
H.264 QoS and Application Performance with Different

Streaming Protocols
Sanna Laine

University of Jyväskylä
P.O. Box 567

FIN-67701, Kokkola, Finland

sanna.laine@chydenius.fi

Ismo Hakala
University of Jyväskylä

P.O. Box 567
FIN-67701, Kokkola, Finland

ismo.hakala@chydenius.fi

ABSTRACT

Streaming techniques, including the selected streaming protocol,

have an effect on the streaming quality. In this study, the

performance of three different streaming protocols in a disturbed

communication channel is evaluated with a modified version of

the FFPlay player. A H.264 encoded video is used as a test

sequence. The number of displayed image frames, the frame rate

and playout duration are used as objective metrics for QoS. The

metrics brings out differences of streaming protocols in our test

environment. They are measured at the application level and have

a connection to the user experience.

Categories and Subject Descriptors

C.2.2 [Computer – Communication Networks]: Network

Protocols – applications; C.4 [Performance of Systems] –

performance attributes; H.5.1 [Information Interfaces and

Presentation]: Multimedia Information Systems – video.

General Terms

Measurement, Performance, Experimentation.

Keywords

QoS, QoE, H.264, streaming protocols, RTSP, RTMP, HLS.

1. INTRODUCTION
In an unimpaired video streaming session, the video plays

smoothly, maintaining the frame rate, and displayed image frames

are decoded correctly. Interferences in data transmission may

degrade streaming quality. Cabled networks are more resistant

than wireless networks to signal interference, but both

transmission ways may suffer from congestion. Congestion may

cause packet loss, decreased throughput, delay and jitter.

Decreased network QoS affects the QoS of the application.

Typical streaming client’s reactions caused by insufficient

network conditions are e.g. grown initial buffering time,

rebuffering, blockiness, frame freezing, jerkiness and frame

dropping. The user observes stalling, motion discontinuities and

distorted video images, which all decrease quality of experience

(QoE).

In this paper, we study if different streaming protocols cause

different player performance when H.264 video is transmitted

through a disturbed communication channel. The FFPlay player is

used in the simulations. The H.264/AVC standard includes

several techniques which have enabled lower bit rate encoding

that maintains the same quality compared to its predecessor in the

MPEG group. In addition to coding efficiency, its development

has put emphasis on the adaptability to various networks and error

resiliency. To handle a variety of applications and networks, the

H.264/AVC design covers a Video Coding Layer (VCL) and a

Network Abstraction Layer (NAL). VCL is designed to represent

the video content efficiently compressed [21], [12]. NAL formats

the VCL presentation of the video to make it more adaptable to a

variety of transport layers or storage media [21], [12]. The error

resiliency schemes in H.264/AVC are mainly contained in the

VCL [10].

Effective compression usually means weaker error resiliency. The

compression schemes aim to reduce redundancies from the data.

On the other hand, the error resiliency schemes utilize redundancy

in the data [9]. The decoder behavior in the presence of errors has

been described in the standard, but the error concealment is not

within the scope of the H.264/AVC standard [9].

Regardless of the additional attention to network friendliness, the

H.264/AVC may have some weaknesses compared to e.g. MPEG-

4 Part 2 codec. Van der Auwera et al. [18] found that the

H.264/AVC codec achieves the lower average bit rates at the

expense of significantly increased traffic variability. Their

streaming simulation studies over a bottleneck link showed that

the increased bit rate variability results in significantly higher

frame losses for H.264/AVC encoded video compared to MPEG-4

Part 2 encoded video when transmitting a single video stream.

Even when reducing the traffic variability with smoothing before

transmitting, the smoothed H.264/AVC video traffic exhibits

variabilities at the same level or above the unsmoothed MPEG-4

Part 2 video traffic.

The streaming protocols can be grouped into push- and pull-based

protocols. In push-based protocols, the server streams packets to

the client until the client stops or interrupts the session. In pull-

based streaming, the client is active and requests content from the

media server [1]. The advantages of pull-based protocols are

simplicity and robustness, and when the server bandwidth is

above several times of the streaming rate, the pull-based protocol

is optimal in terms of bandwidth utilization and system

throughput in P2P streaming [17]. The streaming protocols used

in our simulations are Real-time Streaming Protocol (RTSP),

HTTP Live Streaming (HLS) and Real Time Message Protocol

(RTMP). RTSP is one of the most common session control

protocols used in push-based streaming (although sometimes

considered pull-based since the client needs to initiate the

MOBIMEDIA 2015, May 25-27, Chengdu, People's Republic of China
Copyright © 2015 ICST
DOI 10.4108/icst.mobimedia.2015.259061

session). RTSP uses Real-time Transport Protocol (RTP) for data

transmission. In addition to UDP, RTP may also be used with

other suitable underlying network or transport protocols like TCP.

Apple’s HLS is a pull-based adaptive streaming protocol which

stores the video in multiple files called chunks. Client fetches

video segments from the server, using the HTTP GET method. A

new video segment is only requested after the previous one has

been fully received. Segments are transported by TCP and are 10

seconds long by default.

RTMP is a TCP-based stateful, pull-based streaming protocol

developed by Adobe Systems. It was designed to stream audio,

video and data between Flash platforms. RTMP transmits

information in Messages which are split into Chunks. There are

about a dozen types of Messages. The payload of a Message is cut

into the same size blocks of data, and the Chunk Header is added

in front of each data block. In addition to the plain RTMP

protocol, it has multiple variations. RTMPT is encapsulated

within HTTP request. Although tunneling helps traversing

firewalls, it causes latency [5]. RTMPS is RTMP over a TLS/SSL

connection. RTMPE is RTMP encrypted using Adobe's own

security mechanism.

The underlying transport protocol may have a major impact on the

streaming quality. In our tests, all streaming protocols were sent

via TCP and RTP packets, in RTSP sessions also via UDP.

Hoßfeld et al. [8] studied the influence of the transport protocol

on QoE with Youtube. They concluded that for the same

bottleneck capacity the end user will tolerate stalling effects that

arise in case of TCP better than temporal video artifacts that

manifest themselves in case of UDP.

The remainder of this paper is organized as follows: in Section II,

the related work is briefly discussed. Section III describes our test

environment. In Section IV, the player’s behavior with different

protocols is observed in terms of frame rate monitoring. In

Section V, the number of displayed image frames is compared

between protocols in poor network conditions. The results of

simulations are discussed in Section VI. Finally, we conclude the

paper in Section VII.

2. RELATED WORK
Various studies have omitted the strategy to explore the streaming

quality evaluation by collecting parameters at the application

level. Dalal et al. [2]-[4] studied RTSP streaming (RTP over

UDP) in Windows environment to develop methods for assessing

user-perceived quality with objective metrics obtained from an

instrumented media player. In those studies, the player’s statistics

about packet traffic, throughput and buffering are monitored to

predict QoE. Packet loss and delay was induced, and they tried to

select a loss rate that would achieve the desired amount of

interference visible to user. Application level metrics in Windows

environment are also used for measuring streaming quality e.g. in

[19] and [14].

Wang et al. [20] collected streaming data with RealTracer, a tool

collection that measures the performance of RealNetworks Video.

The streaming protocol was RTSP. RealTracer includes

RealTracker, a customized player that records system performance

statistics and user perceptual quality ratings. RealTracker gathers

information of a variety of metrics, but their study focused on

frame rate, jitter, bandwidth and users’ quality ratings.

Mok et al. [11] characterized the correlation between the

application and network QoS with HTTP streaming protocol. For

HTTP streaming, they chose buffering as the best metric for

quality evaluation. They identified the rebuffering frequency to be

the main factor responsible for the MOS variance.

French et al. [7] implemented a modified Flash player which

collects QoS and QoE data during RTMP streaming. They

customized their stream quality assessment system, originally

developed for RTSP/UDP streaming, to make it capable to infer

QoE of RTMP video streams. Their preliminary study indicated

that bitrate in combination with either frame rate or bandwidth

serves as an accurate indicator of QoE for RTMP videos.

In this study, different streaming protocols are compared in the

same environment to bring out their possible differences in

maintaining the streaming quality in poor network conditions. The

number of displayed image frames, the frame rate and playout

duration are measured at the application level. These metrics have

a connection also to the user experience.

3. TEST ENVIRONMENT
FFplay is a simple and portable media player using the FFmpeg

libraries and the SDL library. It is open source and supports

multiple streaming protocols [6]. A simple player may bring out,

more explicitly, the impacts of network impairments. FFmpeg,

including FFplay, was installed on a client PC running Ubuntu

14.04. The source code of the player was slightly modified to be

more suitable for the streaming quality monitoring of application

layer. The pixel information and the display time of video pictures

were collected. This enabled saving video pictures as they were

displayed after real time decoding and concealing, including all

possible errors, for prospective PSNR analysis. With the help of

the collected frame display, time changes in frame rates could be

observed. FFplay includes packet queues for audio, video and

subtitles. The player fills those queues with data read from its

buffers. For RTSP protocol, the size of queues is not limited as

default. For HLS and RTMP, FFplay only fills the packet queues

to a point, where they contain a specified amount of data. The

maximum size of limited queues is 15*1024*1024 bytes. During

the same test condition setting, the queue size was set equal for all

protocols.

Figure 1. The bitrate of the test sequence. Bars including a key

frame are darker.

The test sequence was created by concatenating four commonly

used test videos: “Pedestrian area” (pa), “Sunflower” (sf), “Rush

hour” (rh) and “Station” (st). The sequences were originally

downloaded from LIVE Video Quality Database [15], [16]. At the

database, those videos are downsampled to the spatial resolution

of 768x432 pixels and they are approximately 10 seconds long.

The concatenated 40 second h.264 video was encoded with

FFmpeg using x264 encoder. The target bitrate was set to 1000

kbps and the frame rate to 25 fps. The key frame interval was 250

frames, and the four key frames were in the beginning of each

concatenated sequence (scene). The video includes no audio. The

default profile, High@L3.0, of FFmpeg encoding was used.

Figure 1 represents the bit rate profile of the sequence.

The test sequence was streamed as on-demand from a Wowza

Streaming Engine 4.0.3. Limited and lossy communication

channel was emulated with a Linktropy 5500 WAN emulator. The

emulation was performed only from server to client to let

feedback from the receiver travel unimpaired. The server and the

client were on their own subnet and other network traffic was

minimized. The server was connected to the emulator through a

fibre channel. The adaptive bitrate video streaming wasn’t used

to simulate the playout behavior at the lowest bitrate with each

protocol. With TCP-based protocols, the TCP variant was Cubic.

The testbed is presented in Figure 2.

Figure 2. The test environment.

4. FRAME RATE DEPICTING USER

EXPERIENCE
Frame rate monitoring during streaming depicts well the progress

of the playout and brings out the changes that user perceives in

streaming quality. In a network containing packet loss or

insufficient throughput, a player may decrease the playout rate or

start rebuffering. In those cases, the player may still display all the

frames included in the video, which increases the playout time.

The player may drop image frames, which also appears to the user

as sporadic fluidity breaks. Breaks can be hardly noticeable, or

they can be longer frame-freezing periods. They are often caused

by the decoder’s strategy to discard the video frame that is

corrupted and repeat the previous frame instead, until the next

valid decoded frame is available [13]. All those reactions by the

player cause changes in the frame rate.

As network conditions were weakened in our environment,

FFPlay reacted primarily by dropping image frames with TCP-

based streaming protocols. The displayed image frames were

flawless in most cases. The viewer observes the frame drops as

sporadic breaks or jerkiness. At the packet loss ratio of 8%, the

player drops video images with every tested streaming protocol in

the test environment. Figure 3 shows examples of frame rates

when packet loss is set to 8% and thus indicates the differences in

the behaviors of protocols with FFplay player. The three highest

diagrams (UDP/RTSP, TCP/RTSP and HLS) illustrate well the

jerkiness a viewer observes. With the RTMP protocol, the playout

stops once and the video picture freezes for a few seconds. Other

than that, the sequence plays smoothly. However, in the playout

with UDP/RTSP, the displayed image frames were also severely

distorted.

Figure 3. Examples of frame rates when packet loss ratio is set

to 8% and the size of video queue is limited.

The bandwidth limit which introduced visible changes in the

streaming playout with every tested protocol was 900 kbps in our

testbed. In Figure 4, examples of frame rates are shown at the

bandwidth of 900 kbps. The figure demonstrates how RTMP

manages to keep the frame rate longest. With HLS, the playout

time increases. This indicates that the player uses either very short

rebuffering periods or decreases playout rate to cope with

insufficient bandwidth. In these examples, RTMP displays most

frames, 968 out of 1000. HLS displays 953, RTSP via UDP 873

and via TCP 785 frames.

The irregularities in playout often occurred near the key frames.

The key frames lay in our test sequence only in the scene cuts. In

addition, the observed quality could vary significantly between

scenes. Figure 5 demonstrates the differences in scenes during the

playout. The data was collected from the same test runs as in

Figure 4. The crosses connected with a dashed line depict the time

spent on each scene compared to the actual duration. The dots

connected with a solid line are the portions of displayed video

pictures. If the streaming conditions were sufficient, both values

would stay at 100%. In RTSP/TCP streaming, the third

concatenated clip (“rush hour”) loses most frames. The streaming

gets better at the final scene, managing to play almost all the

frames, but the increased time spent on it indicates unsmooth

playout. Playing the 40 second test sequence took approx. 44

seconds with HLS. With RTMP, the first three scenes were played

perfectly.

Figure 4. Examples of frame rates when the bandwidth is

limited to 900 kbps. The video queue size was not limited.

5. RESULTS
The streaming protocol effects on application performance in poor

network conditions were studied by inducing packet loss, and

limiting bandwidth with the WAN emulator. To simulate the

player buffer size modification, the tests were conducted with two

different player’s video queue sizes. Reducing the queue size

better brings out defects in streaming and may highlight the

differences between the streaming protocols.

As the FFPlay reacted primarily by dropping image frames, the

ratio of displayed video frames was measured for each streaming

session. The metric is related to changes in the frame rate. When

image frame dropping was present, there was always frame rate

variation. In this chapter, the bandwidth and packet loss ratio

limits for the quality changes demonstrated in the previous

chapter are sought for.

Figure 5. Examples of displayed video pictures and the time

spent on playout when bandwidth is limited to 900 kbps. The

video queue size was not limited.

5.1 Packet loss
The WAN emulator discards packets randomly, based on the

specified loss rate. Since packets are dropped after they have been

rate throttled, discarded packets will consume link bandwidth

[10]. Figure 6 represents the number of displayed video pictures

when packet loss was increased from 1 to 10% at the bandwidth

of 2Mbps. The test video was played 5 times with each setting. In

Figures 6 (a) – (d), the video queue size of FFplay was not

limited. With the RTSP/TCP protocol, the first interferences were

observed when the loss was 4%. The defects increased at a steady

rate as the loss percentage was raised. For HLS, the limit was 8%

and, for RTMP, 9%. For these settings, RTMP was the only one

for which the connection broke in the middle of streaming, but

before that it was able to maintain flawless playout. According to

the figure, in RTSP/UDP streaming the number of displayed

image frames and packet loss rate are directly proportional.

Nevertheless, RTSP/UDP couldn’t cope even with 0.5% loss ratio

but displayed severely distorted video pictures. Clearly, FFplay

doesn’t provide any support for UDP resending.

In Figures 6 (e) – (h), the size of the player’s video queue is

limited. Since the quality of RTSP/UDP streaming was already

poor, the change in the queue size didn’t make any fundamental

difference in quality. HLS couldn’t display all frames from 1%

and RTSP/TCP from 5% onward. RTMP again maintained perfect

quality until 7%. HLS may lose more frames, but it manages to

keep the connection and play the whole sequence with these

settings. Because the type of the lost packet has a great impact on

propagation of errors and maintaining the streaming quality, there

is some deviation also in the displayed image frames metric.

5.2 Bandwidth Limitation
The WAN emulator throttles the frames to the specified WAN

bandwidth. Frames in excess of the specified WAN bandwidth are

queued to the configured emulator’s maximum queue depth.

When the queue is full, newly-arriving frames are discarded [10].

To explore player’s reactions in slow bandwidth condition, large

queue depth, 10 000 ms, was used to minimize packet loss caused

by the emulator. Bandwidth was limited from 2 Mbps downward.

The portion of displayed frames with both video queue sizes is

presented in Figure 7. In tests with restricted bandwidth, the

sequence was played almost identically every time at the same

setting. As in packet loss, the frame dropping manifested itself as

jerkiness and short interruptions. With RTSP/UDP, corrupted

video pictures also occurred.

In Figures 7 (a) – (d), the video queue size was not limited. The

streaming was fluent with all protocols until the bandwidth of 1

Mbps, which was expected as the average bitrate of the test

sequence was about that size. Below 1 Mbps, HLS started to drop

some video pictures, causing jerkiness. RTMP got to the point it

couldn’t maintain the connection to the server. RTSP streaming

reacted by dropping video pictures more radically, and lost also

the connection a few times. When RTP packets were streamed on

top of UDP, there were also distorted pictures at the bandwidth of

800kbps. All those distorted pictures featured at the final

concatenated 10 second sequence in the 40 second video.

In Figures 7 (e) – (h), the video queue size was limited. With

RTSP/UDP, the player displayed severely distorted video pictures

already at the 2 Mbps bandwidth. As the bandwidth was

decreased near 1 Mbps, video pictures were displayed perfectly,

with just minor jerkiness. The transient quality improvement may

indicate that, with faster bandwidth, player’s video queue fills up

and discards the excess packets. When the bandwidth was limited

to 800 kbps, the video pictures in the final 10 seconds were

distorted as in the case where video queue wasn’t restricted.

The change in the video queue size didn’t cause any fundamental

differences in the player’s performance with RTSP/TCP. In HLS

streaming, the jerkiness started at higher bandwidth than with the

unlimited queue size. Similarly, in RTMP streaming, the

connection was lost already at the bandwidth of 900 kbps.

6. DISCUSSION
In this study, different streaming protocols were compared in the

same environment in a communication channel including packet

loss and unsufficient bandwidth. For these network parameters,

we tried to find boundaries after which the streaming quality starts

to decrease. According to the simulations, there are clear

differences in streaming quality between TCP- and UDP-based

streaming protocols. The difference became emphasized due to

the fact that there was no application layer resend mechanism

implemented for UDP. This means, that every dropped packet will

cause artifacts that the user perceives, and the number of dropped

packets may work alone as a good quality indicator. Usually the

resend mechanism is implemented, and, in that case, for example

the number of retransmitted packets should be used.

For TCP-based protocols, the frame rate, the ratio of

dropped/displayed picture frames and the playout duration

monitoring depict well the progression of streaming playout and

stalling effects. These metrics can be measured from the

application layer and changes in them can be assumed to be

perceptible to the user. Especially the frame rate changes bring

out the characteristics of the streaming protocols. The ratio of

dropped/displayed picture frames indicates changes in frame rate

and/or duration of playout. Thus, the number of

dropped/displayed picture frames is a metric that compresses the

information and is more suitable for evaluating large samples.

Figure 6. Displayed video pictures as a portion of all image frames in a test sequence in lossy channel. The value marked with cross

depicts a test case when streaming connection broke before the end. In (a) – (d), the video queue size was not limited, whereas in (e)

– (h), the size was limited.

There were two pull-based protocols in our tests. The HLS

protocol was the only one which didn’t break the connection

during the poor network conditions. On the other hand, when the

player’s video queue size was reduced, the streaming via HLS

protocol was first to show changes in quality in both lossy and

limited bandwidth conditions. This may indicate that the protocol

consumes more bandwidth than the other TCP-based protocols.

RTMP managed to keep the quality slightly longer than the

others.

In addition to missing UDP resend support, the FFPlay also

defines different video queue sizes to RTSP when compared to

HLS and RTMP as defaults. In these simulations, this was taken

into account and altered. However, this demonstrates that players

compatible with multiple streaming protocols may contain

implementations that aren’t equal.

7. CONCLUSION
In this study, the effects of the RTSP/RTP, HLS and RTMP

protocols on player’s reaction in disturbed network conditions

were observed. The study shows that, when delivering streaming

media in a platform compatible with multiple streaming protocols,

the quality may differ in same network conditions between

streaming protocols.

RTMP seemed to keep the quality slightly longer than the others.

HLS was the most resilient not breaking the connection once

during our tests. RTSP/TCP may induce more variation in quality

when packet loss is present. On the other hand, when bandwidth

was limited, reducing player’s queue size didn’t have any effect

on the quality. RTSP/UDP performed worst due to the lack of

UDP resend mechanism.

To expand the research, more developed player supporting

multiple streaming protocols should be studied. With the simple

media player used, the concealing methods aren’t very

sophisticated.

8. ACKNOWLEDGMENTS
The authors wish to thank the European Regional Development

Fund for the grant to the ”Media Centre Lime – the Regional

Innovation and Knowledge Environment” project, the European

Social Fund for the grant to the "SmartCampus" project and the

Executive Agencies, for their help and all the partners of the

project for their contribution.

9. REFERENCES
[1] Begen, A. C., Akgul, T., and Baugher, M. 2011. Watching

video over the web, part I: Streaming protocols. IEEE

Internet Comput. 15, 2 (March/April 2011), 54–63. DOI=

http://dx.doi.org/10.1109/MIC.2010.155.

[2] Dalal, A. C., Musicant, D. R., Olson, J., McMenamy, B. ,

Benzaid, S., Kazez, B., and Bolan, E. 2007. Predicting user-

perceived quality ratings from streaming media data. In

Proceedings of the IEEE International Conference on

Communications (Glasgow, Scotland, June 24-28, 2007).

ICC ’07. IEEE, 65–72. DOI=

http://dx.doi.org/10.1109/ICC.2007.20.

[3] Dalal, A. C., and Purrington, K. 2005. Discerning user-

perceived media stream quality through application-layer

measurements. In Proceedings of the First International

Conference on Multimedia Services Access Networks

(Orlando, FL, June 13-15, 2005). MSAN ’05. IEEE, 44–48.

DOI= http://dx.doi.org/10.1109/MSAN.2005.1489940.

[4] Dalal, A. C., and Perry, E. 2003. A new architecture for

measuring and assessing streaming media quality. In

Proceedings of the third Workshop on Passive and Active

Measurements (San Diego, CA, April, 2003).

[5] DeRienzo, F. 2013. Tunneling with RTMP encapsulated in

HTTP (RTMPT) should be avoided as it causes latency,

http://blogs.adobe.com/connectsupport/tunneling-with-rtmp-

Figure 7. Displayed video pictures as a portion of all frames in a test sequence with limited bandwidth. The values marked with

cross depict test cases when streaming connection broke before the end. In (a) – (d), the video queue size was not limited, whereas,

in (e) – (h), the size was limited.

encapsulated-in-http-rtmpt-should-be-avoided-as-it-causes-

latency/, Adobe Systems Inc., November 2013.

[6] FFPlay Documentation, December 2014.

https://www.ffmpeg.org/ffplay.html.

[7] French, H., Lin, J., Phan, T., and Dalal, A. C. 2011. Real

time video QoE analysis of RTMP streams. In Proceedings

of the 30th IEEE International Performance Computing and

Communications Conference (Orlando, FL, November 17-

19, 2011). IPCCC’11. IEEE, 1–2. DOI=

http://dx.doi.org/10.1109/PCCC.2011.6108105.

[8] Hoßfeld, T., Schatz R., and Krieger, U. R. 2014. QoE of

YouTube video streaming for current Internet transport

protocols, measurement, modelling, and evaluation of

computing systems and dependability and fault tolerance.

Lect. Notes in Comput. Sc. 8376 (2014), 136–150.

[9] Kumar, S., Xu, L., Mandal, M. K., and Panchanathan, S.

2006. Error resiliency schemes in H.264/AVC standard. J.

Vis. Commun. Image R. 17, 2 (April 2006), 425–450. DOI=

http://dx.doi.org/10.1016/j.jvcir.2005.04.006.

[10] Linktropy WAN emulator user’s guide, Firmware Version

4.4, Apposite Technologies, May 2014.

[11] Mok, R. K. P., Chan E. W. W., and Chang, R. K. C. 2011.

Measuring the quality of experience of HTTP video

streaming. In Proceedings of the IFIP/IEEE International

Symposium on Integrated Network Management (IM)

(Dublin, Ireland, May 23-27, 2011). IEEE, 485–492. DOI=

http://dx.doi.org/10.1109/INM.2011.5990550.

[12] Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke,

M., Pereira, F., Stockhammer, T., and Wedi, T. 2004. Video

coding with H.264/AVC: tools, performance, and

complexity. Ciruits and Systems Magazine, IEEE 4, 1

(2004), 7-28. DOI=

http://dx.doi.org/10.1109/MCAS.2004.1286980.

[13] Quan, H., and Ghanbari, M. 2009. No-reference temporal

quality metric for video impaired by frame freezing artefacts.

In Proceedings of the 16th IEEE International Conference

on Image Processing (Cairo, Egypt, November 07-10, 2009).

ICIP’09. IEEE, 2221–2224. DOI=

http://dx.doi.org/10.1109/ICIP.2009.5413894.

[14] Reibman, A.R., Subhabrata, S., and Van der Merwe, J. 2004.

Network monitoring for video quality over IP. In

Proceedings of the Picture Coding Symposium (San

Francisco, CA, December 2004).

[15] Seshadrinathan, K., Soundararajan, R., Bovik, A. C., and

Cormack, L. K. 2010. Study of subjective and objective

quality assessment of video, IEEE T. Image Process 19, 6

(June 2010), 1427–1441. DOI=

http://dx.doi.org/10.1109/TIP.2010.2042111.

[16] Seshadrinathan, K., Soundararajan, R., Bovik, A. C., and

Cormack, L. K. 2010. A subjective study to evaluate video

quality assessment algorithms. In Proceedings of Human

Vision and Electronic Imaging, 7527 (January 2010).

[17] Zhang, M., Zhang, Q., Sun, L., and Yang, S. 2007.

Understanding the power of pull-based streaming protocol:

Can we do better?. IEEE J. Sel. Area. Comm., 25, 9

(December 2007), 1678–1694. DOI=

http://dx.doi.org/10.1109/JSAC.2007.071207.

[18] Van der Auwera , G., David Prasanth T., and Reisslein M.

2008. Traffic and quality characterization of single-layer

video streams encoded with the H.264/MPEG-4 advanced

video coding standard and scalable video coding extension,

IEEE T. Broadcast., 54, 3 (September, 2008), 698–718.

DOI= http://dx.doi.org/10.1109/TBC.2008.2000422.

[19] Wang, Z., Banerjee, S., and Jamin S. 2003. Studying

streaming video quality: from an application point of view,”

In Proceedings of the eleventh ACM international

conference on Multimedia (2003). ACM, New York, NY,

327–330. DOI= http://dx.doi.org/10.1145/957013.957083.

[20] Wang, Y., and Claypool, M. 2005. RealTracer - tools for

measuring the performance of RealVideo on the internet.

Multimedia Tools and Applications 27, 3 (December 2005),

411-430. DOI= http://dx.doi.org/10.1007/s11042-005-3757-

6.

[21] Wiegang, T., Sullivan, G. J., Bjøntegaard, G., and Luthra, A.

2003. Overview of the H.264/AVC video coding standard.

IEEE T. Circ. Syst. Vid. 13, 7, (July 2003), 560–576. DOI=

http://dx.doi.org/10.1109/TCSVT.2003.815165.

