
Kraken.me Mobile:
The Energy Footprint of Mobile Tracking

Immanuel Schweizer∗, Roman Bärtl∗, Benedikt Schmidt∗, Fabian Kaup†, Max Mühlhäuser∗
∗ Technische Universität Darmstadt, Telecooperation Lab

{schweizer,benedikt.schmidt,max}@tk.informatik.tu-darmstadt.de
† Technische Universität Darmstadt, Peer-to-peer Systems Engineering Lab

fkaup@ps.tu-darmstadt.de

Abstract—Power consumption can make or break the success
of mobile applications. This is especially true for applications
requiring constant access to sensor readings as sensors tend
to consume considerable amounts of energy. A lot of attention
has been focused on reducing power consumption for hardware
sensors both from a hardware and software perspective. How-
ever, mobile phones enable applications to also gather software
artifacts employing so called soft sensors, e.g., calendar, contacts,
browsing history, etc.

Soft sensors are especially important when considering per-
sonal assistant systems, life logs etc. They provide additional
deep insight into human behavior patterns and user goals.
Unfortunately, most tracking application do not consider these
soft sensors and their power consumption is mostly unknown.

In this paper we introduce the Kraken.me mobile tracking
application. It is part of the Kraken.me framework, tracking
mobile, desktop, and social interactions. The application tracks
both hard and soft sensors to enable the creation of rich user
profiles. Our main contribution is a thorough evaluation of
the power consumption of each individual sensor used and the
combination in the Kraken.me application. Using a high-accuracy
measurement setup, we provide an in-depth power analysis of
both soft and hard sensors. We believe these insights can help
researchers and developers of mobile tracking applications to
design more power efficient and, thus, more successful tools.

Keywords—Power consumption, Mobile Tracking, Soft sensors

I. INTRODUCTION

Mobile phones are battery-constrained and mobile sensing
applications are among the most energy consuming. This
creates an area of conflict. Mobile sensing, especially for real-
time use cases, requires high sampling rates while applications
with high power consumption see only limited success [1].

Recently, this trade-off was explored in great detail by
Kansal et al. [2]. They argue that a programmer building
mobile context sensing apps should be able to specify two
dimensions: (i) the latency at which context change is detected
and (ii) the accuracy of the inferred context. They propose
the latency, accuracy, and battery (LAB) abstraction to specify
these dimensions. Their Senergy API is then supposed to
provide the most energy-efficient context sensing algorithm to
fulfill the specified requirements. This is a powerful approach
lending app developers a tool to improve both programmer
productivity and energy efficiency.

However, this is not the reality when implementing mobile
context sensing applications today. Developers and researchers

build their own approaches relying on access to the raw
sensor data provided by the API, they use the default context
provided by the operating system, or, if applicable, alternatives
provided by the operating system. Kansal et al. introduce
these three possibilities as (i) Raw, (ii) One Default, or (iii)
Fixed Predefined Modes. Using these the developer has only
limited choices when it comes to accuracy or latency. Also, the
availability of accurate energy measurements for the standard
APIs is very limited.

This was a challenge for us, as we are currently developing
the Kraken.me suite [3]. Kraken.me is a comprehensive suite of
tracking applications designed as building blocks for context-
aware application, e.g., personal assistance etc. Kraken.me
mobile tracks the user’s behavior using thirteen different hard
and soft sensors currently. To provide this comprehensive data
gathering, we – as many other developers of mobile context
sensing applications – must rely on the standard APIs, if
possible. To provide valuable insights for other researchers and
developers, we wanted to understand the power consumption
for each sensor individually and in combination. Especially,
since we employ soft sensors, which have not really been
examined in literature.

Hence, this paper contributes the following:

1) The Kraken.me mobile application as a showcase of
mobile context sensing across hardware and software
sensors

2) Accurate power consumption measurements of the
standard Android API for most hardware sensors

3) Accurate power consumption measurements for three
custom software sensors (calender, contacts, call logs)

The paper is , therefore, organized as follows. Section II
will introduce the overall Kraken.me framework and most
importantly the Kraken.me mobile application. Section III
reports the evaluation results. Section IV summarizes the
related work, before Section V concludes the paper.

II. KRAKEN.ME

Kraken.me mobile is one building block in the overall
Kraken.me framework [3]1. While this paper focuses on
Kraken.me mobile we will first introduce the overall system
to give some context. Afterward the mobile application and
especially the implementation of software (soft) sensors is
given.

1https://kraken.me

MobiCASE 2014, November 06-07, Austin, United States
Copyright © 2014 ICST
DOI 10.4108/icst.mobicase.2014.257823

The goal of Kraken.me is to gather information about
people’s lives. Kraken.me, therefore, offers an unprecedented,
vendor-agnostic tracking framework. Kraken.me has two prop-
erties that – together – distinguish it from other such frame-
works. First, Kraken.me is a multi-device tracking framework.
It offers tools to tracks social networks, desktop interaction,
and mobile interaction. Second, Kraken.me tracks hard (e.g.,
activity, location, accelerometer, etc.) and soft sensors.

The overall architecture of Kraken.me is depicted in Fig-
ure 1.

All tools send their data to a central instance where the
data is stored and later processed. The webpage provides a
full list of all collected data points2. We do not expect people
to voluntarily give their data for research, but want to offer
comprehensive visualizations and use cases to grow our user
base. For a more comprehensive overview of Kraken.me the
reader is refereed to [3].

In the following section we concentrate on Kraken.me
mobile for Android and, later, focus on the crucial question of
energy consumption. Draining the battery is a big challenge
for continous tracking and we will provide valuable insight
into the energy consumption of different soft and hard sensors
available.

A. Kraken.me Mobile

Kraken.me strives to collect a comprehensive picture about
a person’s interaction with both the environment and technol-
ogy. Mobile devices are deeply entrenched into a person’s life
and equipped with an increasing number of sensors. A mobile
application is, thus, an essential building block of Kraken.me.

A mobile device offers access to multiple soft and hard
sensors. The idea was to collect data using a greedy approach:
We want to collect as much data as is acceptable from (i) a
privacy perspective and (ii) a energy consumption perspective.

Given the implication of continuous tracking, (i) is a
discussion best reserved for another paper. To give a brief
introduction into the Kraken.me sign-up process: We try to
make sure – multiple times – that people understand the
implications when signing up with Kraken.me (through any
of the tools) (cf. Figure 2(a)). People can – after accepting
these implications – sign up with their social media account.
Inside the application we offer different tracking profiles (cf.
Figure 2(b)), which can be changed at any time.

The collected data is stored on the device and is pushed
to the Kraken.me server on a regular basis. Data are presented
with one of two possible views. The first view gives you an
idea about your app usage today (cf. Figure 2(c)), while the
second compares your activity with your app usage. Based
on this information, users get a better understanding of their
smartphone usage behavior and see the benefit of the data they
collect.

The challenge and implications of (ii) are at the core of this
paper’s contribution and will be discussed in the evaluation.
Before being able to understand power consumption, however,
we need to understand just how much data we can and do

2https://kraken.me/#!/datenschutz

Data Description
Sound pressure dBSPL value captured with the microphone

Ring mode Is the phone on silent, vibration, etc.

Acceleration Readings from the accelerometer

Activity Activity Recognition provided by the Android API

Illuminance Lux as provided by the Android API

Network Connectivity The active and all available network connections

TABLE I: Data collected from/derived from physical sensors
by Kraken.me mobile

Data Description
Browsing History All visited web sites excluding incognito mode

Contacts All saved contacts

Calendar All saved calendar events and reminders

Location Location as provided by the Android API

Call Log The call history

Foreground apps Time span apps are in foreground

Keyboard Statistics about key strokes

TABLE II: Data collected from software sensors by Kraken.me
mobile

collect. For easier reference the hard sensors are given in
Table I and the soft sensors in Table II.

To offer such a comprehensive set of sensors, we decided
to develop for Android first. Currently, iOS is too restricted
for the same tracking, especially considering soft sensors.

All sensors in Kraken.me need to rely on the Android API
in one way or the other. If applicable we tried to use the
data provided by the API without any further processing, e.g.,
accelerometer, activity or location. Other sensors implement
further processing on the raw data given by the API. This
is especially true for the soft sensors. Here we rely on two
general techniques – (i) content observer and (ii) accessibility
– which are explained in the following section.

1) ContentObserver API: A small number of soft sensors
can be implemented using a standard Android API, e.g.,
browser history. However, most soft sensors in Kraken.me are
implemented using Android’s concept of content observers.
Here, a content observer can register on any URIs which points
to a system database, e.g., calendar data. The observer receives
a call back whenever changes to the underlying database occur.

Following such a call back we always retrieve the whole
data due to two reasons: (i) Even though the documentation
states that it should be possible to only retrieve updated data
since Android 4.1, we were not able to consistently reproduce
this with any of the devices we use for testing and (ii) even if
it would work, we would miss any updates during times when
Kraken.me is not running. Every callback will contain the
complete database. Hence, we are required to keep the current
state of the database stored in Kraken.me to calculate a diff
whenever we receive a callback. This concept is currently used
to implement three sensors: call logs, calendar, and contacts.

While call logs are only changed whenever a call occurs
the other two pose one additional challenge. Whenever a user
makes a change the Android operating system will synchronize
this change with the Google backend (if activated). This

https://kraken.me/#!/datenschutz

Fig. 1: Overview of the Kraken.me System Architecture

(a) Kraken.me disclaimer (b) Select collection profile (c) Apps Statistics

Fig. 2: Screenshots of Kraken.me Mobile

synchronization will set flags inside the database triggering yet
another callback to the content observer. Additionally users
tend to update information in close time proximity leading
to large amounts of subsequent triggers. We implemented a
simple timeout mechanism to filter these subsequent changes
and synchronizations. If a new call back occurs during the
timeout the timer is reset until it eventually triggers the diff
calculation. The impact of this small change will be further
discussed in the evaluation.

2) Accessibility API: Some information is not easily ac-
cessible given any of the official APIs. To record statistics
on key presses and foreground apps, we had to rely on a
backdoor build into the system. The accessibility API delivers

information about the user interface, gestures, touch and the
status of the phone to be used for the realization of barrier-
free apps. Kraken.me, however, is registered as an accessibility
app – which needs to be activated by the user – to implement
even more sophisticated soft sensors. After registration, the
application is allowed to subscribe to accessibility events.
Based on the events delivered by the Accessibility API we can
generate events we are interested in (e.g. change of foreground
app, interaction with text fields, etc.).3 Given the number
of sensor included in the application, the inherent question
remains: How can we realize continuous tracking with the

3These soft sensors have just been implemented and were not available for
the power evaluation. We include them here to share the employed idea with
other researchers.

highest possible granularity? In the next section we share our
findings on power consumption and discuss implications.

III. EVALUATION

Kraken.me is designed to provide real-time personal track-
ing data. The main objective is gathering this data at the
maximal possible sampling rate. However, the application will
gain no real-world usage, if battery life is severely affected.
Thus, a balance between measurement accuracy and battery
consumption must be found. This optimization problem re-
quires profound knowledge about the power consumption of
different sensors and their interaction.

Before we introduce the results, we will start off by
explaining our measurement setup. Next, we will investigate
the energy consumption of different sensors individually. Af-
terward we measure the energy consumption for two different
sensor configurations of Kraken.me and end the section by
providing some recommendations for sensing applications in
general.

Before diving into the results, let us first introduce the
measurement setup.

A. Measurement Setup & Methodology

Measuring energy consumption on mobile phones is not
a trivial task. Different background processes and inter-
dependencies between applications make it more difficult to
single out any given application. Also, the battery level is only
a crude estimate of the power consumption.

Thus, we employ a custom measurement setup to directly
measure the power drained from the battery of a Galaxy
S4 given different load scenarios. Figure 3 illustrates the
measurement setup.

The battery of the phone is removed and the phone and
battery is connected to a 16 bit measurement card, the USB-
1608FS Plus (cf. Fig. 3(a)). Given the measurement setup – as
illustrated by the simple circuit diagram in Figure 3(b) – the
power consumption can be calculated as P = (U1·U2)

RM
, where

U1 and U2 are the voltages measured using the measurement
card. The maximum absolute measurement error of this setup
is 2.47%. For a detailed analysis of the error the reader is
referred to [4].

From the software perspective, we preloaded the
Kraken.me application on a Galaxy S4 using the standard
Android 4.4.2 ROM. All background services not required
for running the operating system or accessing the sensors are
deactivated. The display was switched on but set to the lowest
possible brightness.

Each measurement scenario – which usually consists of
several different configurations for one sensor – was measured
as follows: First all sensors were deactivated to measure the
current idle consumption. Then each of the configurations
was tested consecutively. Between different configurations all
sensors were again deactivated, the display was set to the
maximum brightness and vibration was switched on for 4
seconds. The resulting spike in energy consumption was used
to automatically separate different configurations (cf. Figure 4).

(a) Ongoing measurement

(b) Circuit diagram

Fig. 3: Measurement Setup

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200 250 300 350 400

e
n
e
rg

y
 c

o
n
su

m
p

ti
o
n
 i
n
 w

a
tt

time in seconds

Fig. 4: Plot of energy consumption for one evaluation run
with spikes in consumption for the automatic separation of
different configurations (Raw data is measured at 10000Hz. It
was averaged over 500ms to produce this plot)

For any given scenario this measurement process was re-
peated at least five times. To quantify the energy consumption
for each configuration, we subtract the corresponding idle con-
sumption. Given these values, we are able to calculate average,
median and standard deviation of any given configuration.

B. Energy consumption of individual sensors

The mobile application of Kraken.me captures data from
several sensors at once. However, we want to understand the
consumption pattern of individual sensors first, before going
into detail about the overall energy consumption. This will
give us a deeper understanding of the options available for
hardware sensors. It is also the first evaluation of the software
sensors as implemented for Kraken.me. We will first provide
an in-depth lock into a subset of the hardware and software
sensors. All other sensors are evaluated in comparison.

1) Location: In literature location is well established as one
of the worst sensors with respect to energy consumption [5].
Hence, it will provide a base line for other sensors to compare
against. As Kraken.me uses the Android LocationManager this
does also provide an evaluation of the different possible ac-
curacy settings (no power, low power, balance, high accuracy)
available. The sensor was activated for 60 seconds and two
refresh rates (10 and 60 seconds) are evaluated. The resulting
plot is given in Figure 5.

-200

-100

 0

 100

 200

 300

 400

 500

 600

no
 p

ow
er

 (6
0)

no
 p

ow
er

 (1
0)

lo
w p

ow
er

 (6
0)

lo
w p

ow
er

 (1
0)

ba
la
nc

ed
 (6

0)

ba
la
nc

ed
 (1

0)

hi
gh

 a
cc

. (
60

)

hi
gh

 a
cc

. (
10

)

m
ill

iw
a
tt

accuracy (update interval in sec)

Fig. 5: Power consumption of the location sensor given differ-
ent refresh rates and accuracy settings

As expected higher accuracy settings lead to higher energy
consumption. The settings No Power and Low power on
average consume 13.4 mW and 19.2 mW respectively, High
accuracy consumes 451.0 mW on average. However, only high
accuracy activates GPS, while all other settings use either GSM
or wifi triangulation. Wifi triangulation, especially on Android,
has been shown to be rather accurate [6]. We therefore recom-
mend to use highest accuracy only if an application relies on
location-only, e.g., navigation.

2) Accelerometer: The accelerometer is used for different
applications from display orientation to games. It is, hence,
save to say that a lot of effort has gone into providing good
APIs and energy-efficient accelerometers hardware in the past.
Android offers four different settings for the accelerometer
(normal, UI, game, fastest). These API levels match envisioned
application scenarios, with the lowest sampling rate offered by
normal all the way up to fastest.

The higher power consumption of a higher sampling rate is
clearly visible in Figure 6. Interesting is the power consump-
tion of the configuration game. It shows a high variance in
power consumption, leading us to conclude that the sampling
rate is adjusted according to the user’s activity. Measurements

-50

 0

 50

 100

 150

 200

 250

 300

normal ui game fastest

m
ill

iw
a
tt

sensor delay

Fig. 6: Power consumption of the accelerometer

show that the light sensor – which offers the same settings –
exhibits a similar behavior, hence it is excluded from detailed
discussion. In the next section, we focus on the activity sensor
as the last hard sensor.

3) Activity: Android offers an API to retrieve a guess on
the activity of the user. It uses a variety of sensors to reason on
the current activity giving results such as In vehicle, Still etc.
In the following evaluation the sensor is queried at intervals of
5, 10, 20, and 60 seconds with a total measurement time of 60
or 120 seconds depending on interval length. Again, we would
expect the power consumption to increase as the granularity
increases.

-200

-150

-100

-50

 0

 50

 100

5 sec 10 sec 20 sec 60 sec

m
ill

iw
a
tt

update interval

Fig. 7: Power consumption of the activity sensor

However, the results in Figure 7 indicate that the sensors
requires close to no power. The results are even below 0.
This is possible due to the variance between measurements.
Comparing the consumption against the idle consumption (cf.
Fig. 8) the confidence intervals overlap.

However, this implies no additional power usage of the
activity sensor, as Android seems to be gathering this data
in the background. A simple query of the activity sensor is
not going to use additional energy. This is important for any
application considering activity detection. Implementing any
custom activity recognition approach will always consume
additional energy, while Android’s approach won’t. Even if the
accuracy is slightly better the trade-off might not be satisfying.

 700

 750

 800

 850

 900

 950

 1000

idle 5 sec 10 sec 20 sec 60 sec

m
ill

iw
a
tt

update interval

Fig. 8: Power consumption of the activity sensor compared to
the idle consumption

4) Calendar: Until now we have focused on physical
sensors. Here, we were able to verify expected results. The
next step is to focus our attention on software sensors. These
differ in a number of key aspects. First, there is no dedicated
sensor hardware which drains power. Second, there is usually
no API available for easy access and with different config-
urations. These sensors are custom implementations. Thus,
this evaluation is valid only for our implementation. However,
we expect our experience to help others designing their own
sensors.

The soft sensor described in detail is the calender sensor.
Kraken.me requires a full view of the calendar and all subse-
quent modifications. This is realized by doing an initial scan of
all calender items. Afterward the sensor is queried only after
the call back, if the calendar entries are changed. As stated
before, this requires us to retrieve the whole database again
and manually calculate the difference.

To evaluate both the initial scan and the calculation of the
difference we set up the following two scenarios. The database
was initially filled with 50 or 100 entries respectively. After
the initial scan was done one entry was changed and a rescan
was done. Hence, we can report results for initial scan and
rescan for both 50 and 100 entries.

 100

 200

 300

 400

 500

 600

 700

 800

 900

in
iti

al
 s
ca

n
(5

0)

in
iti

al
 s
ca

n
(1

00
)

re
sc

an
 (5

0)

re
sc

an
 (1

00
)

m
ill

iw
a
tt

scan type (number of items)

Fig. 9: Power consumption of the calendar sensor

Figure 9 illustrates the results. All runs need virtually
the same amount of energy independent of the number of

entries. Also initial scan and rescan are basically the same.
Querying the API and storing the entries in the database seems
to consume a high amount of energy. The amount of energy
is even higher than querying GPS for location. Hence, there
is a second takeaway. Do not query this API very often. As
already stated this is not trivial as Android fires calendar update
events not only when something is changed but also after
synchronization. Our implementation uses timeouts to filter
these events, but optimization could go even further. If no real
time tracking is needed, it is possible to calculate the difference
once per day or only when charging. We might even want to
limit the consumption to a certain percentage of the overall
battery power of the phone. Notable the other software sensors
behave similar and are, thus, not given in full detail.

5) Comparison: This section will summarize the results
by plotting the power consumption for each sensor given the
lowest and highest setting for sampling rate. For ringtone and
loudness there was no significant difference between sensor
configurations. Hence, all measurements are used to calculate
the box plot. An overview of the settings used is given in
Table III.

Sensor High sampling rate Low sampling rate

Accelerometer SENSOR DELAY
FASTEST

SENSOR DELAY
NORMAL

Activity 5 sec. 60 sec.
Light SENSOR DELAY

FASTEST
SENSOR DELAY
NORMAL

Location HIGH ACCURACY BALANCED POWER
ACCURACY

Location Interval 10 sec. 60 sec.
Loudness 5, 10, 20, 60 sec. 5, 10, 20, 60 sec.
Ringtone 5, 10, 20, 60 sec. 5, 10, 20, 60 sec.
Calendar Rescan, 50 Rescan, 50
Contacts Rescan, 50 Rescan, 50
Call-Log Rescan, 10 Rescan, 10

TABLE III: Configuration parameters for each sensor

Figure 10 summarizes the results. For most physical sen-
sors there seems to be no difference between both configu-
rations. We will see in the next section that the difference
will add up if all sensors are activated at once. Location is an
outlier. This is due to the reasons stated above. Location relies
on additional hardware to provide better accuracy yielding a
much higher power consumption.

The software sensors consume a rather large amount of
energy, but only when triggered. Hence, a lot of thought should
be given on when to trigger these sensors. The standard trigger
would be using the callback provided by the operating system.
This would then very much depend on the user behavior.
Techniques with fixed intervals might work, depending on
the real-time constraints of the application. In summary the
work that has been put into making physical sensors as
energy-efficient as possible has been paying of. Depending
on the sensor it might basically come for free from a power
consumption perspective. The same is not true for software
sensors and there is still room for optimization and research.

-200

 0

 200

 400

 600

 800

ac
ce

le
ro

m
et

er

lig
ht

ac
tiv

ity

lo
ud

ne
ss

ri
ng

to
ne

lo
ca

tio
n

co
nn

ec
tio

n

ca
le

nd
ar

co
nt

ac
ts

ca
ll

lo
gs

m
ill

iw
a
tt

(a) Low sampling rate

-200

 0

 200

 400

 600

 800

ac
ce

le
ro

m
et

er

lig
ht

ac
tiv

ity

lo
ud

ne
ss

ri
ng

to
ne

lo
ca

tio
n

co
nn

ec
tio

n

ca
le

nd
ar

co
nt

ac
ts

ca
ll

lo
gs

m
ill

iw
a
tt

(b) High sampling rate

Fig. 10: Power consumption of each sensor individually

C. Energy Consumption of Kraken.me mobile

Applying the knowledge we gained from evaluating indi-
vidual sensors, we implemented two different configurations
for Kraken.me mobile4. The first configuration (fast) is about
gathering real-time data with the highest possible granularity,
while the second configuration (slow) is about a more balanced
approach. The configurations are given in Table IV. Software
sensors can be ignored as they are currently independent of
the configuration.

Sensor fast slow

Accelerometer SENSOR DELAY
FASTEST

SENSOR DELAY
NORMAL

Activity 10 sec. 120 sec.
Light SENSOR DELAY

FASTEST
SENSOR DELAY
NORMAL

Location HIGH ACCURACY BALANCED POWER
ACCURACY

Loudness 10 sec. 120 sec.
Ringtone 10 sec. 120 sec.

TABLE IV: Configuration parameters for Kraken.me

The hypothesis is obvious: While fast provides high track-
ing granularity, slow should decrease power consumption
significantly. Figure 11 illustrates the difference in power
consumption.

Overall fast consumes 599.4mW on average, slow con-
sumes only 128.9mW on average. Thus, slow consumes only
around 22% of the power. Reducing the granularity further
yields only diminishing returns in terms of power consumption,
but reduces the data quantity to a point were real-time tracking
for e.g., personal assistance, is not possible anymore.

Most of the reduction comes from using the balanced
location method. However, the overall reduction is much more
pronounced than anticipated. The small difference for each of
the single sensors adds up to explain these results. In summary,
the results have lead us to configure the Kraken.me application
using the slow configuration. This still has an impact on battery

4Please note that these configurations do not match the settings for the
sensor comparison.

-100

 0

 100

 200

 300

 400

 500

 600

 700

Kr
ak

en
.M

e
(s

lo
w)

Kr
ak

en
.M

e
(fa

st
)

m
ill

iw
a
tt

Fig. 11: Energy consumption for Kraken.me given the fast and
slow configurations

life, but it is much less than anticipated for multi-sensor all
day tracking.

IV. RELATED WORK

Smartphones are expected to last through at least one work-
ing day. Hence, a lot of research has gone into understanding
and measuring power consumption. Here, the power consump-
tion of smartphones may be derived by either measuring the
power consumption directly, or using device dependent power
models in combination with the system utilization [7], [8].
Nacci et al. [9] extend this approach by proposing a framework
allowing automatic power model generation. These are then
used to suggest the user certain energy conserving actions.

The increasing number and use of sensors make them a
major source of power consumption in modern smartphones.
However, only due to these sensors has the field mobile sensing
gained considerable traction [10], [11]. Both for mobile crowd
sensing [12], [13], [5] and mobile context sensing [14], [15],
[16].

Considering the power drain, continuous sensing is still
hard to achieve. Recently, people have started considering
energy-efficient continuous context sensing algorithms [15],
[17], [18], [5]. Others have focused on optimizing the network
power consumption as the second largest consumer after the
display [19], [20]. Based on some of this work, Kansal et al. [2]

analyze the trade-off between accurate sensing and the power
consumption of the smartphone, from which they derive a sen-
sor abstraction layer considering the energy consumption. Still,
in their current implementation sensors are limited to location
context. Given our results, it might be worthwhile extending
their abstraction to more sensors and context modalities.

It is important to continue understanding and optimizing
the power consumption of these sensors as the use and impact
will only increase.

V. CONCLUSION

With Kraken.me we built a comprehensive mobile tracking
application within the Kraken.me framework. It tracks data
from hard and soft sensors to derive a comprehensive profile
of any given user. We quickly realized that power consumption
is the main drawback of any tracking application.

Given the rich tracking profile, we contributed our in-depth
analysis on the impact of different sensors and configurations
on power consumption. This confirmed some obvious results,
e.g., wifi and cell location is cheaper than GPS. It uncovered
some interesting observations, e.g., activity recognition is
always on in Android, thus consuming no additional power.
And last but not least, that software sensors are the least
optimized.

This implies an interesting field for further optimization.
Either in scheduling software sensors, finding more efficient
implementations or sophisticated trade-off energy mechanism.

ACKNOWLEDGMENT

This work has been co-funded by the DFG as part of the
CRC 1053 MAKI.

REFERENCES

[1] N. Banerjee, A. Rahmati, M. D. Corner, S. Rollins, and L. Zhong, Users
and batteries: Interactions and adaptive energy management in mobile
systems. Springer, 2007.

[2] A. Kansal, S. Saponas, A. B. Brush, K. S. McKinley, T. Mytkowicz,
and Z. Ryder, “The Latency, Accuracy, and Battery (LAB) Abstraction:
Programmer Productivity and Energy Efficiency for Continuous Mobile
Context Sensing,” in ACM SIGPLAN international conference on Object
oriented programming systems languages & applications, 2013.

[3] I. Schweizer and B. Schmidt, “Kraken.me - multi-device user tracking
suite,” in 2nd Workshop on Human Activity Sensing Corpus and Its
Application, 2014.

[4] F. Kaup, P. G. Gottschling, and D. Hausheer, “Powerpi: Measuring and
modeling the power consumption of the raspberry pi,” in 39th Annual
IEEE Conference on Local Computer Networks, 2014.

[5] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency
of location sensing on smartphones,” in Proceedings of the 8th interna-
tional conference on Mobile systems, applications, and services. ACM,
2010, pp. 315–330.

[6] N. Brouwers and M. Woehrle, “Detecting dwelling in urban environ-
ments using gps, wifi, and geolocation measurements,” in 2nd Intl
Workshop on Sensing Applications on Mobile Phones, 2011.

[7] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. Mao, Z. Wang, and
L. Yang, “Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones,” in CODES
+ ISSS’10. ACM, Oct. 2010.

[8] L.-T. Duan, B. Guo, Y. Shen, Y. Wang, and W.-L. Zhang, “Energy
analysis and prediction for applications on smartphones,” Journal of
Systems Architecture, vol. 59, no. 10, pp. 1375–1382, Nov. 2013.

[9] a. a. Nacci, F. Trovò, F. Maggi, M. Ferroni, A. Cazzola, D. Sciuto,
and M. D. Santambrogio, “Adaptive and Flexible Smartphone Power
Modeling,” Mobile Networks and Applications, Oct. 2013. [Online].
Available: http://link.springer.com/10.1007/s11036-013-0470-y

[10] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell, “A survey of mobile phone sensing,” Communications
Magazine, IEEE, vol. 48, no. 9, pp. 140–150, 2010.

[11] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad, “Mobile phone
sensing systems: A survey,” Communications Surveys & Tutorials,
IEEE, vol. 15, no. 1, pp. 402–427, 2013.

[12] I. Schweizer, R. Bärtl, A. Schulz, F. Probst, and M. Mühlhäuser,
“NoiseMap - Real-time participatory noise maps,” in 2nd Intl Workshop
on Sensing Applications on Mobile Phones, 2011.

[13] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: A pro-
gramming framework for crowd-sensing applications,” in Proceedings
of the 10th international conference on Mobile systems, applications,
and services. ACM, 2012, pp. 337–350.

[14] H. Lu, A. B. Brush, B. Priyantha, A. K. Karlson, and J. Liu, “Speak-
ersense: energy efficient unobtrusive speaker identification on mobile
phones,” in Pervasive Computing. Springer, 2011, pp. 188–205.

[15] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava, “Sensloc: sensing
everyday places and paths using less energy,” in Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems. ACM,
2010, pp. 43–56.

[16] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth,
and A. Aucinas, “Emotionsense: a mobile phones based adaptive
platform for experimental social psychology research,” in Proceedings
of the 12th ACM international conference on Ubiquitous computing.
ACM, 2010, pp. 281–290.

[17] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive
gps-based positioning for smartphones,” in Proceedings of the 8th
international conference on Mobile systems, applications, and services.
ACM, 2010, pp. 299–314.

[18] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krish-
namachari, and N. Sadeh, “A framework of energy efficient mobile
sensing for automatic user state recognition,” in Proceedings of the 7th
international conference on Mobile systems, applications, and services.
ACM, 2009, pp. 179–192.

[19] U. Rathnayake, H. Petander, M. Ott, and A. Seneviratne, “EMUNE:
Architecture for Mobile Data Transfer Scheduling with Network Avail-
ability Predictions,” Mobile Networks and Applications, vol. 17, no. 2,
pp. 216–233, Jun. 2012.

[20] A. Blenk, W. Kellerer, F. Wamser, T. Zinner, and P. Tran-Gia, “Dynamic
HTTP Download Scheduling with Respect to Energy Consumption,” in
Tyrrhenian International Workshop on Digital Communications - Green
ICT (TIWDC), 2013.

http://link.springer.com/10.1007/s11036-013-0470-y

	Introduction
	Kraken.me
	Kraken.me Mobile
	ContentObserver API
	Accessibility API

	Evaluation
	Measurement Setup & Methodology
	Energy consumption of individual sensors
	Location
	Accelerometer
	Activity
	Calendar
	Comparison

	Energy Consumption of Kraken.me mobile

	Related Work
	Conclusion
	References

