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Abstract—The continuous advances in mobile computing tech-
nologies have paved the way to the spreading of new classes of
collaborative mobile applications. Clustering the mobile nodes
into local groups may promote and ease collaborations. In
this paper we propose a clustering scheme formulated as a
multi-criteria optimization problem based on the weighted-sum
approach. The aim of the optimization is to maximize the
network lifetime and the mobility similarity of the devices within
a group. Depending on the specific application scenario, the
weights associated to the cost functions can be properly tuned.
Experimental results show that by using the proposed approach,
the network lifetime is extended and the number of alive devices is
significantly higher compared to alternative clustering strategies,
while meeting application-level performance constraints as high
mobility similarity within a cluster.

I. INTRODUCTION

With the dissemination and increasing power of wireless
networks and mobile devices, ad-hoc networking is gaining
an always greater importance with the growing number of
widespread applications. Typical applications include body-
health monitoring, vehicle monitoring, emergency/rescue op-
erations for disaster relief efforts, law enforcement, wireless
security systems. In such scenarios, communications are often
among teams which tend to coordinate their movements.
Hence, the need arises for developing efficient environments
to support real-life group mobility scenarios. A key aspect
to be addressed to enable effective and reliable computing
over mobile devices is ensuring energy efficiency, as mobile
devices are battery-power operated and lack a constant source
of power.

Efficient resource allocation, and energy management can be
achieved through clustering of mobile nodes into local groups.
In this paper we propose a clustering scheme where mobile
devices are organized into local groups (clusters or mobile
groups). Each cluster has a node referred to as cluster-head
that acts as the local coordinator of the cluster. The focus of
our approach is building and maintaining a cluster structure
in a network of cooperating mobile devices. The problem of
assigning devices to clusters has been formulated as a multi-
criteria decision making problem based on the weighted-sum
approach. We defined a multi-objective cost function where the
aim of the optimization is to maximally extend the network
lifetime and the mobility similarity of the devices within a
group. Depending on the specific application scenario, the

weights associated to the two costs can be properly tuned.
This way optimal decisions may be taken in the presence of
trade-offs between the two objectives. A weighted metric that
combines the effect of energy and mobility of nodes is also
introduced to select suitable cluster-head nodes.

An extensive experimental evaluation has been performed
to assess the performance of the proposed strategy in dif-
ferent network and application scenarios. The experimental
evaluation shows that the proposed strategy is able to build
a quite stable cluster structure in which devices within a
group exhibit very similar mobility. Furthermore, it addresses
energy saving more than related approaches. In fact, the
network lifetime is extended and the number of alive devices
is significantly higher compared to alternative strategies, while
meeting application-level performance constraints.

The remainder of the paper is organized as follows. Sec-
tion II outlines the adopted the energy model. Section III
describes the target application scenario. The energy-aware
clustering protocol and related algorithm are presented in Sec-
tion IV. Section V presents the experimental results. Finally,
Section VI concludes the paper.

II. ENERGY MODEL

Energy consumption of mobile devices depends on the
computation (EC) and the transmission (ET ) loads. To the
scope of the validation of the clustering algorithm we focused
only on the transmission energy as we assume that the compu-
tational load is the same for all the devices. This assumption
is motivated by the fact that to evaluate the clustering scheme
we only need to measure the energy depleted for transmission
as nodes need to communicate in order to establish and
maintain the clustering scheme. In mobile networks, nodes
must always be ready to receive traffic from neighbors due to
the absence of base station nodes. Therefore, every node over-
hears every packet transmission occurring in its transmission
range consuming this way energy uselessly. This idle energy
consumption is referred to as overhearing. Consequently, to
model the energy consumed for transmission, the costs to send,
receive and discard a packet must be included:

ET = Esend + Ereceive + Ediscard (1)

We modeled the energy for transmission by exploiting a well-
known and widely-adopted energy characterization model [1],
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[2] has been validated experimentally. Based on this model, the
cost for a node to send or receive a message is modelled as a
linear function. In this function there is a fixed cost associated
with channel acquisition and an incremental cost proportional
to the size of the message. The fixed channel access costs,
denoted as bsend and brecv, and the incremental costs, msend

and mrecv, are the same for broadcast and point-to-point. For
the ease of notation we denote them as just b and m, but
clearly their values are specific to the mode of the network
interface.

Esend = Ereceive = Ediscard = m ∗ |MSG|+ b (2)

where |MSG| is the size of the message exchanged. In [2]
have been described a series of experiments reporting detailed
measurements of the per-packet energy consumption of a IEEE
802.11 wireless network interface operating in ad-hoc mode.
Coefficients for the equations 2 have been determined by
performing these measurements.

III. REFERENCE APPLICATION SCENARIO

Main mobile applications range from disaster relief (fire,
flood, earthquake) to law enforcement (crowd control, search
and rescue), healthcare and digital battlefield communications.
Some key characteristics of these systems are team collabo-
ration of large number of mobile units, limited bandwidth,
low latency access to distributed resources. The nodes in ad
hoc networks move according to various patterns. However,
group motions occur frequently. Communications are often
among teams which tend to coordinate their movements (e.g.,
a firemen rescue team in a disaster recovery situation). This
team relationship makes it possible to partition the network
into several groups, each with its own mobility behavior.

The focus of our approach is on building and maintain-
ing a cluster structure in a network of cooperating mobile
devices. Nodes may serve different roles, such as cluster-
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Fig. 1. The clustering architecture.

head and cluster member. A cluster-head normally acts as
the local coordinator for its cluster, performing intra-cluster
transmission arrangement, data forwarding, and so on. In
our architecture the cluster-head acts also as a gateway for
inter-cluster communications. Finally, a cluster member is an
ordinary node without any inter-cluster links. We refer to
the system architecture depicted in Figure 1. Mobile nodes

within a group interact trough ad-hoc connections (e.g., wi-
fi, bluetooth). Interactions among mobile groups (cluster-to-
cluster connections) take place through ad-hoc connections
among the cluster-heads of the groups.

IV. THE CLUSTERING APPROACH

In this section we describe the design principle of the
proposed clustering approach together with the clustering
algorithm.

A. Design Principle and Related Work

In literature there are several clustering approaches for
MANETs [12]. Different approaches focus on different goals
and performance metrics.

Most of the clustering schemes proposed in literature are
proactive in the sense that a constant refresh rate of cluster-
related information is required, introducing, this way, signif-
icant background control overhead even if there is no data
traffic in the network. In most of the real-world applications
such as covert military operations, rescue operations and
emergency responses, this periodic control traffic can preclude
the success of the action to be taken. (e.g., exposure to enemy
interception, power consumption, etc).

To overcome the drawbacks of proactive clustering proto-
cols, reactive on-demand or passive clustering approaches have
been proposed [3], [4], [5]. In general, these approaches do not
use any explicit control messages to maintain clusters. Instead,
they piggyback the control information on the out-going data
packets so reducing the control overhead. However, most
of the proposed passive approaches has the main limitation
of not being able of facing dynamic scenarios or sudden
emergency (e.g., nodes join/leave, battery draining) not taking
into consideration in the clustering process any node-related
parameter like energy, mobility, etc.

According to the above considerations, we propose a hybrid
clustering solution that integrates the advantages of both low-
maintenance and combined-metrics-based clustering. Among
proactive approaches, the most related to our clustering
scheme (that we will use in the comparison evaluation in
Section V) are mobility-based and combined metrics-based
approaches. Mobility-aware clustering [6], [9] takes the mobil-
ity behavior of mobile nodes into consideration. By grouping
mobile nodes with similar speed into the same cluster, the
cluster structure can be correspondingly stabilized regardless
of nodes mobility. However, due to change in the network
topology it may produce high cluster-head re-elections. Dif-
ferently to such approaches, we consider not only mobility
but also energy metric so as to more properly configure
clusters and extend network lifetime. Combined metrics based
clustering (WCA) [8] considers multiple metrics, such as
node degree, cluster size, mobility speed, and battery energy,
in cluster configuration, especially in cluster-head selections.
Compared to WCA, we use different parameters for cluster-
heads selection. Instead of the battery power we use the
residual life because it considers not merely the remaining
energy of the device but also its energy load. Another key



difference is that we cluster devices according to their mobility
behaviour, instead WCA does not take into account such
feature. Moreover, conversely to combined-metrics approach,
we do not perform the clustering procedure periodically;
procedures like node joining and cluster-head re-election are
event-driven. In fact, the parameters (e.g., remaining energy,
node mobility) needed for cluster construction and mainte-
nance, are transmitted through periodic messages exchanged
by neighbors in MANETs for topology management.

This work extends a previous one [7] where a preliminary
version of the scheme was presented. Here we modified that
approach to fit collaborative scenarios with group mobility.
To the purpose, the clustering algorithm with its optimization
function have been substantially modified to account mobility
similarity for cluster formation. Moreover, in [7] the scheme
was experimentally validated in a static network where devices
were not moving. Here, instead, mobility is key in the eval-
uation and different mobility models have been implemented
to test the approach in various real-world scenarios.

B. Cluster-head Selection

Choosing cluster-heads is key in the clustering approach.
The number of cluster-heads depends on many factors like
the number of nodes in network, their physical location, the
transmission range and the energy level. To select the cluster-
head nodes we introduce a combined weighted metric that
takes into account the following parameters:
• Residual life (RL). Let be REi(t) the residual energy

available at node i at time t, and Pi(t) the instantaneous
power; the residual life of node i at time t, RLi(t), is defined
as follows:

RLi(t) = REi(t)/Pi(t) (3)

A node with higher residual life corresponds to a more
powerful node that is a good candidate to be elected as
a cluster-head.

• Neighbors (NB). The size of each local group also depends
on the number of nodes within the cluster-head range. The
larger the number of neighbors of a node, the greater the
likelihood of being elected cluster-head.

• Velocity (V ). A node with lower speed has a higher chance
of being a cluster-head. According to [8], we estimate node
mobility behaviour by taking the average movement speed
till current time t:

Vi(t) = 1/t

t∑
j=1

√
(xj − xj−1)2 + (yj − yj−1)2 (4)

where the values (xj, yj) and (xj−1, yj−1) are the coordi-
nates of node i at time j and j− 1.

Depending on the specific application, different subsets of the
parameters above can be used in the metric to elect cluster-
heads. Thus, to establish whether a node i can be elected
a cluster-head, a Cluster-Head Selection function (CHS),
CHSi(t), is defined:

CHSi(t) = αRLi(t) + β/Vi(t) + γNBi(t) (5)

where α, β and γ are the weights corresponding to the above
cited performance parameters.
The node within the transmission range having the maximum
value of the CHS function will be selected as the cluster-head.
The weighting factors are chosen such that α + β + γ = 1.
Therefore, the contribution of each parameter in the CHS
function can be tuned by selecting suitable combinations of the
weighting factors. For example, in a particular configuration
where energy is critic, the weight associated to residual life
can be set to a larger value.

C. Clustering algorithm
Using the proposed weighted approach, in this section we

describe our clustering scheme formulated as an heuristic-
based decentralized algorithm. A mobile node i that wants to
join the network of clustered devices will execute the joining
node algorithm described in the following.

A node i that wants to enter the network has to establish
whether it can join an already existing cluster or it has to
create a new one. To this aim, node i broadcasts a join request
message to advertise its presence and to check the presence
within its transmission range of either other not member
nodes or already established clusters. After having sent such a
message the node waits for responses. One of the two events
may occur:

(i) Node i does not receive any reply. In this case it will
form a new group electing itself as the cluster-head of the
group.

(ii) Node i receives one or more replies. Also in this case
we have to distinguish two possible scenarios.
• Node i receives one or more responses from only nodes not

belonging to already established clusters (that we referred
to as not member nodes). In this case the node will form a
new cluster. Once again we have to distinguish two different
cases.
1) In case node i received just one response will form a new

cluster with the replying node by immediately activating
the cluster-head election procedure. The node with higher
CHS will be elected as the cluster-head.

2) Conversely, in the case of multiple responses the cluster-
head election phase is not activated as node i will be
elected as cluster-head and its members will be all the
repliers. Only in a next phase, if necessary, the cluster-
head election phase will be activated. This choice is
motivated as follows. In case of multiple responses it
is quite complicated to elect the cluster-head by issuing
the cluster-head election procedure as a set of messages
has to be exchanged among all the pairs of involved
nodes to check not only the values of the CHS functions
but also the respective reachability of nodes (we remind
here that a node can act as cluster-head only if reaches
all the other node in the cluster). This last condition is
obviously satisfied by node i that is the recipient of all
these messages.

• Node i receives one or more responses from both not
member nodes and already established clusters. In this case,



we formalize the problem of joining node as a multi-
criteria optimization problem based on the weighted-sum
approach. The aim of the optimization is to maximally
extend the network lifetime and the mobility similarity
of the devices within a group. Depending on the specific
application scenario, the weights associated to the two costs
can be properly tuned. This way optimal decisions may
be taken in the presence of trade-offs between the two
objectives. More precisely, we optimize the problem by
iteratively trying to improve a candidate solution. A feasible
assignment is optimal if the corresponding network lifetime
and/or mobility similarity are maximized among all the
feasible assignments as expressed by the following equation:

Max

N∑
j=1

(αjRLLGj
(t) + βjMS(i,LGj)

(t)) (6)

where RLLGj denotes the residual life of local group LGj,
N is the number of groups in the network, MS(i,LGj)

represents the mobility similarity among nodes i and local
group LGj . The parameters αj and βj take into account the
importance of the group i in the network; details about such
parameters are given in the following. Node i will join the
cluster associated with the maximum value of the objective
function. The residual life of each local group is described
by the following equation:

RLLGj
=

NLGj∑
k=1

αkRLk(t) (7)

where NLGj is the number of nodes within the local group
LGj, RLk is the residual life of node k in the group and
the parameter αk takes into account the importance of the
node k in the local group.
The mobility similarity is calculated as follows.
We characterize the group mobility similarity in terms of (1)
the average velocity of the group, according to equation 4,
and (2) the average angle of movement of the nodes in the
group. We define the average angle of movement of a node
i till current time t as follows :

θi(t) =
1

t

t∑
j=1

[arctan
yj − yj−1

xj − xj−1
] (8)

Thus, the average angle of movement of a local group LGj

till time t is as follows:

θLGj
(t) = avg(θi(t)), i ∈ [1,NLGj

] (9)

According to equation 4, the average velocity of the group
LGj till time t is expressed as follows:

VLGj
(t) = avg(Vi(t)), i ∈ [1,NLGj

] (10)

The mobility similarity among the joining node i and a
generic local group LGj in the network is determined by
taking into account both the average velocity of the group
as well as the average angle of the movements of the nodes

in the group:

MS(i,LGj)
(t) =

1

|Vi(t)−VLGj
(t)|+ |θi(t)− θLGj

(t)|
if (|Vi(t)−VLGj

(t)|+ |θi(t)− θLGj
(t)|) > 1 else MS(i,LGj)

(t) = 1
(11)

The parameters αj and βj take into account the relevance of
a node/group within the group/network from energy and mo-
bility perspectives, respectively. In fact, a group with specific
expertise could have more relevance than others in specific
application scenarios. For example, in an emergency rescue
case a team of medical staff could require more energy; thus,
the value of the corresponding αj parameter could be set
higher.

The algorithm followed by a node to join the network and,
thus, to select its cluster-head is described in Figure 2. We use
a state diagram formalism to model the behavior of a generic
node, which includes the behavior of nodes performing join
requests (NOT_CLUSTER_MEMBER nodes), as well as the be-
havior of nodes responding to join requests (CLUSTER_HEAD
nodes). The state diagram is represented using a pseudo-code
that describes states, macro-states (containers for other states),
and events that produce transitions among states. Due to lack
of space we show only the key procedures of the algorithm.

The joining node algorithm is also executed to let nodes
(re-)affiliate to clusters during the evolution of the clustering.
Nodes may need to be re-affiliated because the signal
strength received from the cluster-head decreases under a
given threshold, and the node cannot stay connected to that
cluster-head. In such a case, a re-affiliation is needed: the
node can join another cluster following the joining node
algorithm described above. Moreover, the nodes in the
network representing a single-member cluster periodically
invoke the joining node algorithm to assess whether they can
join another cluster.

Complexity.
Lemma 1. The clustering algorithm has a worst-case
processing time complexity of O(n) per joining node, where
n is the number of nodes in the network.

Proof. The worst case happens when the joining node
receives multiple join responses. In this event it is necessary
to distinguish two different cases.
1) The joining node receives responses from only not member

nodes. In this case, it will elect itself as the cluster-head
and as such it needs to calculate the residual life of the
just formed cluster. So, it will take a processing time of
O(m) where m is the number of nodes replying, with
m << n and n the number of nodes in the network. In
the worst case, when all the nodes in the network are still
not members as they do not have started yet the cluster
formation protocol, the joining node takes a processing
time of at most n to compute the cost, thus the complexity
is O(n).

2) The node receives multiple responses from cluster-heads.
In that case it will join the cluster allowing to maximize
the cost function in equation 6. In particular, each replying
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2 NodeID MY_ID;
3 Float MY_RL;
4 Float MY_MS;
5 NodeID CH_ID;
6 Float MY_CHS;
7 entry () {
8 transition to NOT_CLUSTER_MEMBER;
9 }

10 -".'/ 0 !"!# )*12345 1+62-+-7+6 ,

11 List JRS;
12 entry () {
13 CH_ID = null;
14 JRS = empty;
15 broadcast JoinRequest(MY_ID ,MY_RL);
16 transition to RCV_JOIN_RESPONSE;
17 }
18  !"!# 63829*:)26+ ;*) + ,

19 on event JoinResponseReceived (JoinResponse
res) {

20 JRS.add(res);
21 }
22 on event TimeoutExpired () {
23 if JRS is empty do
24 transition to RCV_JOIN_REQUEST;
25 else
26 transition to CH_SELECTION;
27 }
28 }
29  !"!# 3<2 +4+31:*) ,

30 entry () {
31 CH_ID = selectCH(JRS);
32 if (CH_ID == MY_ID) {
33 transition to CLUSTER_HEAD;
34 }
35 else {
36 send JoinAck(MY_ID) to CH_ID;
37 transition to CLUSTER_MEMBER;
38 }
39 }
40 }
41  !"!# 63829*:)26+=5+ 1 ,

42 on event JoinRequestReceived (JoinResponse
req) {

43 send JoinResponse(MY_ID) to req.ID;
44 transition to RCV_MY_CH_NOTIFICATION;
45 }
46 on event TimeoutExpired () {
47 transition to NOT_CLUSTER_MEMBER;
48 }
49 }
50  !"!# 6382->23<2)*1:?:3@1:*) ,

51 on event MY_CH_NotificationReceived
(JoinResponse resp) {

52 CH_ID=resp.ID;
53 transition to CLUSTER_MEMBER;
54 }
55 on event TimeoutExpired () {
56 transition to NOT_CLUSTER_MEMBER;
57 }
58 }

59 }
60 -".'/ 0 !"!# 345 1+62<+@$ ,

61 List CMS;
62 Float CL_RL;
63 entry () {
64 concurrent transition to JOIN_MGMT and <other

management macro -states >
65 }
66 ...
67  !"!# 63829*:)26+=5+ 1 ,

68 on event JoinRequestReceived (JoinRequest
req) {

69 RQ_ID = req.ID;
70 Float CL_ERL = estimateRL(CL_RL ,req.RL);
71 send

JoinResponse(MY_ID ,CL_RL ,CL_ERL ,MY_CHS)
to RQ_ID;

72 transition to RCV_JOIN_ACK;
73 }
74 }
75 ...
76 -".'/ 0 !"!# 345 1+62-+-7+6 ,

77 Float RL_THX;
78 Boolean candidate;
79 List NB=null;
80 Float EC_RL =0;
81 entry () {
82 concurrent transition to CHELECTION_REQUEST

and <other management states >
83 }
84  !"!# 3<+4+31:*)26+=5+ 1 ,

85 List NB=null;
86 candidate=false;
87 on event CHElectionReceived (CHElection req) {
88 if (MY_RL >RL_THX) do {
89 candidate=true;
90 broadcast CHCandidate(MY_ID , MY_RL);
91 transition to RCV_CANDIDATE_RESPONSE;
92 }
93 else
94 transition to <other management states >;
95 }
96 on event TimeoutExpired () {
97 if candidate
98 transition to RCV_CANDIDATE_RESPONSE;
99 else

100 transition to <other management states >;
101 }
102 }
103 ...
104  !"!# 63827+3*-+3< ,

105 on event BecomeCH(CH_ID){
106 if (MY_RL >RL_THX) do {
107 send BecomeCH_Ack(MY_ID , ECL_RL) to CH_ID;
108 transition to CLUSTER_HEAD;
109 }
110 }
111 on event TimeoutExpired () {
112 transition to CHELECTION_REQUEST;
113 }
114 }
115 }
116 }

Fig. 2. Clustering algorithm.

cluster-head will establish the residual life and mobility
similarity of its cluster taking, thus, a cost of O(m)
where m << n. The joining node will, then, determine the
network residual life and its mobility similarity taking O(l),
where l is the number of clusters in the network. In most
of the cases l << n. Only in a very remote case, when
clusters are composed by just one node, l can coincide
with n. Thus, it takes a processing time of at most n to
compute the cost and the complexity in the worst case is
O(n) + O(m), thus O(n).

Lemma 2. The clustering algorithm has a worst-case message
exchange complexity of O(n).

Proof. During the clustering formation process, a joining
node generates at most O(n) messages. As soon as it starts
the cluster formation protocol, a joining node Ni broadcasts a
join request message in order also to get its neighbours. Here
we have to distinguish among different situations.
1) The joining node Ni does not receive any reply. The total

number of exchanged messages is just one, so O(1).
2) Node Ni receives responses from only nodes not belonging

to already established clusters. We have to distinguish

among two different cases:
a) The node receives just one reply. In this case Ni com-

petes with the replying node in order to become cluster-
head. To this aim, Ni will compare the CHS function
values and the node with higher CHS will become the
head of the cluster. So, Ni will send a message to the
other node just to let it knows who will be the cluster
head. The total number of messages is 3, and, thus, the
complexity is O(3).

b) Ni receives more replies. Let’s refer to this number as
NBi. In such a case Ni will elect itself the head of the
just formed cluster, and it will advertise its leadership
to the NBi nodes by sending NBi messages. In total the
number of exchanged messages is 1 + 2NBi. In general,
NBi is strictly lower than n. However, in the worst case
where all the nodes in the network are not members yet
as they have not already started the clustering process,
NBi is equal to n. Therefore, in the worst case the total
number of exchanged messages is 1 + 2n, thus O(n).

3) Node Ni receives more replies, let’say NBi. In this case
Ni will join the cluster allowing to maximize the objective



function (equation 6) and it will sent just a message to the
cluster that it will join. Thus, the total number of exchanged
messages is 1 + NBi + 1. Generally, NBi is strictly lower
than n unless all the nodes in the network are cluster-heads
of as many single-node clusters. Therefore, in the worst
case the message exchange complexity is O(n).

Lemma 3. The joining node algorithm terminates in a
constant number of iterations.

Proof. From proof. of Lemma 2, we can also note that the
algorithm requires at most a number of rounds equals to 3.

V. PERFORMANCE EVALUATION

In this section we present a simulation study of our cluster-
ing scheme.

A. Simulation Setting

A custom discrete-event simulator has been implemented
to perform the experimental evaluation. As a first step, the
simulator builds a network composed of 100 mobile devices
distributed over an area of 250,000 m2, and let them grouping
into clusters based on the proposed clustering algorithm.

Unless otherwise specified, the simulation setting is as
follows. Each node is powered by a battery. An initial energy
capacity ranging from 3,000 J to 17,982 J is assigned to
each device, following a normal distribution. The transmission
range is set to 150 meters. Each device is equipped with a
network interface 802.11 b/g, with a bandwidth of 11 Mbps.
The data rate is 2Mb/s and the traffic is modeled according to a
Pareto distribution. Pareto traffic model is an ON/OFF traffic:
it generates traffic during ON period (burst time). Average ON
and OFF (idle time) times are 1.5s and 0.5s respectively with a
shape parameter of 2.5. Initially, each mobile node is assigned
a unique node ID, a x-y position as determined by the group
behaviour, a mobility speed. At every time unit, the nodes
are moved according to the random Group Mobility model
(unless otherwise specified) with velocity distributed according
to the group politics. This behavior is repeated for the duration
of the simulation. Several runs of each simulation scenario
are conducted to obtain statistically confident averages. The
final result is the average of 50 simulation results. While our
algorithm neither relies on, nor makes use of, any specific
routing algorithm, we assume for the sake of evaluation our
algorithm, that all communication to and from a node goes
via its cluster-head.

For the CHS function, we used the following weights: α =
0.55, β = 0.35 and γ = 0.1. The high value for α accounts the
importance of residual life in cluster-head selection. The lower
values of β and γ are because velocity and neighbors number
are less important in the target group mobility scenarios.

B. Evaluation Metrics

As discussed before, there is a great variety of clustering
algorithms. Choosing the right criteria to compare those algo-
rithms is key. An important criteria concerns the stability of
the clustering structure. A good clustering algorithm should
maintain its cluster structure as stable as possible while the

topology changes, minimizing the number of node transitions
from one cluster to another one. Moreover, the algorithm
should be able to group together devices exhibiting similar
mobility features so as to fit target collaborative scenarios. An-
other important criteria is energy-efficiency. Energy depletion
may turn off mobile devices, thus, causing network partitions.
Accordingly, the performance evaluation has been conducted
along two main directions aiming at analyzing the topology
and the energy behaviour of the proposed clustering scheme.
We focus in particular on the following evaluation metrics:

• Number of clusters. This values defines the average number
of logical partitions formed in the network with the mobile
nodes.

• Number of re-affiliations and number of cluster-head
changes. The first metric refers to the disassociation of a
cluster member from its cluster-head and associating itself to
another cluster without affecting the corresponding cluster-
head. The second metric represents the number of times that
cluster-heads give up this role (it is actually the nuber of
cluster-head re-elections). A higher value for both metrics
means higher control traffic overhead since all active routes
to the node need to be updated. Whereas, a lower number
implies a better cluster stability.

• Average Group Mobility Similarity. This metric measures
the ability to cluster together devices with group mobility
behaviour.

• Network residual life and number of alive devices. With
those metrics we aim at evaluate the energy-efficiency of
the clustering algorithms.

C. Mobility Model

Mobility models are designed to describe the movement
patterns of mobile users, and how their location, velocity and
acceleration change over time. Mobility models are key to
clustering performance, thus, it is essential that they properly
emulate the movement patterns of targeted real life applica-
tions. Mobility models are divided into two main categories:
entity mobility model and group mobility model. Entity mobil-
ity model specifies individual node movement. Group mobility
model describes group movement as well as individual node
movement inside groups. In this work, we consider two
mobility models representative of each of the above mentioned
categories, respectively. These models capture a wide range
of mobility patterns for ad-hoc applications. The models are
briefly described in the following .

Random Waypoint (RW) [11] is a model in which nodes
move independently to a randomly chosen destination with a
randomly selected velocity varying uniformly between 0 to
a maximum value per time unit. RW includes pause times
between changes in direction and/or speed. At the beginning of
simulation, every node is in-dependably choosing its mobility
status: move or pause. If node is pausing at time zero, after
a normal distributed random time period, it will change to
moving phase. If node is moving, it will keep moving until it
reached the destination. After that, it will pause for a normal



distributed random time period and go to the moving phase,
again.

Most of the mobility models in literature describe inde-
pendent behavior [12]. However, relationships among mobile
nodes is key when they move with the same purpose, as it
is the case for scenarios like disaster recovery or military
deployment where several mobile nodes most likely move with
a common objective. Some key characteristics of these systems
are team collaboration of large number of mobile nodes and
the need for supporting coordinated use to shared distributed
resources. Among the group mobility models, we refer to the
Reference Point Group Mobility (RPGM) [12], [13] which
models nodes moving in group. Here, each group has a logical
center (group leader) that determines the group’s motion
behaviour. Initially, each member of the group is uniformly
distributed in the neighbourhood of the leader. Subsequently,
at each instant, every node has a speed and direction that is
derived by randomly deviating from that of the group leader.
Each node has a reference point within a certain range from
the group center which is moved together with the movement
of the group center.

D. Experimental Results

We organized the experiments in two categories that
evaluate the performance of the clustering scheme with
respect to the mobility and transmission range parameters,
respectively.

Mobility
In this set of experiments we first evaluated how the mobility
model impacts on the algorithm performance. Then, based on
the results of this evaluation we compared our algorithm with
representatives related approaches.

Representative cases have been modeled through the RPGM
model following the approach of [13]. These models have been
then compared with the Random Waypoint mobility model in
order to evaluate our clustering scheme.

The first model is a geographical partition model. The entire
area is divided into several adjacent regions, with a different
group in each region. This model can be used to represent large
scale disaster recovery, where different paramedic, police,
firemen teams work in separated neighborhoods. According
to [13] we refer to this model as In-Place Mobility Model
(IPM).

The second model describes an overlapped operation. Dif-
ferent groups carry out different tasks over the same area.
For example, in a disaster recovery area, the rescue team,
the medical assistant team and the psychologist team will be
randomly spread out over the area. Each group has a unique
motion pattern, speed, scope. We refer to this model as Overlap
Mobility Model (OM).

The third model is a convention scenario. It models the
interaction between exhibitors and attendees. A group of
attendees roams from room to room. They may stop in one
room for a while and then move on to another room. Or,
they may pass through one room quickly. This is called the

Convention Model (CM). This model could also be used to
represent the roaming behavior of drivers on a road network.

Speed is a key parameter to evaluate the mobility behaviour
of our clustering scheme. The results reported in the per-
formance graphs are based on average group speed and on
mean motion displacement of nodes around their reference
points. The radio transmission range is 150 meters. The data
rate is 2Mb/s. We use 10 groups in the in-place model.
The simulation area is divided into 10 regions. Each group
moves around in one region. We also use 10 groups in the
overlap model, but each group scatters over the entire area.
Five of the 10 groups move in a circular pattern in different
direction. Three groups move linearly, back and forth. The
last two groups are almost static. In the convention model, we
have 7 exhibitor groups moving slowly in each of the four
partitions as in the in-place model. We also have 3 viewers
group, which roam around the entire area. For the random
waypoint model each node begins by pausing in one location
for about 90 seconds and then chooses a uniformly distributed
random speed and destination and moves to that destination
in a straight line with that selected speed.

We set the weights of the multi-costs function of equation
6 as follows. All the devices within a group have α = 1,
meaning that in the target scenario all the devices have the
same relevance. Also, α = 0.6 and β = 0.4 for all local
groups. This choice is because we focus on group mobility
scenarios and mobility similarity is at a great extend already
assured within nodes of a group. In fact, in this setting the
average group mobility similarity is clearly very high for all
the group mobility models (ranging from 0.9 to 0.75), whereas
for the random model it decreases with devices’ speed (ranging
from 0.76 to 0.33 ).

Figure 3 (a) shows the number of re-affiliations per minute
with respect to increasing devices’ speed. When mobility
increases, all the models show an increase in the affiliation
rate as cluster members change clusters more frequently. As
expected, the random mobility model has a higher affilia-
tion rate than the group mobility models. In particular, the
convention model shows the smallest affiliation rate, since
the 6 exhibit groups move slowly. The in-place model and
overlap model have different motion patterns, but they have
similar affiliation rates. Figure 3 (b) shows that the random
mobility model has a higher cluster-head change rate than
the group mobility models. The cluster-head change rate of
the overlap model is much higher than in the in-place model
and the convention model. According to the overlap model,
many groups (6 groups in simulation) have activities in the
same field. Thus, the intermixing of the 6 groups generates
more opportunities for cluster re-election. Contrarily, the in-
place model only allows each group to move within its own
geographical area, with fewer cluster change opportunities.

Figure 4 (a) shows that the network residual life decreases
very slowly with nodes’ speed for all the mobility models.
However, the decrease is more pronounced for the random
model. Accordingly, in Figure 4 (b) one can see that the
number of alive devices slightly decreases with speed for all
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Fig. 5. Number of re-affiliations per minute (a) and Cluster-head changes per minute (b) for the different algorithms w.r.t. devices’ speed.

the group mobility models, whereas it decreases faster for the
random model. Therefore, also from the energy perspective
our clustering scheme performs better in case of a group
mobility model confirming again that our clustering approach
is specifically tailored for group mobility scenarios. Anyhow,
with both mobility models we have low energy consumption
with nodes’ speed. This can be explained as follow. As
our clustering approach is hybrid, in-between on-demand
and proactive protocols, it exchanges clustering-related info
only when necessary and, thus, the energy consumption
tends to stay constant. Consequently, it is not so sensitive
to speed and mobility compared to on-demand approaches.
To confirm this, we compared our EA scheme to some
of the main representative approaches in literature (see
Section IV-A): the combined Weighted Clustering Algorithm
(WCA) [8], a mobility-aware clustering as MOBIC [6],

and the Lowest-ID (LID) algorithm [10] (also known as
identifier-based clustering) that chooses the node with the
lowest ID as a cluster-head. In this comparison, we use a
group mobility model, the in-place model described above,
as it best represents real-word collaborative scenarios as the
ones we want to model with our clustering scheme. In this
case we have 20 groups. Figure 5 (a) shows the number of
re-affiliations per minute for the different clustering schemes
with respect devices’ speed. The number of re-affiliations
increases with speed for all mobility models, as expected.
This is because nodes with higher speed quit rapidly their
cluster to reach another one. We observe that, for very low
mobility EA and MOBIC algorithms exhibit similar results.
However, with the increasing of speed, EA exhibits lowest
re-affiliation rates producing, thus, more stable clusters. The
really bad behaviour of the Lowest-ID algorithm is because it
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Fig. 6. Network residual life (a) and Number of alive devices (b) for the different algorithm w.r.t. devices’ speed.

chooses the node with the lowest ID as a cluster-head leading
to the battery drainage of such nodes. Thus, causing several
node re-affiliations with increase in device’s speed. Similar
comments hold for Figure 5 (b) showing the cluster-head
changes with speed. In fact, for very low speeds EA, WCA
and MOBIC present again similar results. Then, with higher
speed, EA considerable outperforms the other algorithms.
Once again we can see the very bad behaviour of the Lowest-
ID algorithm. Figure 6 (a) plots the network residual life
for the four algorithms. For low mobility values once again
EA, WCA and MOBIC present comparable results. However,
for higher values of about 50 Km/h, MOBIC performance
degrades while EA and WCA keep performing very similarly,
even though EA shows the higher network residual life. Also
from the energy point-of-view the Lowest-ID shows a bad
behavior. Figure 6 (b) shows that EA maintains the higher
number of alive devices. This outcome further confirms
the good behaviour of our scheme also from the energy
perspective.

Transmission Range
The transmission range of a mobile device is an important
parameter for evaluating the performance of the clustering
scheme. It particularly impacts on the topology of the clus-
tering as evidenced by the following experiments. Assuming
a uniform distribution of nodes in the network, we evalu-
ated how the number of clusters and thus the number of
cluster-heads varies with the transmission range. We compared
again the performance of our clustering algorithm with those
achieved by WCA, MOBIC and Lowest-ID algorithms, re-
spectively. The simulation setting is as before with average
devices’ speed of 60 Km/h.

Figure 7 (a) shows that the average number of clusters
decreases as the transmission range increases for all the
different clustering algorithms, as expected. However EA and
WCA exhibit very similar results, with the lowest number of
clusters and thus, on average, the higher number of members
per cluster. In Figure 7 (b) one can see that the average cluster
mobility similarity grows with the transmission range, for all
the algorithms. Again, EA outperforms related approaches
exhibiting a great ability to cluster devices with group mo-
bility behaviour. Figure 8 (a) shows that the re-affiliation rate

decreases with the transmission range. This is because cluster-
heads cover a larger area and more nodes are within range
of other nodes for longer period of time. Therefore, fewer
clusters (which are large in size) are formed and the mobility
of nodes does not cause them to frequently move in and out of
range of each other, so the number of re-affiliations decreases.
This behaviour is shown by all the algorithms. However, EA
produces more stable clusters than those produced by the other
algorithms. Same comments hold for Figure 8 (b) where the
increasing of the transmission range results in lower cluster-
head changes. This means a better connection among nodes
and thus higher cluster stability as the heads take major role.
Again, EA outperforms related approaches. Figure 9 (a) shows
that the network residual life decreases with the transmission
range. The decrease is quite low for EA and WCA as they
produce more stable clusters (as shown on Figures 8 (a) and
(b)) and, thus, the energy dissipated decreases. Moreover, from
Figure 9 (b) we can see that our algorithm remains with
the higher number of alive devices that slightly decreases
with the transmission range. By summarizing, also taking
into account the transmission range, the proposed clustering
scheme behaves well in terms of both cluster topology and
energy and mobility issues. In particular, it is able to build a
quite stable cluster structure and addresses energy saving more
than related approaches.

VI. CONCLUSION

In this paper, we have presented a clustering scheme for
mobile computing focusing on energy efficiency. To conserva-
tively consume energy and prolong network lifetime we have
introduced an energy-aware adaptive distributed clustering
scheme based on a combined weighted metric. It dynamically
reconfigures the clusters based on the energy requirements of
applications to avoid the performance degradation. We focused
on collaborative applications where mobile devices present
group mobility. We evaluated the clustering scheme through
simulation experiments in different network and application
scenarios. Results showed that by using the proposed energy-
aware approach, the network lifetime can be extended and the
number of alive devices can be significantly higher compared
to alternative strategies, while meeting application-level per-
formance constraints.
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