
Alien vs. Mobile User Game: Fast and Efficient
Area Coverage in Crowdsensing

Manoop Talasila, Reza Curtmola, and Cristian Borcea
Computer Science Department

New Jersey Institute of Technology
Newark, NJ, USA

Email: mt57@njit.edu, crix@njit.edu, borcea@njit.edu

Abstract—Mobile crowdsensing enables real-time sensing of
the physical world. However, providing uniform sensing coverage
of an entire area may prove difficult. It is possible to collect
a disproportionate amount of data from very popular regions
in the area, while the unpopular regions remain uncovered.
To address this problem, we propose a model for collecting
crowdsensing data based on incentivizing smart phone users to
play sensing games, which provide in-game incentives to convince
participants to cover all the regions of a target area. We designed
and implemented a first person shooter sensing game, “Alien
vs. Mobile User”, which employs techniques to attract users to
unpopular regions. Our prototype Android game collects WiFi
data to create a campus coverage map. The results from a user
study show that mobile gaming ensures high coverage, and we
observe that the proposed game design succeeds in achieving good
player engagement. Furthermore, we compare three strategies
for area coverage in terms of coverage time and coverage effort
for users. The simulation results demonstrate that Progressive
Movement is the best strategy because it manages to quickly
entice users from popular regions to unpopular ones with a
reasonable coverage effort.

I. INTRODUCTION

Mobile sensors such as smart phones and vehicular systems
represent a new type of geographically distributed sensing in-
frastructure that enables mobile people-centric sensing [1]–[3].
This new type of sensing can be a scalable and cost-effective
alternative to deploying static wireless sensor networks for
dense sensing coverage across large areas. mCrowd [4],
Medusa [5], and our McSense platform [6]–[8] are some of the
recent proposals for a common mobile crowdsensing platform
to perform various sensing tasks supported by the smart phone
sensors.

Mobile crowdsensing can be used to enable a broad spec-
trum of applications, ranging from monitoring pollution or
traffic in cities to epidemic disease monitoring or reporting
from disaster situations. Clients of this new sensing infras-
tructure include the population at large, researchers in many
fields of science and engineering, as well as local, state and
federal agencies.

A major challenge for broader adoption of the mobile
crowdsensing systems is how to incentivize people to collect
and share sensor data from a targeted area. Mapping an area
with sensor data is a tedious effort when performed manually,
and it is possible to collect a disproportionate amount of data
from regions that are very popular compared to regions that

are less popular [9]. Furthermore, sharing the sensed data may
raise privacy concerns as it may require the sharing of private
information such as location. Therefore, there is a need to find
an efficient solution to incentivize the participants in collecting
sensor data from an entire target area.

Many of the proposed mobile crowdsensing systems provide
monetary incentives to smart phone users to collect sensing
data. There are solutions based on micro-payments [10] in
which small tasks are matched with small payments. The
participants in mobile crowdsensing systems may require sig-
nificant incentives to go out of their way and cover unpopular
regions. Other techniques were also explored to motivate
individuals to participate in sensing. For example, beneficial
personal analytics are provided as incentives to participants
through sharing bicycle ride details in Biketastic [11]. An-
other variety of incentive is enabling data bartering to obtain
additional information, such as bargain hunting through price
queries in LiveCompare [12].

In addition, there are gamification techniques proposed for
crowd-sourced applications [13], [14]. However, to the best
of our knowledge, no work has been done on using mobile
games for incentivizing the participants in a mobile crowd-
sensing system to cover a targeted area uniformly. General
gamification techniques for crowd-sourced applications cannot
be directly applied in the context of uniform area coverage
because we need to answer specific questions such as: What
coverage strategies work best? What incentives mechanisms
work best?

We propose to leverage gamification for fast and efficient
area coverage in crowdsensing. Mobile sensing games use
in-game incentives to convince participants to cover all the
regions of a target area.

To demonstrate crowdsensing enabled by mobile gaming,
we designed and implemented a first person shooter sensing
game, “Alien vs. Mobile User”, which can be played by mobile
crowdsensing participants on their smart phones. The game
involves tracking the location of extraterrestrial aliens on the
campus map of our institution and destroying them. The game
entices users to unpopular regions through a combination of
alien-finding hints and higher number of points received for
destroying aliens in these regions. The game was implemented
in Android, and it collects WiFi signal data to construct
the WiFi coverage map of the targeted area. The game also

MobiCASE 2014, November 06-07, Austin, United States
Copyright © 2014 ICST
DOI 10.4108/icst.mobicase.2014.257779



leverages this WiFi data to provide indoor player localization;
thus, players will be able to increase their scores by dis-
covering aliens indoors. In addition, we performed extensive
simulations to select the best gaming strategy for the prototype
to ensure faster area coverage with minimum user effort.

Specifically, the paper makes the following contributions:
• To the best of our knowledge, we are the first to propose a

model for automatically and uniformly collecting crowd-
sensing data across large areas based on incentivizing
smart phone users to play mobile sensing games.

• We design and prototype “Alien vs. Mobile User”, an
Android-based mobile game that enables crowdsensing.

• We evaluate three strategies to attract users to unpopular
regions in order to cover the entire target area, Localized,
Random and Progressive, to understand which one leads
to more efficient area coverage. Simulation results show
the Progressive Movement strategy results in the lowest
coverage latency. This strategy manages to quickly entice
users from popular regions to unpopular ones in a natural
way that results in a reasonable coverage effort for users.

• We demonstrate experimentally through a user study
based on our game that mobile gaming can be a suc-
cessful approach for efficient area coverage in crowdsens-
ing. The results show that mobile gaming ensures high
area coverage. Furthermore, the proposed game design
succeeds in finding a good balance between attempting
to attract users to the uncovered regions quickly and
maintaining player interest in the game.

The rest of the paper is organized as follows. Section II
describes the game design and implementation. Section III
presents the alien movement strategies to cover the area.
The simulation results for these strategies are discussed in
Section IV. Section V presents the results of our user study.
We discuss related work in Section VI. The paper concludes
in Section VII.

II. ALIEN VS. MOBILE USER GAME

The game is a first person shooter game played by mobile
users on their smart phones while moving in the physical
environment. Since the goal of the game is to densely cover
a large area with sensing data (i.e., cover all regions of the
area), it is essential to link the game story to the physical
environment. Broadly speaking, in our game, the players must
find aliens throughout an area (e.g., our campus) and destroy
them. In the process, players collect sensing data as they move
through the area. Although the game could collect any type
of sensing data available on the phones, our implementation
collects WiFi data (BSSID, SSID, Frequency, Signal strength)
to build a WiFi coverage map of the targeted area. The
motivation to play the sensing game is twofold: 1) The game
provides an exciting real-world gaming experience to the
players, and 2) The players can learn useful information about
the environment such as the WiFi coverage map which lists
the locations having best WiFi signal strength near the player’s
location.

The game contains the following entities/characters:

• CGS: The Central Game Server (CGS) controls the
sensing game environment on the mobile devices and
maintains the players’ profiles and the sensing data col-
lected from the sensing game.

• Player: Users who play the sensing game on their mobile
devices. The players are rewarded with points for shoot-
ing and/or destroying the aliens. All players can see the
current overall player ranking on a shared leaderboard.

• Alien: A negative role character that needs to be found
and destroyed by the game players. Aliens are controlled
by CGS according to the sensing coverage strategy.

A. Design

Game story: All the aliens in the game are hiding at
different locations across the targeted area. Players can see
the aliens on their screens only when they are close to the
alien positions. This is done in order to encourage the players
to walk around the area to discover aliens; in the process, we
collect sensing data. At the same time, this makes the game
more unpredictable and potentially interesting. The game on
the phones periodically scans for nearby aliens and alerts the
players when aliens are detected; only one detected alien is
shown to the player at a given time. The player locates the
alien on the game screen and starts shooting at it using the
game buttons. When an alien gets hit, there are two possible
outcomes: if this is the first or second time the alien is shot,
the alien escapes to a new location to hide from the player. To
completely destroy the alien, the player has to find it and shoot
it three times. Hints of the alien’s new location are provided
after it is shot and escapes to another place. In this way, the
players are provided with an incentive to cover more locations.
The aliens hiding in the targeted area are common to all the
players. Thus, different players can detect and shoot the same
alien at different times as long as the alien was not destroyed.

The sensing side of the game: Sensing data is collected
periodically when the game is on. Since this collects location
traces, the players will be made aware of the potential privacy
risk when they install the game. Nevertheless, the goal is to
build games that are attractive enough to convince players to
trade-off privacy for fun. The placement of aliens on the map
will ultimately ensure full sensing coverage of the area. The
challenge, thus, is how to place/move the aliens to ensure fast
and uniform coverage while maintaining a high player interest
in the game. The CGS moves aliens on the game map to
desired locations (i.e., uncovered regions) using one of the
alien movement algorithms proposed in Section III.

In the initial phases of sensing, CGS moves the alien to a
location which is not yet covered, but later on it moves the
alien intelligently from one location to another by considering
a variety of factors (e.g., less visited regions, regions close to
pedestrian routes, or regions where the client who needs the
data requires high sensing accuracy). CGS helps the player
who shoots an alien by providing game hints such as revealing
the direction in which the alien has escaped. Generally, the
alien will escape to farther away regions and the player might
be reluctant to follow despite the hints provided by CGS. To



Fig. 1. Alien vs. Mobile User sample screenshots: finding the alien (left);
alien trail (right).

increase the chances that players follow the alien, we provide
more points for shooting the alien for a second time and even
more for the third shot (which destroys the alien).

The more active players are, the more bullets they are able
to collect in the game. The bullets available for collection
are placed around the players and maintained individually for
each player’s view of the game based on three main factors:
the number of bullets collected so far by the player, the total
play time of the player, and the game level of the player. The
number of bullets around each player increases linearly with
these factors to keep the active players motivated to continue
playing. But, placing too many bullets around the players could
make the game less interesting. Therefore, CGS limits the
bullet count to a certain threshold.

Indoor localization: This is necessary in order to cover the
building floors. By default, Android uses WiFi triangulation
in conjunction with GPS to estimate the location of the player
in the (X, Y) plane while indoors. Due to potentially larger
localization errors as compared to GPS, it is possible that the
player and the alien she is shooting at are not in the same
square, even though they appear to be in the same square in
the game. The sensing reading is associated with the position
of the alien (known to CGS), and thus it will reflect the
localization error.

We leverage the barometric pressure sensor available in
most Android phones to determine the Z coordinate, specif-
ically the building floor. For accurate estimation of floor
levels, we initially measured the altitude at ground level near
each campus building. For the phones without barometric
pressure sensor, we perform indoor localization based on the
fingerprinting done by other players who visited the same area
and whose phones have barometric pressure sensors. Specif-
ically, these players have recorded the mappings between
the estimated location and the strengths of the WiFi signals
measured at that location. Thus, the players will be helped to
hunt down aliens indoors by the sensing data they collect (i.e.,
WiFi signals).

B. Implementation

A prototype of the game has been implemented in Android
and is compatible with smart phones having Android OS 2.2 or
higher. When the player opens the game on her smart phone,
the map of the player’s current location is displayed on the
game screen. An alien appears on the map when the player is
close to the alien’s location, as shown in Figure 1 (left). The
player can target the alien and shoot it using the smart phone’s
touch screen. When the alien escapes to a new location, its
“blood trail” leading to its new location is provided on the
map as a hint to track it down (as shown in Figure 1 (right)).
The server side of the game is implemented in Java using one
of the Model View Controller frameworks involving EJBs/JPA
models, JSP/HTML views, and servlets, and it is deployed on
the Glassfish Application Server.

III. ALIEN MOVEMENT STRATEGIES

In this section, we propose three strategies for placing and
moving the aliens in order to cover the targeted area efficiently.

A. Assumptions and Definitions

The target area that needs to be covered is divided into
small square cells (in our user study we consider the cell size
10m x 10m). Inside buildings, the target area includes both
the ground floor as well as the upper floors. Each alien can be
used to cover K squares before it is destroyed (in our game,
aliens are destroyed after being shot 3 times, so K = 3). We
assume there cannot be more than one alien in one square at
any moment. Hence, the minimum number of aliens required
to cover the area is TotalNumberOfSquares/K.

Clients/applications may need more than one reading per
square due to reliability issues. Thus, the game has a parameter
that indicates how many times each square must be covered
by sensor readings.

In this section, we use the following terms:
• Square: The square is the smallest unit of coverage.

Aliens and players move to squares.
• Available Square: A square for which the number of

collected data points is lower than the desired number
of data points.

• Region: A larger portion of the targeted area which
contains K squares.

• Popular Region: A region where a substantial number of
data points have been collected, but the number of data
points required by the client has not been reached.

• Unpopular Region: A region where no data point has
been collected.

• Healthy Alien: An alien that was never shot in the game.

B. Localized Movement Strategy

In this strategy, every alien is assigned to a single region,
and it moves only in that region when shot by the player as
shown in Figure 2 for alien A1. This strategy does not require
the players to move much to hunt down the aliens, and thus,
it could be successful.



Fig. 2. Localized Movement strategy: Example of CGS moving the alien
A1 locally in the assigned highlighted region when A1 is shot by the player.
As part of the greedy process, CGS moves the healthy alien A2 from an
unpopular region to a popular region.

Fig. 3. Random Movement strategy: Example of CGS swapping alien A1
(which is shot) with the healthy alien A2 from an unpopular region.

CGS maintains statistics about popular and unpopular re-
gions based on the data collected from players. Thus, CGS is
able to adapt to the collected information and execute a greedy
process which periodically moves the healthy aliens from
unpopular regions to popular regions as shown in Figure 2
for alien A2. When the player shoots this healthy alien, CGS
moves the alien back to its originally assigned region. A
“blood trail” hint is provided to the player to indicate the
location where the alien has escaped. This process places the
aliens at highly popular regions to increase the probability of
being found by the player and helps in luring the players to
unpopular regions.

Issue: The main concern with this strategy is that the
aliens are restricted to one region, and thus, the players may
eventually predict aliens’ locations. Therefore, the Localized
Strategy may lead to a simple game plan and may become
boring for players, ultimately leading to a decrease in the
number of players.

C. Random Movement Strategy

In this strategy, the aliens are not restricted to a region and
they can be placed in any square randomly by CGS. Thus,
the strategy addresses the issue of easily predicting the alien’s
location. Basically, CGS swaps the alien which is shot in the
game with a healthy alien from an unpopular region chosen
randomly as shown in Figure 3. A1 is moved to a square in
an unpopular region, chosen randomly from all the unpopular
regions at that time. A2 is moved to an available square near to
the location where A1 was shot. When there are no available
unpopular regions to choose (i.e., regions with no coverage),
CGS chooses the square from the regions with the minimum
coverage.

The purpose of the alien swap is to take advantage of
the popular regions from the starting phases of the game

Fig. 4. Progressive Movement strategy: Example of CGS moving the alien
to the closest unpopular region.

deployment, instead of waiting for a long period to adapt to
the collected data (i.e., identify the top few popular regions)
as performed in the Localized Movement strategy. Hence, the
shot alien is moved from the popular region to an unpopular
one to lure the player there. At the same time, we bring the
alien from the unpopular region to an uncovered square of the
popular region where there is a higher chance for players to
encounter it. In the Random Movement strategy, new aliens
are added at random time intervals.

Issues: Even though randomness helps CGS to place the
aliens at unpredictable squares, CGS may end up placing
the aliens too far from the player’s current location. If this
situation happens in the early phases of the game deployment,
then players may lose interest in tracking the alien. The players
might be more interested to track the aliens if the aliens are
closer to their current region, though at a square that is not easy
to predict. This should be done at least until CGS achieves a
good game adoption rate.

D. Progressive Movement Strategy

In this strategy, the aliens are moved to the nearest unpopu-
lar regions when they are shot by the player. This addresses the
issue of randomly placing the alien too far from the player’s
location. Basically, CGS swaps the alien which is shot in the
game with the closest healthy alien from an unpopular region
as shown in Figure 4. In the figure, when A1 is shot the first
time, CGS chooses the closest available square from all the
unpopular regions, which is A2’s square. A2 is then moved
to the next available square near A1’s location as shown in
Figure 4(a). A similar swap happens between A1 and A3
when A1 is shot again. A1 is finally destroyed when it is
shot for a third time. Steadily, CGS covers the targeted area
in a progressive fashion by starting from the popular regions
as main centers and slowly expanding the coverage toward the
unpopular regions.

CGS chooses a square from the closest unpopular region
at that time. When there are no available unpopular regions,



Algorithm 1 Progressive Movement Strategy Pseudo-Code

Notation:
A1: The alien that needs to be moved to another location by CGS.

A2: The other alien in the game to whose location the A1 is moved by

CGS.

currentSquare: The square where A1 is shot by the player.

chosenSquare: The square to which A1 is moved by CGS.

unPopularRegionsList: The list of unpopular regions.

mostUnpopularRegion: The region with highest number of uncovered

squares.

getCurrentSquare(): Get the current square details of the alien.

getAlien(): Get the alien from the square if any alien is at that

square.

getNearestAvailableSquare(currentSquare): Get the available square

closest to the currentSquare.

updateCurrentSquare(chosenSquare): Update the currentSquare of the

alien with the chosenSquare.

updateCoveredSquare(currentSquare): Set the coverage indicator for the

currentSquare.

getNearestSquare(mostUnpopularRegion,currentSquare): Get the square

details for the square in the most unpopular region which is closest

to the currentSquare.

getRegionsWithMostAvailableSquares(sqCount): Get the list of unpopular

regions having available squares of count sqCount.

sortByDistanceAscend(unPopularRegionsList, currentSquare): Sort

the unPopularRegionsList by the distance between each region to the

currentSquare in ascending order.

getRegionWithHealthiestAlien(): Get the region which contains the

healthiest alien.

moveAlien(A1):

1: currentSquare = A1.getCurrentSquare()
2: chosenSquare = chooseSquareFromUnpopularRegions(currentSquare)
3: if chosenSquare == NULL then
4: The targeted area is fully covered and the game is complete
5: else
6: A2 = chosenSquare.getAlien()
7: A1.updateCurrentSquare(chosenSquare)
8: if A2 6= NULL then
9: A2.updateCurrentSquare(getNearestAvailableSquare(currentSquare))

10: updateCoveredSquare(currentSquare)

chooseSquareFromUnpopularRegions(currentSquare):

1: mostUnpopularRegion=getNearestRegion(getMostUnpopularRegionsList(),
currentSquare)

2: chosenSquare = getNearestSquare(mostUnpopularRegion,currentSquare)
3: return chosenSquare

getMostUnpopularRegionsList():

1: regionSize = 3 //constant
2: for sqCount = regionSize to 1 do
3: unPopularRegionsList=getRegionsWithMostAvailableSquares(sqCount)
4: if unPopularRegionsList 6= NULL then
5: break
6: return unPopularRegionsList

getNearestRegion(unPopularRegionsList, currentSquare):

1: unPopularRegionsList=sortByDistanceAscend(unPopularRegionsList,
currentSquare)

2: if multiple regions have the same distance then
3: mostUnpopularRegion = getRegionWithHealthiestAlien()
4: else
5: mostUnpopularRegion = unPopularRegionsList[0]
6: return mostUnpopularRegion

CGS chooses the square from the regions with the minimum
coverage. When all the regions with same number of available
squares are at same distance from the alien’s location, CGS
selects the square with the “healthiest” alien (i.e., never shot
or shot the fewest times).

The purpose of this swap process is two-fold: 1) CGS pulls
the players into unpopular regions to cover the targeted area
efficiently, and 2) the game is made challenging because the
players cannot predict the alien’s moves without knowing the
overall game details such as health status of all the aliens and
the coverage status of all the squares. This process avoids the
issues present in the other two strategies. Since our results
show that this strategy works best, we present its detailed
operation in Algorithm 1.

E. Number of Aliens in the Game

In our game, it is essential to set the number of aliens in such
a way as to achieve a good balance between efficient coverage
and maintaining player interest in the game. Empirically, our
goal is to allow players to encounter aliens every so often,
while not being able to predict the alien’s movement. The
number of aliens depends on the number of squares, the
number of players, and the stage of the game (e.g., in early
stages most regions are not covered, and in late stages most
regions are covered).

For each strategy, CGS adds new aliens every few minutes
near the players’ locations depending on the game status
to keep them interested in tracking the aliens. For each
player, CGS allocates GS aliens for every TGS minutes
time period, where TGS = 2 × NumOfGameStages × T .
NumOfGameStages is a parameter that counts how many
times each square must be covered. This is important for
clients/applications that do not want to rely on only one
reading per square due to reliability reasons. Thus, our game
allows multiple readings for each square. However, the game
works in stages: it first attempts to cover each square once,
then to cover each square twice, and so on. T is the time period
after which CGS attempts to add a new alien. This formula
allows CGS to add more aliens in the final stages of the game
to pull the players into the most unpopular regions.

CGS adds a new alien at the player’s location only if the
player satisfies either of the following conditions. First, the
player has not found the alien in the last T minutes. Second,
the player tracked and killed the alien in last T minutes. The
intuition behind these conditions is that in both scenarios the
player is interested in tracking the alien. CGS adds the new
alien only if the player has moved from her last location in
T minutes. In case the player has found the alien in the last
T minutes and ignored it, CGS alerts the player about the
last found alien instead of adding a new alien again after T
minutes.

IV. SIMULATIONS

This section presents the evaluation of the alien movement
strategies, which have a major impact on the efficiency of the
area coverage. The three main goals of the evaluation are:



TABLE I
PLAYER TYPES

Player Type Player Type Description
PT1 Active player who always tracks the alien.
PT2 Tracks the alien if it is in 50 meters range or if she

can deliver the third shot that destroys the alien.
PT3 Tracks the alien only if it is in 50 meters range.
PT4 Player never tracks the alien; shoots the alien only

when found in her travel path.

TABLE II
NUMBER OF PLAYERS FROM EACH PLAYER TYPE ASSIGNED TO THE

THREE BEHAVIORS/SCENARIOS

BH1 BH2 BH3
PT1 0 3 6
PT2 2 3 4
PT3 4 3 2
PT4 6 3 0

(1) Compare the coverage latency for the three strategies, (2)
Measure the coverage effort as experienced by players, and
(3) Compare the area coverage over time for the strategies
and identify the best strategy to implement in the prototype.
We use the NS2 network simulator for the experiments [15].

A. Entropy of the area coverage

The goal of the game is to cover the targeted area as fast as
possible and with the least possible effort from the players. In
order to measure the player effort, we propose to look at the
“system utilization”: a perfect utilization requires that each
square be covered uniformly with the minimum number of
sensing readings required by the client who will use the data.
In this case, the entire effort of the players is utilized. Any
additional readings will lead to wasted player effort. Therefore,
we need a metric to capture this idea.

The entropy of the area coverage presented in Equation 1
can be used to observe the overall system utilization. The
greater the entropy value, the more uniformly the area is
covered, and thus the player effort is not wasted.

H = −
N∑
i=1

vi
V

log(
vi
V
) (1)

Where vi is the number of visits by the players in square
i; V is the total number of visits by the players of all visited
squares (V =

∑
vi); and N is the total number of squares in

the targeted area. The equation is similar to the deployment
entropy calculated in [16], where a swarm of micro air vehicles
are deployed to maximize the area coverage.

In the game context, the entropy is the measure of unifor-
mity with which the players visit the squares in the targeted
area. Once the game completes and the area is fully covered,
the entropy of the area coverage quantifies the completeness
and uniformity with which the players covered the area.

B. Simulation Setup

The simulation is set up in a 500m X 500m area with
12 players moving at 2m/sec. The simulation area is di-
vided into 2,500 squares of size 10m x 10m. We used the
following settings for the parameters defined in Section III:

0

1

2

3

4

5

6

BH1 - Less Active BH2 - Balanced BH3 - More Active

C
o

v
e

ra
g

e
 L

a
te

n
c
y
 (

h
o

u
rs

) 

Behavior of Players 

Random Movement Strategy

Localized Movement Strategy

Progressive Movement Strategy

Fig. 5. Area coverage latency of the three alien movement strategies.

NumOfGameStages=5 (each square must be covered at
least 5 times), T=3, and GS={5..9} for game stages 1 to 5,
respectively. Sensing is performed once per second by each
player. The players get 100, 200 and 300 points, respectively,
for the three shots needed to destroy the alien.

Although player behavior is very difficult to predict, we
define four player types as shown in Table I. These player
types are allocated to three simulation scenarios as defined in
Table II: Behavior 1 (BH1) in which less active players are
in majority, 2) Behavior 2 (BH2) in which the player types
are balanced, and 3) Behavior 3 (BH3) in which highly active
players are in majority.

C. Simulation Results

Area Coverage Latency. Figure 5 shows the coverage
latency of the three strategies for the three simulation scenarios
(BH1, BH2, BH3). The best coverage latency is achieved by
the Progressive Movement strategy in all scenarios. This is
one good reason to pick this strategy in future deployments
of the game. In addition, this strategy also has techniques to
keep the players interested by making the alien movement
unpredictable.

The Random Movement strategy performs the worst in BH1
and BH2. In BH1, there are no active players to play the
game which is the reason it takes more time to cover the
targeted area. But with the increase in the number of active
players, this strategy improves until it overcomes the Localized
Movement strategy in BH3. In the Progressive and Localized
strategies, good results are achieved even for BH1 because
these strategies move the alien closer to the player who shot
it and the PT2 type players track the alien in 50 meters range.

In BH3 scenario, surprisingly, the Localized and Progressive
strategies take longer to complete than in the other two
scenarios. The reason is that the active players are following
similar paths to the unpopular regions. Thus, the rate of new
squares covered is slower in BH3 compared to BH2.

Area Coverage Entropy. Figure 6 shows the entropy values
calculated at the end of the simulation for the three strategies.
As expected, the Random strategy performs best as it achieves
the most uniform coverage. In the Localized and Progressive
strategies, the increase in active players leads to a decrease
in entropy as the active players cover the squares faster than
in the Random strategy (in BH2 and BH3). Thus, the overall
coverage is not uniform which results in lower entropy. When



8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.50

BH1 - Less Active BH2 - Balanced BH3 - More Active

E
n

tr
o

p
y
 V

a
lu

e
 

Behavior of Players 

Random Movement Strategy Localized Movement Strategy

Progressive Movement Strategy

Fig. 6. Entropy of the area coverage for the three alien movement strategies.

0

500

1000

1500

2000

2500

3000

8.5

9

9.5

10

10.5

11

11.5

10 30 50 70 90 110 130 150 170 190 210 230

N
u

m
b

e
r 

o
f 

S
q
u

a
re

s
 

E
n

tr
o
p

y
 V

a
lu

e
 

Time (minutes) 

Entropy for Random
Entropy for Progressive
Entropy for Localized
Cov Latency for Random
Cov Latency for Progressive
Cov Latency for Localized

Fig. 7. The entropy and latency over time for the three alien movement
strategies in BH3 scenario.

the number of active players is low, the entropy is similar for
the three strategies.

When comparing the Progressive and the Random strategies
for BH3, we see that it is difficult to conclude which one
is better: Progressive leads to lower latency, while Random
leads to higher entropy. However, Progressive is clearly better
for the other two scenarios as it achieves lower latency and
comparable entropy.

Area Coverage over Time. Figure 7 shows the entropy
and latency over time for the three strategies in the BH3
scenario, which we observed to be the most complex in terms
of selecting the best strategy. The results show that the goal
of covering each square at least NumOfGameStages times
(set to 5 in these simulations) is achieved in less time by the
Progressive strategy compared to the other two strategies.

Statistical Analysis. To understand the statistical signifi-
cance of the performance difference between the three pro-
posed alien movement strategies, we conducted the ANOVA
test over the coverage latency (20 simulation runs for all
three behaviours). We used the non-parametric Jonckheere-
Terpstra method to test for ordered differences among the
three strategies and found that the Progressive strategy has
the lowest latency with p < 0.0056 for the three behaviours.
Based on this result as well as the coverage entropy result, we
conclude that the Progressive strategy is the best overall and
use it in our prototype implementation.

V. USER STUDY EVALUATION

We ran a user study (performed with our institution’s IRB
approval) for 35 days, in which students used their Android
devices to play our game [17] and collect WiFi data both
outdoors and indoors throughout the campus of our institution.
The campus area is divided into small squares of size 10m X
10m. The game is available in the Google Play Store. A total

Fig. 8. Coverage of the University campus in the first four weeks of the
studies: 46% crowdsensing with micro-payments (left) vs. 87% crowdsensing
with mobile gaming (right). A number of areas have been removed from the
map as they are not accessible to students.

5% 
7% 

11% 

34% 

28% 

13% 
2% 

less than 3

equal to 3

between 4 and 10

between 11 and 100

between 101 and 1000

between 1001 and 10000

between 10001 and 51000

Squares having WiFi reading counts 

Fig. 9. Distribution of square coverage using the mobile game.

of 53 players registered, then installed and continued playing
the game.

The main goals of this user study are: (1) quantify the per-
formance of crowdsensing enabled by mobile gaming in terms
of area coverage efficiency, and (2) analyze the effectiveness
of mobile gaming as an incentive for crowdsensing.

Area coverage efficiency. Using the WiFi sensing data
from our previous work McSense [6]–[8], a micro-payment
based crowdsensing system, we present a comparison of area
coverage between crowdsensing enabled by mobile gaming
and crowdsensing enabled by micro-payments. Figure 8 over-
lays the collected WiFi data over our campus map for both
methods. The WiFi signal strength data is plotted with the
following color coding: green for areas with strong signal; blue
for areas with medium signal; yellow for areas with low signal;
and red for areas with no Campus WiFi signal. Overall, the
mobile gaming approach doubles the area coverage compared
to the micro-payment approach (87% vs. 46% of the campus).
The complete details of the WiFi area coverage maps for both
studies are available on-line under the game website [18].

To understand the effort put by players into achieving this
high coverage, we compute the entropy of the area coverage.
The entropy is calculated at the end of the user study using
the counts of sensor readings for each of the covered squares
in the area (cf. Equation 1). The calculated value for our study
is 6.3, while the optimal value is 9.2 (i.e., when every square
in the area is uniformly covered with the same number of
sensor readings). This result shows that the players’ effort
is substantial, and future work should focus on additional
game strategies to reduce this effort. To understand better the
potential for improvement, Figure 9 shows the distribution of
square coverage across the entire area. We consider only the
squares that have been covered. In the user study, we required



0

50

100

150

200

250

300

350

0

10

20

30

40

50

60

70

80

90

100

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

N
u

m
 o

f 
A

lie
n

s
 K

ill
e

d
 

P
e

rc
e

n
ta

g
e

 o
f 
A

re
a

 C
o

v
e

re
d
 

Time (days) 

Area Coverage

Num of Aliens Killed

Fig. 10. Correlation between number of aliens killed and area coverage (we
started to record this data in day 7).

0

50

100

150

200

250

300

350

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

N
u
m

 o
f 
A

lie
n

s
 

Time (Days) 

Number of Aliens Tracked

Total Num of Aliens Killed

Fig. 11. Efficacy of Progressive Movement strategy: total number of aliens
killed vs. number of aliens tracked by the players over time.

that each square be covered with at least three WiFi readings.
Nevertheless, we also plot the squares covered with one or
two readings. From the plot, we observe that 15% of the
squares are covered with over 1000 readings each. We believe
that these squares cover the campus center building and the
labs, and the high number of readings is just a by-product
of the fact that students spend most of the time there. The
next two categories, between 11 and 1000 readings, represent
45% of the squares. Our future goal is to devise strategies that
reduce the coverage in these categories while, at the same time,
increase the coverage of the remaining categories.

Analysis of Mobile Game Incentives. Figure 10 presents
the correlation between the number of aliens killed and area
coverage. The results show that our strategy of placing the
aliens strategically across the area achieves its goal, as we
observe a clear correlation between the number of aliens
killed and area coverage. For a more in-depth analysis, we
investigate the performance of the Progressive Movement
strategy. Figure 11 shows the total number of aliens killed
over time and the number of aliens tracked by the players. We
observe that the players have been actively tracking the aliens
in the first two weeks, and this results in more aliens killed;
consequently, higher area coverage was achieved. After that,
since only areas located farther away from the players normal
places and paths are left, we see a decrease in the number
of tracked aliens. However, the players are still interested in
killing the aliens on their paths. Finally, in the last week, we
announced a number of prizes for the best ranked players. The
prizes were of little monetary value. However, they work well
to incentivize the players to track the aliens to the least popular
regions as demonstrated by the sudden spike toward the end
of the period. Given the symbolic value of these prizes, they
could be considered similar to game-based incentives. Thus,
they do not change the incentive assumptions of our user study.

Another factor that is expected to incentivize the users to
continue playing, is the number of bullets that can be collected
from around them. Figure 12 presents the correlation between
the number of bullets and the number of aliens killed. As

10

20

30

40

50

60

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500

N
u

m
 o

f 
A

lie
n

s
 K

ill
e

d
 

Num of Bullets Collected 

0

10

20

0 200 400 600

Fig. 12. Correlation between number of bullets and aliens killed. The
calculated Pearson’s correlation value is 0.98 (high positive correlation).

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

A
v
e

ra
g
e

 N
u

m
 o

f 
C

o
v
e

re
d

 
S

q
u

a
re

s
 

Time (Days) 

Fig. 13. Average number of covered squares per player per day.

already demonstrated, the number of killed aliens is a good
indicator for area coverage. We observe two types of players:
1) players who collect many bullets around them, and 2)
players who collect few bullets. The top 3 ranked players
collected a lot of bullets, and subsequently were able to kill
more aliens. These results provide two insights. First, the
number of collected bullets is indeed a good, although indirect,
indicator for area coverage. Second, this incentive may have
to be re-designed to impact a larger number of users.

The next set of results analyze how active the players were
during the study. Figure 13 shows the average number of
covered squares per player per day. We observe a weekly cycle,
in which the players are more active during the early part of
the week. This is due to two reasons: (1) at the beginning of
each week, we emailed the latest ranking to all participants
and this proved to be a good incentive for players; (2) the
students spend less time on campus during the weekend. This
behavior can be leveraged in future games. For example, the
game can be designed to provide additional in-game incentives
for known periods of low activity. As expected, the players also
show a clear daily pattern (Figure 14), which can be leveraged
in future games as well. For instance, more aliens should be
placed around the players during periods of high activity (e.g.,
2PM-6PM).

Finally, we evaluate the indoor area coverage, which could
be very difficult outside labs and classrooms. Since some
offices are closed to students, while some buildings contain
administrative offices where students do not “dare” to go, we
believe that the 35% coverage of the upper floors achieved
in the study is a promising result. The players mostly covered
the hallways and open spaces in each building. Our conjecture
is that incentives designed specifically for these places would
probably help to increase this coverage. In addition, aliens
must not be placed in inaccessible places. A crowdsourcing
approach, in which players mark the inaccessible places while
playing the game may prove the best solution for this problem.

Figure 15 plots the correlation of active players and the



0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u

m
b

e
r 

o
f 

P
la

y
e

rs
 

Hour of the day 

Fig. 14. Average daily patterns of active players.

0

5

10

15

20

25

30

35

40

0

2

4

6

8

10

12

14

16

18

12 14 16 18 20 22 24 26 28 30 32 34

P
e

rc
e

n
ta

g
e

 o
f 
A

re
a

 C
o

v
e

re
d
 

N
u

m
 o

f 
P

la
y
e

rs
 

Time (days) 

Active Players

Upper Floors Area Coverage

Fig. 15. Correlation of active players and the number of squares covered at
floor levels > 1 over time in the last two weeks of the user study.

number of squares covered at upper floor levels over time
(we started to place aliens on upper floors on day 12). These
results demonstrate that indoor coverage correlates well with
the number of active players, and the pattern is similar to
outdoor coverage.

At the end of the user study, we collected game feedback
from the players to understand the effectiveness of the game
design by asking them “What made you to continue playing
the Alien vs. Mobile User game?”. We received answers from
16 players. The responses show that the majority of the players
were curious about the game, and they liked tracking the aliens
hiding in the campus buildings. Other reasons for playing,
based on their counts in the players’ answers, were: moving
to the next game levels and being on top of the leaderboard;
competing with friends; winning game achievements; and
checking the game graphics. Lastly, very few players were
interested to win the game prizes announced at the end.

VI. RELATED WORK

There is significant literature on using gamification tech-
niques in crowdsourcing. However, there is very little in terms
of applying such techniques in crowdsensing. BioGame [13],
a crowdsourced game, shows that in cases where the medical
diagnosis is a binary decision (e.g., infected vs. healthy),
it is possible to make accurate decisions by crowdsourcing
the raw data (e.g., microscopic images of specimens/cells)
using entertaining digital games. This game does not involve
location or area coverage, which are major issues in mobile
crowdsensing.

There are a few crowdsourcing games [19], [20] that ac-
complish sensing tasks by requiring the explicit participation
of the players using the phone’s keypad. Our crowdsensing
game performs automatic sensing and does not require players
to provide manual input nor to complete tasks not related to
the game story. Like in any other mobile game, players can
simply enjoy playing. Thus, our game has a higher probability
to maintain the players’ interest over time.

The work in [21] motivates mobile users to participate in a
serious game that records as many audible signals as possible

from different traffic lights. This data can be processed and
integrated with Google maps to provide route accessibility
information for blind pedestrians. The authors mention the
possibility of automatic data gathering from smart phones’
sensors, but did not discuss any specific model or architecture
in detail. This game is limited to specific areas (i.e., around
traffic lights) that are easily covered by people. Our work uses
gamification to entice the users to many areas, some of them
unpopular, to ensure uniform coverage of large areas.

BudBurst [14] is a smart phone application for an environ-
mental participatory sensing project that focuses on observing
plants and collecting plant life stage data. The main goal is
“floracaching”, for which players gain points and levels within
the game by finding and making qualitative observations on
plants. This game is also an example of motivating participa-
tory sensing. Another participatory sensing game, Who [22],
is used to extract relationship and tag data about employees. It
was found useful for rapid collection of large volumes of high-
quality data from “the masses”. None of these participatory
sensing games addresses the problem of area coverage in the
context of crowdsensing.

Existing work in mobile health such as BeWell [23] utilizes
smart phone sensing to assess the mobile users’ wellbeing
through scores based on their daily activities. In BeWell, an
animated aquatic ecosystem is shown with three different
animals, the behavior of each being affected by changes
in the users’ wellbeing. Thus, the users are motivated to
maintain a healthy lifestyle. In a similar direction, our mobile
game focuses on utilizing simple game graphics and in-game
incentives to motivate smart phone users for achieving cost-
effective crowdsensing.

Treasure [24] is a mobile game that collects the same data
with our game. In Treasure, selected players using PDAs play
against their opponents in a specific open space such as a large
lawn where players have to collect coins that are scattered in
the game area and upload the collected coins back to the server
when they find WiFi connectivity. This game is not intended
for sensing, and it has not been designed for collecting sensing
data; the WiFi data is just used to help players quickly upload
the collected coins. Furthermore, this game did not attempt
to study area coverage efficiency. The main focus of this
game is on player’s gaming experience and their tactics and
strategies in a multi-player game. In addition, the players are
compensated to participate in the game. Our game is designed
to enable fast crowdsensing coverage of large areas, and the
players are not compensated: the fun of playing the game is
the only incentive.

Micro-payments have been studied as an incentive for users
to complete tasks in crowdsourcing (Amazon MTurk [25]),
to control “free-riders” in peer-to-peer networks [26], [27],
and to meter web content usage [28]. They have also been
examined in the context of participatory sensing [10], [29],
[30]. Some of the key findings are that incentives can be highly
beneficial in recruiting participants and that micro-payments
have the potential to extend participant coverage both spatially
and temporally. However, attracting people to unpopular places



could be difficult and expensive. For example, the results from
a recent crowdsensing study [9] show that many places will
be infrequently visited. Our game, on the other hand, focuses
on attracting players to such infrequently visited places and
succeeds in covering the targeted area.

VII. CONCLUSIONS

In this paper, we explored a model for collecting crowd-
sensing data across large regions based on incentivizing smart
phone users to play mobile sensing games. After analyzing
three strategies to attract users to unpopular regions in order
to cover the entire target area, we concluded that Progressive
Movement leads to the lowest coverage latency while incurring
a reasonable user effort as measured by the entropy of the area
coverage. We designed a mobile sensing game, “Alien vs. Mo-
bile User”, which incorporates game story-related incentives to
convince participants to cover all the regions of a target area.
The game was prototyped for Android-based mobile devices
and deployed as part of a user study in our campus. The user
study results demonstrate that mobile gaming ensures high
area coverage. Furthermore, the results show that our game
is able to strike a good balance between attempting to attract
users to the uncovered regions quickly and maintaining player
interest in the game.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation under Grants No. CNS 1409523, CNS 1054754, and
DUE 1241976. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] O. Riva and C. Borcea, “The Urbanet Revolution: Sensor Power to the
People!” Pervasive Computing, IEEE, vol. 6, no. 2, pp. 41–49, 2007.

[2] Smart phone sensing research @ Dartmouth college. [Online].
Available: http://sensorlab.cs.dartmouth.edu/research.html

[3] Urban sensing research @ UCLA. [Online]. Available: http://urban.
cens.ucla.edu/

[4] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner, “mCrowd:
A Platform for Mobile Crowdsourcing,” in Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems (SenSys’09).
ACM, 2009, pp. 347–348.

[5] M. Ra, B. Liu, T. La Porta, and R. Govindan, “Medusa: A Programming
Framework for Crowd-Sensing Applications,” in Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services
(MobiSys’12). ACM, 2012, pp. 337–350.

[6] M. Talasila, R. Curtmola, and C. Borcea, “Improving Location Relia-
bility in Crowd Sensed Data with Minimal Efforts,” in Proceedings of
the 6th Joint IFIP/IEEE Wireless and Mobile Networking Conference
(WMNC’13), 2013.

[7] G. Cardone, L. Foschini, C. Borcea, P. Bellavista, A. Corradi, M. Ta-
lasila, and R. Curtmola, “Fostering ParticipAction in Smart Cities: A
Geo-Social CrowdSensing Platform,” IEEE Communications Magazine,
vol. 51, no. 6, 2013.

[8] M. Talasila, R. Curtmola, and C. Borcea, “ILR: Improving Location
Reliability in Mobile Crowd Sensing,” International Journal of Business
Data Communications and Networking, vol. 9, no. 4, pp. 65–85, 2013.

[9] Y. Chon, N. D. Lane, Y. Kim, F. Zhao, and H. Cha, “Understanding the
Coverage and Scalability of Place-centric CrowdSensing,” in Proceed-
ings of the 2013 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp’13). ACM, 2013, pp. 3–12.

[10] S. Reddy, D. Estrin, M. Hansen, and M. Srivastava, “Examining Micro-
Payments for Participatory Sensing Data Collections,” in Proceedings
of the 12th ACM International Conference on Ubiquitous Computing
(Ubicomp’10). ACM, 2010, pp. 33–36.

[11] S. Reddy, K. Shilton, G. Denisov, C. Cenizal, D. Estrin, and M. Sri-
vastava, “Biketastic: Sensing and Mapping for Better Biking,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI’10). ACM, 2010, pp. 1817–1820.

[12] L. Deng and L. P. Cox, “LiveCompare: Grocery Bargain Hunting
Through Participatory Sensing,” in Proceedings of the 10th workshop on
Mobile Computing Systems and Applications (HotMobile’09). ACM,
2009, pp. 4:1–4:6.

[13] S. Mavandadi, S. Dimitrov, S. Feng, F. Yu, R. Yu, U. Sikora, and
A. Ozcan, “Crowd-sourced BioGames: Managing the Big Data Problem
for Next-Generation Lab-on-a-Chip Platforms,” Lab on a Chip, vol. 12,
no. 20, pp. 4102–4106, 2012.

[14] K. Han, E. A. Graham, D. Vassallo, and D. Estrin, “Enhancing Mo-
tivation in a Mobile Participatory Sensing Project through Gaming,”
in Proceedings of 2011 IEEE 3rd international conference on Social
Computing (SocialCom’11), 2011, pp. 1443–1448.

[15] Network Simulator - NS2. http://www.isi.edu/nsnam/ns/.
[16] W. Zheng-jie and L. Wei, “A Solution to Cooperative Area Coverage

Surveillance for a Swarm of MAVs,” International Journal of Advanced
Robotic Systems, vol. 10, no. 398, pp. 1–8, 2013.

[17] Monsters vs NJIT. [Online]. Available: https://play.google.com/store/
apps/details?id=com.mtlabs.games.avn

[18] Alien vs. Mobile User Game website. [Online]. Available: http:
//web.njit.edu/∼mt57/avmgame

[19] F. Alt, A. S. Shirazi, A. Schmidt, U. Kramer, and Z. Nawaz, “Location-
based Crowdsourcing: Extending Crowdsourcing to the Real World,”
in Proceedings of the 6th Nordic Conference on Human-Computer
Interaction: Extending Boundaries (NordiCHI’10). ACM, 2010, pp.
13–22.

[20] I. Celino, D. Cerizza, S. Contessa, M. Corubolo, D. Dell’Aglio, E. D.
Valle, and S. Fumeo, “Urbanopoly - a Social and Location-based Game
with a Purpose to Crowdsource your Urban Data,” in Proceedings of
the 2012 IEEE International Conference on Social Computing (Social-
Com’12), 2012, pp. 910–913.

[21] C. E. Palazzi, G. Marfia, and M. Roccetti, “Combining Web Squared
and Serious Games for Crossroad Accessibility,” in Proceedings of 2011
IEEE 1st International Conference on Serious Games and Applications
for Health (SeGAH’11), 2011, pp. 1–4.

[22] I. Guy, “Crowdsourcing in the enterprise,” in Proceedings of the 1st ACM
International Workshop on Multimodal Crowd Sensing (CrowdSens’12).
ACM, 2012, pp. 1–2.

[23] N. D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab,
E. Berke, T. Choudhury, and A. Campbell, “BeWell: A Smartphone
Application to Monitor, Model and Promote Wellbeing,” in Proceedings
of The 5th International ICST Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth’11), 2011, pp. 23–26.

[24] L. Barkhuus, M. Chalmers, P. Tennent, M. Hall, M. Bell, S. Sherwood,
and B. Brown, “Picking Pockets on the Lawn: The Development of
Tactics and Strategies in a Mobile Game,” in Proceedings of The Sev-
enth International Conference on Ubiquitous Computing (UbiComp’05),
2005, pp. 358–374.

[25] Amazon Mechanical Turk. [Online]. Available: http://www.mturk.com
[26] B. Yang and H. Garcia-Molina, “PPay: Micropayments for Peer-to-Peer

Systems,” in Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS’03), 2003, pp. 300–310.

[27] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge, “Incentives
for Sharing in Peer-to-Peer Networks,” in Proceedings of The Second
International Workshop on Electronic Commerce (WELCOM’01), 2001,
pp. 75–87.

[28] R. L. Rivest and A. Shamir, “PayWord and MicroMint: Two simple
micropayment schemes,” in Proceedings of The 1996 International
Workshop on Security Protocols, 1996, pp. 69–87.

[29] S. Reddy, D. Estrin, and M. Srivastava, “Recruitment Framework for
Participatory Sensing Data Collections,” in Proceedings of The 8th
International Conference on Pervasive Computing (Pervasive’10), 2010,
pp. 138–155.

[30] M. Musthag, A. Raij, D. Ganesan, S. Kumar, and S. Shiffman, “Explor-
ing Micro-Incentive Strategies for Participant Compensation in High-
Burden Studies,” in Proceedings of the 13th International Conference
on Ubiquitous Computing (UbiComp’11). ACM, 2011, pp. 435–444.


