 2015 ICST
DOI 10.4108/icst.intetain.2015.259561

arate. This allows to compose them according to the
developer’s needs, and replace only the module related
to a single aspect of the game, while leaving the others
in place;

4) Allow the reuse of the formalized semantics for dif-
ferent software projects: this allows the game designer
to use or extend a set of predefined properties and
behaviors of the game objects, instead of rewriting them
from scratch for each development project.

These features are advantageous when creating complex
game environments in order to decouple semantics and game-
play, and are especially beneficial in edutainment and serious
gaming applications. In such games “used for non-leisure
purposes” [4], the role of semantics is central. On the one
side, it involves the realism both of the virtual world and of
the situations with respect to the educational purpose. The
latter is often much more significant than the first: the main
goal in this context is conveying a message and it is this
one that should guide the design of the game and of the
virtual world. On the other side, the learning content has to be
transmitted correctly and appropriately to the target audience:
the semantics to associate to characters and to all the game
objects has to adhere to the instructional objective.

Formalizing such content in an ontology corresponds to the
creation of a separate educational module, which constitute the
base for a pedagogically-driven design of the game. Moreover,
a learning module as such is reusable for different applications
or different games. Indeed, reusability is currently an open is-
sue in the development of serious games, because these are of-
ten developed with a low budget, while involving stakeholders
with different expertise, that is institutions/schools/companies
on the one hand, and game developers on the other hand.
Reusable learning modules equipped with a suitable semantic
layer to bridge the gap with game engines appears a promising
approach to face such bottleneck.

The paper is organized as follows. In section II, we describe
the previous works in the definition of semantic objects and
interactions in a game, organized from the lowest to the highest
level of semantics they aim to express. In section III, we give a
description of the semantic layer we propose. In section IV, we
describe the game concept for an edutainment application we
are developing and using to validate the approach. In section
V, we discuss the technical aspects of the implementation.
Finally, in section VI we show the advantages and limits of
our work, and give an overview of possible future research
directions.

II. PREVIOUS WORKS

In the introduction, we have stressed the importance of
designing an effective serious game in order to convey a
specific message to the player. Achieving this goal is not an
easy task for a game developer, who does not usually have
competences in the learning domain knowledge, in pedagogy
and psychology and would need some guidelines to set up
the project correctly. In our research, we focused particularly
on methods employing a formal specification of the learning

content in order to drive the design process; thus, the problem
is to translate such knowledge in the game world appropriately.

There are two phases where a semantic description can be
beneficial: the design phase and the execution phase. In the
design phase, some constraints on the placement of the game
objects can be imposed semantically [5]; alternatively, the
world can be generated automatically with knowledge-based
procedural techniques [6] [7].

Our work, however, concentrates on the executive phase
of the game, where semantics can be employed for the
specification of the interactions. Indeed, the game industry has
already recognised the importance of a semantic representation
in game Al, suggesting, as a best practice, the usage of an
intermediate layer of knowledge between the agent and the
game world in order to achieve a more life-like behavior [8].

In academia, a first step in this direction goes back to
the definition of smart objects [9]: smart objects are virtual
objects enriched with embedded functionality; according to
the definition given in [2], they belong to the object semantics
level. Intelligent agents can interrogate smart objects to plan
a series of actions [10], collaborate with each other [11],
or to identify possible interactions on the base of previous
experiences [12].

The STARFISH architecture [13] defines synoptic objects
for real-time object manipulation by autonomous agents. A
synoptic object can provide agents with “a summary, or
synopsis, of what interactions it affords”. Although the agent is
able to do some reasoning on the object properties, inspired by
the concept of affordance [14], the communication language
is specified ad-hoc for the specific application.

Smart objects have influenced many commercial games:
the Sims' game series is a notable example. It is a life
simulation game regarding a family of virtual humans that
express an autonomous behavior. Objects around them can
be used to satisfy their needs (e.g. hunger and sleep): this
is possible because each object offers information on which
need can satisfy and how it can be used (in concrete terms,
which animation to play). Scribblenauts® represents another
interesting case study. The main character has the ability to
create objects by selecting from a dictionary of nouns and
adjectives, where each term is mapped to a hierarchy of classes
and the adjectives qualify dimensions and functions; each
item is provided with its typical behavior/functionalities. For
instance, a ladder can be created bigger/smaller and has the
function to be climbed.

Another recent trend in reaching a new level of interaction
appeared in sandbox games. Minecraft is an example, where
worlds are generated procedurally. These are composed of
cubic “blocks” that the user can collect with the appropriate
tools. The blocks can be reused later, either to craft other tools
or to build structures. Each element of the game world is in
fact an interactive game object.

Thttp://www.thesims.com
Zhttp://www.scribblenauts.com

http://www.thesims.com
http://www.scribblenauts.com

4)

Semantic Layer

<

Knowledge Base

_/

A 4
Interpreter

Semantic Engine

SPARQL Query

Query result

Game Engine

User input
event subscription

A

"Entity"

data structure

- J

Change of
entity status

Fig. 1. The Semantic Layer architecture.

All the cited examples, despite their commercial success,
display a limitation: virtual objects do not capture the actual
nature of the real object they represent, and the associated
semantics is limited to the system for which it has been
developed.

Even though specifying ad-hoc interactions between virtual
objects is acceptable for many applications, we are interested
in exploring more general approaches, which use a standard
formalism for describing interactions.

In [15], the authors used an ontology as a formal language
to describe the interactions between virtual objects. A specific
component, called causal engine, intercepts the events occur-
ring in the physics engine, and replaces them with unexpected
ones, in order to follow the artistic purposes of the game.
Although the formal specification (or part of it) can be reused
in different projects, the type of interactions that the system
can intercept are limited to the physics engine scope.

In [16], the authors proposed a more general approach,
where interactions between virtual objects are specified in
terms of the services they provide to each other, according
to a class hierarchy defined by an ontology. A software
component called semantic engine, takes care of the execution
of these interactions at run-time. The authors populated a
large repository of virtual objects from Wordnet [17], a lexical
database of nouns, adjectives, verbs and adverbs. The terms
have been used to populate the several categories of the
repository: nouns have become entities, verbs have become
actions, and so on. However, this mapping has been defined
statically; if a developer wanted to include in the game a
knowledge domain with different characteristics, an ad-hoc
mapping would be required.

In our work, we aim to be even more general, defining

a mapping mechanism that translates an arbitrary domain
ontology to the service paradigm: instances of an arbitrary
ontology are translated to game entities, relying on the service
paradigm for the definition of smart interactions. A software
library, that we call semantic layer, acts as a “wrapper”
between the ontological knowledge base and a general-purpose
game engine.

III. SEMANTIC LAYER

A. Overview

Thanks to the semantic layer, the game engine is able to:

o Access the semantic data defined in the knowledge base;

« Interrogate game objects about their role and establish
interactions based on their semantics;

« Take actions when the status of an object changes in the
semantic layer, such as changing its visual appearance or
behavior.

Since the ontology in this context includes a formal speci-
fication of the game objects and how they interact with each
other, a subset of the individuals has a direct correspondence
with the entities in the game. For instance, we may have an
ontology where the class Person defines specific character-
istics for a human being, which has to be reflected in the
human characters of the game world. In practice, we define
a correspondence between the instances of the class Person
(along with its attributes) and the game entities that represent
persons. Fixing such correspondence requires at least three
steps:

1) Retrieving the instances of the class Person in the
knowledge base;

2) For each instance, retrieving the property values of
interest (name, height, relationships with other persons
and so on);

3) Instantiate game entities according to these values.

Writing an ad-hoc procedure for such a “conversion” from
individuals to game entities is unfeasible: in fact, as the
number of properties and classes grows, the process becomes
more and more complex and time consuming. Our contribution
is the automation of this process.

Such automation is possible if we put in relationship the
abstract behavior defined in the domain ontology with its
concrete realization inside the game. Since we do not want
to fix constraints on a specific technology or game engine, we
followed a more general approach for the concrete realization
of interactions. We found that the the service paradigm was
a suitable choice [16], [18], [19]: indeed, one of its charac-
teristics is that interactions are not handled directly by the
game engine: a black box component, called semantic engine,
is responsible for this.

The process that translates the abstract behavior in the
domain ontology to its concrete realization inside the game
is described as it follows (see fig. 1).

First, the game designer defines a mapping between the
domain ontology and the service paradigm, formally specified
with an ontology as well.

Before the game is run, the domain ontology together with
the mapping to the service paradigm are merged in a single
ontology; moreover, a semantic reasoner derives other axioms
that are implicitly encoded in the original scheme. The result
is saved in a single OWL file. Further details of the mapping
mechanism are given in section III-B.

At the beginning of the game execution, an initialization
phase takes place:

1) An interpreter reads the OWL file and initializes the
semantic engine. The semantic engine is supported by
an in-memory data structure: it is basically a “working
copy” of the instances of the knowledge base, used for
efficient computation (see section III-C);

2) The game engine links each entity in the semantic engine
to a corresponding game object in the game engine
(its “physical” representation); with an event system,
the game engine is able to detect when an entity in
the semantic engine changes its status, and respond
accordingly (e.g. playing an animation).

Then, in the main loop of the game engine, an update of the
semantic engine is requested at fixed time intervals, which may
cause changes to the internal state of the support data structure.
When this happens, the game engine is notified, according to
the event handlers defined previously. Events happening in
the game engine (e.g. user input, collisions) are passed to the
semantic engine, so that the corresponding entities in the data
structure are updated accordingly.

We point out that, in some case, the game developer may
be interested to accessing the data contained in the knowledge
base directly: although this is not the primary purpose of the

¥ owl:Thing
..... nctiun
----- ActionParameter
----- Attribute
¥ Effect
¥-- @ AttributeChange
- -~ stateAttributeChange
- @ ValueAttributeChange
- & ContinuousEffect
¥ Entity
-~ @ AbstractEntity
b PhysicalEntity
----- Material
¥ @ Requirement
- @ PassiveAction
- @ Precondition
----- Service
..... State

Fig. 2. The class hierarchy of the services ontology.

library, methods for running SPARQL queries (of SELECT
type) on the knowledge base are provided for full flexibility.

The following sub-sections detail the mapping mechanism,
which translates the abstract behavior to the service paradigm,
the interpreter and the semantic engine.

B. Mapping an arbitrary ontology to the service paradigm

The mapping mechanism, which happens in a pre-
processing phase, is based on translating concepts of an
arbitrary ontology to those of the service paradigm: for this
reason, we formalized the service paradigm in an opportune
ontology (fig. 2).

Each ENTITY has a number of ATTRIBUTES that may
change over time, and offers a number of SERVICES to other
ENTITIES; SERVICES are activated under certain REQUIRE-
MENTS, and produce some ACTIONS in response. ACTIONS
produce certain EFFECTS on the ENTITIES, typically a change
to an ATTRIBUTE value.

In this ontology, we have an Ent ity class. Each instance of
Entity is treated as a game entity; the Ent ity class has two
subclasses: PhysicalEntity and AbstractEntity.
Each object having a physical representation inside the game
is an instance of PhysicalEntity, thus occupies a position
in the 3D space and is subject to physics laws. Instances
of AbstractEntity, in contrast, do not have a physical
representation: typical examples are a Team in a football
game, or a Nation in a strategy game.

The mapping ontology defines which classes of the knowl-
edge domain should be entity classes in the service paradigm.
This is done by using the subclass relationship.

Since the concept game we are developing is set in the
marine environment, we will describe a typical example: a
fish needs to search for food when hungry. In the domain
ontology, the Fish class is defined; each instance of Fish

(and its subclasses) is declared also as a game entity by adding
the axiom

Fish is_a Entity.

Datatype and object properties require a more sophisticated
mapping, because typically they do not have a one-to-one
correspondence with the concepts of the service paradigm.

A rule language is able to derive the appropriate mapping
between the two. Among the possible choices, we have used
the SWRL [20] language: some semantic reasoners are able
to process these rules without requiring additional software
packages.

The Fish class, in the domain ontology, is described by
the following properties:

¢ AmaxNutritionLevel property, which expresses the
“level of nutrition ” of a satiated fish (as a numerical
value);

e hungerThreshold property: if the nutrition of the fish
is below this threshold, the fish is considered hungry;

o Finally, animals may have one or more behaviors, ex-
pressed by the property hasBehavior. All Fish in-
stances have a LooksForFoodWhenHungry value, for
this property: as implied by the name, it means that when
the fish is hungry, it looks for food.

The game designer can define appropriate rules that map these
properties to services.

First, we create an attribute called NUTRITION that en-
codes the current nutrition level of the fish (which changes
over time). The initial value of this attribute will be the same
of maxNutritionLevel:

maxNutritionLevel (?x,?2v) —>
hasAttribute (?x, NUTRITION),
NUTRITION (?x, ?2V)

An analogous rule will map the hungerThreshold prop-
erty to a corresponding HUNGER_THRESHOLD attribute.

The abstract behavior LookForFoodWhenHungry will
be mapped to appropriate services:

hasBehavior (?x, LookForFoodWhenHungry) ->
providesService (
?x, Service_LookForFoodWhenHungry)

The mapping mechanism that we have described results
more general and reusable if compared with an ad-hoc solution
(e.g. behavior scripts): the same mapping can be adapted to a
different domain ontology, or the same domain ontology may
have different mappings in different games.

C. Interpreter

At the end of the pre-processing phase, which includes the
mapping mechanism we described in the previous sub-section,
an OWL file is produced: this file becomes an asset of the
game.

The semantic engine relies upon a data structure, composed
of IEntity objects (see fig.3, bottom). Each one of them
is a “working copy” of an instance of a Entity class in the

Knowledge Base

Services

Domain Ontology

\ Mapping Ontology

-Flis aFish N
- When a fish is hungry, N
it looks for food N

/ Fish is a subclass of Entity
/ Each instance of Fish:
/ - has NUTRITION and HUNGER_THRESHOLD
! /| attributes, of type "float"
! - activates the "Look for food" service
when nutrition is below the threshold

1
I
| 1
| 1 Reasoner .
\ 1 (preprocessing) Mapping
\ 1
-
. Interpreter
\
v
v
A Initialization
A\ Semantic Engine
\\
A\
A\
N F1: IEntity
A _—
N N Classes:
- Entity, Fish
X Attributes:
- float NUTRITION = 10.0
- float HUNGER_THRESHOLD =5.0
Services:
- Service_LookForFoodWhenHungry: Inactive
Event-based messages
Game Engine
F1: GameObject
3D model
Animations
Position
Rotation
Colliders
Behavior scripts

Fig. 3. An instance of Fish in the domain ontology is translated to its
run-time counterpart as a game object.

ontology; also, IEntity objects are responsible of the event-
based mechanism between the game engine and the semantic
engine, typically each time a service is activated/deactivated,
or an attribute changes its value.

During the initialization phase of the game, for each instance
of a subclass of the Entity class in the knowledge base, a
corresponding IEntity object is instantiated, along with its
attributes and services.

Having an IEntity object guarantees the actual indepen-
dence of the game engine, where a corresponding game object

will be instantiated. The two objects are linked together, and in
this way it is possible to establish a message exchange between
the game engine and the semantic engine, when specific
events occur (i.e. a collision event between two semantic game
objects triggers a Col1lision action in the semantic engine).

In the interpreter, for each entity class, we retrieve the
attributes defined on that class through the hasAttribute
property. For each attribute associated to the hasAttribute
property, we retrieve the type (which can be a primitive value
or a state) and we create a corresponding attribute object
(IAttr interface).

Default values of attributes are not specified in classes, to
avoid possible conflicting default values on the same attribute
because of the multiple inheritance. Oppositely, the solution
proposed in [5] was to let the game designer take care of
the conflict by manually overriding the default value. Instead,
we specify the initialization values as property assertions on
individuals. This choice also gives designers a higher degree
of flexibility: if they want to instantiate an entity with different
default values, all they have to do is to define an alternative
individual, with different property values.

D. Semantic Engine

At this point, the interpreter has built a data structure which
contains the game entities, and their interactions expressed by
services.

As we have already mentioned, services are a way of
expressing rules about the run-time behavior of game entities;
such rules are basically if-then constructs, where the if
part is made of requirements, and the then part is made of
actions. At each update step, the semantic engine evaluates
these rules, and performs the corresponding changes to the
entities when needed.

These rules are quite different from the logical axioms
encoded in the ontology, because the OWL language is a
subset of first-order logic, which has a higher expressive power
than if-then rules; on the other hand, OWL reasoning has a
higher computational cost, unfit for real time computation.
A semantic reasoner is however used to infer knowledge
contained in the domain ontology, as part of the mapping phase
that we described earlier. The use of the inference engine is
thus limited to a pre-processing phase.

We use actions as a form of “message exchange” between
entities, in the sense that an action cannot modify directly
an attribute of another entity. Only the receiving entity can
do it, as it “knows” how to handle a certain type of action. In
other words, a certain action may have different consequences,
according to the objects that receives the action.

To give an example of how interactions can be modeled as
an exchange of “action” messages, we consider a fish which
increases its nutrition level each time it eats some food. The
sequence of steps that are performed in the semantic engine
are:

1) Fish, subclass of Animal, performs an Eat action on

Food;
2) Food receives the Eat action;

3) In response, Food sends a IncreaseNutrition
action, with a NutritionValue parameter (this hap-
pens only for instances of Edible class);

4) Fish receives the IncreaseNutrition action and
in response increases its nutrition level of the amount
specified from the NutritionValue parameter.

This example shows that we have not defined any hard-
coded interaction between the Fish and the Food entities:
however, the interaction is established automatically. It has to
be noted that the semantic engine does not handle completely
the interaction in this case: although the described sequence
of actions happens automatically, a behavior script in the
game engine triggers the action Eat of the Fish. This
example shows also the advantage of reusing an existing class
taxonomy: the behavior of the class Animal, the Eat action
here, is inherited by all the instances of all the subclasses of
Animal, as we would expect in a real-life situation.

A final remark is that the semantic engine replaces partially
the functionalities of traditional behavior scripts. Some are
still needed but their usage in the presented system can rely
on higher level information on the object, and therefore handle
interactions in a more natural and intuitive fashion.

IV. GAME CONCEPT: A SERIOUS GAME SET IN THE
MARINE ENVIRONMENT

We tested the effectiveness of our approach in the develop-
ment of a concept for a serious game targeting 8-12 year old
children to raise awareness about the marine environment and
its safeguard.

In the project, the game should contain knowledge of the
marine environment, in particular the identification of the
marine species and their characteristics with respect to its
habitat. To this purpose, we decided to define a light ontology
from scratch including the species taxonomy together with
their features, since the learning content should be simple
enough to be suitable to the target players. This taxonomy
and the properties associated can be used in conjunction with
the behavior expressed through the service paradigm. In a
bigger project, we might think of reusing existing sources of
biological taxonomies shared in the scientific communities,
since our library is able to read any ontology written in the
OWL language.

In this concept, we have imagined two possible game
scenarios. In the first scenario, the game presents to the player
a certain marine environment with a short textual description:
it may be either the coral reef or the open sea. The child’s
task is to choose from a catalog the marine species that are
suitable to live in that environment. The color, size and shape
of a marine organism gives some hints on its living habitat:
this phenomenon is known as convergent evolution: species
with a different lineage, but living in the same environment,
in their evolution have developed similar characteristics. The
kid has to look at the features of the different species to select
the right one for the given habitat. The catalog of species is
actually the knowledge base, where the instances are the game
objects corresponding to the various species.

\/ Class hierarchy ’ Class hierarchy (inferred)

[%] 2] (=]

v @ owl:Thing
¥ & Animal
> AirBreathingAnimal
»- @ Benthos
v-- @ Fish
HE Angelfish
Barracuda
BlowFish
CleanerFish
ClownFish
CoralGrouper
: MorayEel
b @ Shark
Invertebrates
Mammal
Necton
Plancton
Reptile
AnimalBehavior

b & £ 25 S

[Class Annotations /ClassUsage i Description

Equivalent To
SubClass Of
Fish
hasBehavior value InflateWhenThreatened

General class axioms

SubClass Of (fnonymous Ancestor)

hasBehavior value Swimming

hembers
#® Generic_Blowfish

Target for Key

Disjoint With

Disjoint Union Of

Fig. 4. A screenshot of the Protégé editor that shows the marine-species ontology. It defines the class taxonomy of the marine species, and their possible

behaviors.

The second scenario addresses the behavior of marine
species and how they relate to each other. The player is given
some quests, which involve taking “virtual pictures” of the
marine species, while they display some peculiar behavior.
Some behaviors could be related to the species itself: for
instance, all mammals need occasionally to come back to the
surface to breathe air; some others are related to interactions
between species, such as the symbiotic relationship between
the clownfish and the sea anemone. The marine species
ontology defined includes also such information.

The interactions are implemented with the support of the
semantic engine. The game engine is still in charge of initi-
ating the interactions. In our marine environment, interactions
between species may happen when one entity “perceives”
another, or in practical terms, when they are close enough.

The advantages in terms of design are the following:

o The ontology of the marine species is machine-
understandable and is used for computation inside the
game;

« The semantic engine encapsulates part of the behavior of
marine animals, leaving the game engine the focus on
presentation and user interaction;

o The marine species ontology is reusable in different
software projects, because the semantic layer has been
designed to be independent of the adopted game engine.

In the project, we have defined three different ontologies,
which can be seen as modules. Each module describes a
different aspect of the marine environment; however, these
aspects are in relationship with each other:

o marine-species: it contains the description of the marine
species as a biological hierarchy and their behavior. Fish
classes include properties like color, shape and size. In
the formalization of the behaviors, these are classified
according to how they move in the water: nekton are

swimming animals, plankton are carried by currents, and
benthos live on the sea bottom. Besides, each species may
have its particular behavior: for example, the blowfish
inflates when it is threatened by a predator (see fig. 4).

e marine-habitats: it contains a description of the habitats
(in our project, open sea and coral reef); there are also
the axioms which relate habitats with their inhabitants.

e marine-services: it is a mapping ontology, which trans-
lates the abstract behaviors in terms of services. This
is necessary to model situations of states that change
dynamically during the execution of the game. In the
example of the blowfish, the state from Inflated
to Deflated changes according to the presence of a
threat. This ontology references both the marine-behavior
ontology and the services ontology.

These ontologies have been defined with the support of
a marine biologist and pedagogist, who have provided us
with the learning content about sealife suitable for the target
players.

The actual realization of the game, so as the parts strictly
related to graphics, sounds and user interface, are still under
development.

V. TECHNICAL ASPECTS

In our project we use Unity 3D. The Unity scripting system
relies on the Mono implementation of the .NET framework.
This allows the game developer to use in the game any
software library compatible with the .NET framework.

Our library, in order to be compatible in Unity, has been
implemented on the .NET framework, using the C# language.
For this reason, it can be used also with other engines based
on the .NET platform, like Paradox® or WAVE*. We found

3http://paradox3d.net/
“http://waveengine.net/

http://paradox3d.net/
http://waveengine.net/

that Unity 3D was the optimal choice for our application,
since it is the most used game engine worldwide, with more
than 3.3 million registered developers and a 45% market
share®; moreover, it supports all the major platforms (including
mobile ones like Android and iOS). From the development
point of view, it allows rapid prototyping of games with
minimum effort and provides a fully integrated development
environment, with a visual editor.

The interpreter part of the library uses the DotNetRDF® API
to read the ontology in OWL language and initialize the data
structure used by the semantic engine. DotNetRDF is however
still limited in reasoning capabilities, because it offers only
RDFS reasoning and a generic rule reasoner; on the contrary,
many semantic reasoners are implemented in the Java language
(e.g. Pellet’ and Hermit?).

Since performing semantic reasoning on the knowledge base
is needed, we have developed a Java tool that loads any number
of ontologies, performs inference on the resulting knowledge
base using the Pellet reasoner, and produces a single “result”
file, serialized in RDF/XML notation. This file becomes the
input of the semantic layer library (fig. 5).

Performing the reasoning as a pre-process step is, in our
case, the optimal solution. As the knowledge base does not
change during the game, we do not need to re-calculate the
inferred axioms at run-time. Thus, the time required for the
automated reasoning does not affect the loading time of the
game. In fact, the access to the knowledge base is no longer
required, once the semantic engine has been initialized, since
its entity data structure contains “working copies” of the
original instances.

A final consideration is about the overall performance of
the system, since the use of a semantic engine introduces an
overhead in terms of computational cost. In fact, we do not
update the semantic engine at each frame update of the game
engine; we do it at fixed time intervals instead.

We found that setting a 0.1s delay between each update of
the semantic engine does not produce any visible difference in
terms of gameplay. From our preliminary tests inside Unity,
the semantic engine is able to update the state of up to
200 entities, without causing a visible drop in the framerate;
however, further optimizations to the semantic engine code are
possible.

VI. CONCLUSION

In this paper we have presented a semantic layer able to
manage the semantics of the game entities separately from a
generic game engine. We discussed the technical issues and
evidenced the advantages of this approach, among which the
new opportunities for the creation and distribution of reusable
components for games.

It appears natural finding similarities between the proposed
approach and the techniques adopted in the field of game

Shttp://unity3d.com/public-relations
Shttp://dotnetrdf.org/
"http://clarkparsia.com/pellet/
8http://hermit-reasoner.com/

artificial intelligence. However, game Al aims to provide
efficient solutions to more specific problems, such as modeling
agent behavior (e.g. behavior trees [21] or planning strategies
[22]). These issues are also considered in our framework and
consequently the various game Al techniques should be rather
considered a useful complement.

The semantic layer is particularly suitable for serious game
design and, more in general, for edutainment applications,
where the learning content can be developed and used as
an off-the-shelf component rather than being adapted to each
specific application. In a broader perspective, we see also
promising applications for the development of entertainment
games. In fact, as the graphic quality of the games increases,
it is possible to perceive a gap between the visual realism
of virtual objects and the limited interactions they provide to
the player. This happens because specifying all the possible
interactions in a hard-coded manner is a time-consuming
activity; furthermore, these interactions are also difficult to
maintain coherent when the game design changes.

The introduction of the semantic layer, although not solving
these problems directly, allows to represent the knowledge of
the game world to a higher level of abstraction, and ultimately
to enable a more natural form of interaction between game
entities, even in ways that the designer had not prevented
initially. Some game genres are more suitable than others for
this type of dynamic interaction. We like to mention some
here:

o Adventure games with randomized elements: a graph-
ical adventure typically features item-based puzzles. In
order to advance in the game, the player has to pick
up and use/combine several items in a specific sequence
in order to advance (using a knife to cut a rope, for
instance). However, once the game is over, the player
knows the solution to all the puzzles, so he/she has
no reason to play it again. A possible solution to this
problem would consist in randomizing some sections of
the game. Using constraint-based techniques, the game
designer would specify only the final goal (i.e. obtaining
a certain item, like a key), letting the game decide all the
intermediate steps. A number of objects could be selected
from a general repository, and subsequently placed in the
game scene, with the guarantee that there is a sequence
of steps involving the use of these objects which leads to
the specified goal.

o Role-playing games: games like The Elder Scrolls V:
Skyrim® implement a system of rules, which involve a
variety of inter-related aspects such as skills, equipment,
levels of experience, fighting. These systems have many
similarities and then can be seen as variants of a unique
template, which a designer could customize for a specific
project.

o Stealth-based games: in these games, the player is
rewarded by avoiding enemies rather than fighting them

“http://www.elderscrolls.com/skyrim

http://unity3d.com/public-relations
http://dotnetrdf.org/
http://clarkparsia.com/pellet/
http://hermit-reasoner.com/
http://www.elderscrolls.com/skyrim

marine-species.owl

marine-habitats.owl

Merged KB

marine-mapping.ow!

.
-

services.owl

Reasoner Y N
(Pellet)
result.owl Semantic
> .
— Layer
N

Fig. 5. The merge procedure in the case of the serious game application set in the marine environment.

directly: the Metal Gear'® series represents a typical
example. Enemies usually follow a patrol route that is
fixed in advance by the game designer, according to
the geometry of the environment. While this approach
is enough for many applications, we could consider the
possibility of letting the enemy figure out the best patrol
route, by visiting more often the areas that are considered
relevant from a security standpoint: this may depend
from the objects that are placed in a certain area and
consequently from the meaning of that area.

ACKNOWLEDGMENT

This work has been supported by the PO CRO Fondo So-
ciale Europeo Regione Liguria 2007-2013 Asse IV “Capitale
Umano” ob. Specifico 1/6 through the project “Serious Game
per la fruizione di contenuti e 1’apprendimento delle tematiche
educative, culturali e ambientali in strutture museali di tipo
edutainment”. The authors would like to thank Roberta Parodi
(Costa Edutainment SpA) for the support in the formalization
of the marine environment.

[1]

[2]

[7]

[8]

REFERENCES

C. E. Catalano, M. Mortara, M. Spagnuolo, and B. Falcidieno, “Se-
mantics and 3d media: Current issues and perspectives,” Computers &
Graphics, vol. 35, no. 4, pp. 869-877, 2011.

T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. D. Kraker, “The role
of semantics in games and simulations,” Computers in Entertainment
(CIE), vol. 6, no. 4, p. 57, 2008.

T. R. Gruber, “A translation approach to portable ontology specifi-
cations,” Knowledge acquisition, vol. 5, no. 2, pp. 199-220, 1993,
relazione marzo 2014.

S. De Freitas, “Serious virtual worlds,” A scoping guide. JISC e-Learning
Programme, The Joint Information Systems Committee (JISC), UK,
2008.

T. Tutenel, R. M. Smelik, R. Bidarra, and K. J. de Kraker, “Using
semantics to improve the design of game worlds.” in A/IDE, 2009.

O. De Troyer, W. Bille, R. Romero, and P. Stuer, “On generating
virtual worlds from domain ontologies,” in In Proceedings of the 9th
International Conference on Multi-Media Modeling. Citeseer, 2003.
R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “A declarative
approach to procedural modeling of virtual worlds,” Computers &
Graphics, vol. 35, no. 2, pp. 352-363, 2011.

D. Isla and P. Gorniak, “Beyond behavior.” [Online]. Available: http://
www.gdcvault.com/play/1267/(307)-Beyond-Behavior- An-Introduction

10https://www.konami.com/mgs/

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

M. Kallmann and D. Thalmann, “Direct 3D interaction with
smart objects,” in Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, ser. VRST ’99. New York,
NY, USA: ACM, 1999, pp. 124-130. [Online]. Available: http:
//doi.acm.org/10.1145/323663.323683

C. Peters, B. McNamee, S. Dobbyn, and C. A. O’Sullivan, “Smart
objects for attentive agents,” in WCSG 2003, 2003.

T. Abaci, J. Ciger, and D. Thalmann, “Planning with smart objects,”
WSCG 2005, p. 25, 2005.

P. Sequeira, M. Vala, and A. Paiva, “What can i do with this?” in Finding
Possible Interactions between Characters and Objects. In Proc. of the
6th Int. Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 07), 2007, pp. 14-18.

M. Badawi and S. Donikian, “Autonomous agents interacting with their
virtual environment through synoptic objects,” CASA 2004, pp. 179-187,
2004.

J. J. Gibson, The ecological approach to visual perception. Psychology
Press, 1986.

J.-L. Lugrin, M. Cavazza, S. Crooks, and M. Palmer, “Artificial
intelligence-mediated interaction in virtual reality art,” Intelligent Sys-
tems, IEEE, vol. 21, no. 5, pp. 54-62, 2006.

J. Kessing, T. Tutenel, and R. Bidarra, “Services in game worlds:
A semantic approach to improve object interaction,” in Entertainment
Computing—ICEC 2009. Springer, 2009, pp. 276-281.

G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 3941, 1995.

J. Kessing, “Services in game worlds: A semantic approach
to improve object interaction,” Master’s thesis, Delft University
of Technology, Delft, the Netherlands, 2009. [Online]. Available:
http://graphics.tudelft.nl/Publications-new/2009/Kes09

J. Kessing, T. Tutenel, and R. Bidarra, “Designing semantic game
worlds,” in Proceedings of the The third workshop on Procedural
Content Generation in Games. ACM, 2012, p. 2.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean, “Swrl: A semantic web rule language combining owl
and ruleml,” 05 2004, 21. [Online]. Available: http://www.w3.org/
Submission/SWRL/

D. Isla, “Handling complexity in the Halo 2 AL” in Game Developers
Conference, vol. 12, 2005.

J. Orkin, “Three states and a plan: the Al of FEAR,” in Game Developers
Conference, vol. 2006. Citeseer, 2006, p. 4.

http://www.gdcvault.com/play/1267/(307)-Beyond-Behavior-An-Introduction
http://www.gdcvault.com/play/1267/(307)-Beyond-Behavior-An-Introduction
https://www.konami.com/mgs/
http://doi.acm.org/10.1145/323663.323683
http://doi.acm.org/10.1145/323663.323683
http://graphics.tudelft.nl/Publications-new/2009/Kes09
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/

	Introduction
	Previous works
	Semantic layer
	Overview
	Mapping an arbitrary ontology to the service paradigm
	Interpreter
	Semantic Engine

	Game concept: a serious game set in the marine environment
	Technical aspects
	Conclusion
	References

