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ABSTRACT 

Streaming techniques, including the selected streaming protocol, 

have an effect on the streaming quality. In this study, the 

performance of three different streaming protocols in a disturbed 

communication channel is evaluated with a modified version of 

the FFPlay player. A H.264 encoded video is used as a test 

sequence. The number of displayed image frames, the frame rate 

and playout duration are used as objective metrics for QoS. The 

metrics brings out differences of streaming protocols in our test 

environment. They are measured at the application level and have 

a connection to the user experience.   

Categories and Subject Descriptors 

C.2.2 [Computer – Communication Networks]: Network 

Protocols – applications; C.4 [Performance of Systems] – 

performance attributes; H.5.1 [Information Interfaces and 

Presentation]: Multimedia Information Systems – video.  

General Terms 

Measurement, Performance, Experimentation. 

Keywords 

QoS, QoE, H.264, streaming protocols, RTSP, RTMP, HLS. 

1. INTRODUCTION 
In an unimpaired video streaming session, the video plays 

smoothly, maintaining the frame rate, and displayed image frames 

are decoded correctly. Interferences in data transmission may 

degrade streaming quality. Cabled networks are more resistant 

than wireless networks to signal interference, but both 

transmission ways may suffer from congestion. Congestion may 

cause packet loss, decreased throughput, delay and jitter. 

Decreased network QoS affects the QoS of the application. 

Typical streaming client’s reactions caused by insufficient 

network conditions are e.g. grown initial buffering time, 

rebuffering, blockiness, frame freezing, jerkiness and frame 

dropping. The user observes stalling, motion discontinuities and 

distorted video images, which all decrease quality of experience 

(QoE). 

In this paper, we study if different streaming protocols cause 

different player performance when H.264 video is transmitted 

through a disturbed communication channel. The FFPlay player is 

used in the simulations. The H.264/AVC standard includes 

several techniques which have enabled lower bit rate encoding 

that maintains the same quality compared to its predecessor in the 

MPEG group. In addition to coding efficiency, its development 

has put emphasis on the adaptability to various networks and error 

resiliency. To handle a variety of applications and networks, the 

H.264/AVC design covers a Video Coding Layer (VCL) and a 

Network Abstraction Layer (NAL). VCL is designed to represent 

the video content efficiently compressed [21], [12]. NAL formats 

the VCL presentation of the video to make it more adaptable to a 

variety of transport layers or storage media [21], [12]. The error 

resiliency schemes in H.264/AVC are mainly contained in the 

VCL [10]. 

Effective compression usually means weaker error resiliency. The 

compression schemes aim to reduce redundancies from the data. 

On the other hand, the error resiliency schemes utilize redundancy 

in the data [9]. The decoder behavior in the presence of errors has 

been described in the standard, but the error concealment is not 

within the scope of the H.264/AVC standard [9]. 

Regardless of the additional attention to network friendliness, the 

H.264/AVC may have some weaknesses compared to e.g. MPEG-

4 Part 2 codec. Van der Auwera et al. [18] found that the 

H.264/AVC codec achieves the lower average bit rates at the 

expense of significantly increased traffic variability. Their 

streaming simulation studies over a bottleneck link showed that 

the increased bit rate variability results in significantly higher 

frame losses for H.264/AVC encoded video compared to MPEG-4 

Part 2 encoded video when transmitting a single video stream. 

Even when reducing the traffic variability with smoothing before 

transmitting, the smoothed H.264/AVC video traffic exhibits 

variabilities at the same level or above the unsmoothed MPEG-4 

Part 2 video traffic. 

The streaming protocols can be grouped into push- and pull-based 

protocols. In push-based protocols, the server streams packets to 

the client until the client stops or interrupts the session. In pull-

based streaming, the client is active and requests content from the 

media server [1]. The advantages of pull-based protocols are 

simplicity and robustness, and when the server bandwidth is 

above several times of the streaming rate, the pull-based protocol 

is optimal in terms of bandwidth utilization and system 

throughput in P2P streaming [17]. The streaming protocols used 

in our simulations are Real-time Streaming Protocol (RTSP), 

HTTP Live Streaming (HLS) and Real Time Message Protocol 

(RTMP). RTSP is one of the most common session control 

protocols used in push-based streaming (although sometimes 

considered pull-based since the client needs to initiate the 
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session). RTSP uses Real-time Transport Protocol (RTP) for data 

transmission. In addition to UDP, RTP may also be used with 

other suitable underlying network or transport protocols like TCP. 

Apple’s HLS is a pull-based adaptive streaming protocol which 

stores the video in multiple files called chunks. Client fetches 

video segments from the server, using the HTTP GET method. A 

new video segment is only requested after the previous one has 

been fully received. Segments are transported by TCP and are 10 

seconds long by default. 

RTMP is a TCP-based stateful, pull-based streaming protocol 

developed by Adobe Systems. It was designed to stream audio, 

video and data between Flash platforms. RTMP transmits 

information in Messages which are split into Chunks. There are 

about a dozen types of Messages. The payload of a Message is cut 

into the same size blocks of data, and the Chunk Header is added 

in front of each data block. In addition to the plain RTMP 

protocol, it has multiple variations. RTMPT is encapsulated 

within HTTP request. Although tunneling helps traversing 

firewalls, it causes latency [5]. RTMPS is RTMP over a TLS/SSL 

connection. RTMPE is RTMP encrypted using Adobe's own 

security mechanism. 

The underlying transport protocol may have a major impact on the 

streaming quality. In our tests, all streaming protocols were sent 

via TCP and RTP packets, in RTSP sessions also via UDP. 

Hoßfeld et al. [8] studied the influence of the transport protocol 

on QoE with Youtube. They concluded that for the same 

bottleneck capacity the end user will tolerate stalling effects that 

arise in case of TCP better than temporal video artifacts that 

manifest themselves in case of UDP. 

The remainder of this paper is organized as follows: in Section II, 

the related work is briefly discussed. Section III describes our test 

environment. In Section IV, the player’s behavior with different 

protocols is observed in terms of frame rate monitoring. In 

Section V, the number of displayed image frames is compared 

between protocols in poor network conditions. The results of 

simulations are discussed in Section VI. Finally, we conclude the 

paper in Section VII. 

2. RELATED WORK 
Various studies have omitted the strategy to explore the streaming 

quality evaluation by collecting parameters at the application 

level. Dalal et al. [2]-[4] studied RTSP streaming (RTP over 

UDP) in Windows environment to develop methods for assessing 

user-perceived quality with objective metrics obtained from an 

instrumented media player. In those studies, the player’s statistics 

about packet traffic, throughput and buffering are monitored to 

predict QoE. Packet loss and delay was induced, and they tried to 

select a loss rate that would achieve the desired amount of 

interference visible to user. Application level metrics in Windows 

environment are also used for measuring streaming quality e.g. in 

[19] and [14]. 

Wang et al. [20] collected streaming data with RealTracer, a tool 

collection that measures the performance of RealNetworks Video. 

The streaming protocol was RTSP. RealTracer includes 

RealTracker, a customized player that records system performance 

statistics and user perceptual quality ratings. RealTracker gathers 

information of a variety of metrics, but their study focused on 

frame rate, jitter, bandwidth and users’ quality ratings. 

Mok et al. [11] characterized the correlation between the 

application and network QoS with HTTP streaming protocol. For 

HTTP streaming, they chose buffering as the best metric for 

quality evaluation. They identified the rebuffering frequency to be 

the main factor responsible for the MOS variance. 

French et al. [7] implemented a modified Flash player which 

collects QoS and QoE data during RTMP streaming. They 

customized their stream quality assessment system, originally 

developed for RTSP/UDP streaming, to make it capable to infer 

QoE of RTMP video streams. Their preliminary study indicated 

that bitrate in combination with either frame rate or bandwidth 

serves as an accurate indicator of QoE for RTMP videos. 

In this study, different streaming protocols are compared in the 

same environment to bring out their possible differences in 

maintaining the streaming quality in poor network conditions. The 

number of displayed image frames, the frame rate and playout 

duration are measured at the application level. These metrics have 

a connection also to the user experience. 

3. TEST ENVIRONMENT 
FFplay is a simple and portable media player using the FFmpeg 

libraries and the SDL library. It is open source and supports 

multiple streaming protocols [6]. A simple player may bring out, 

more explicitly, the impacts of network impairments. FFmpeg, 

including FFplay, was installed on a client PC running Ubuntu 

14.04. The source code of the player was slightly modified to be 

more suitable for the streaming quality monitoring of application 

layer. The pixel information and the display time of video pictures 

were collected. This enabled saving video pictures as they were 

displayed after real time decoding and concealing, including all 

possible errors, for prospective PSNR analysis. With the help of 

the collected frame display, time changes in frame rates could be 

observed. FFplay includes packet queues for audio, video and 

subtitles. The player fills those queues with data read from its 

buffers. For RTSP protocol, the size of queues is not limited as 

default. For HLS and RTMP, FFplay only fills the packet queues 

to a point, where they contain a specified amount of data. The 

maximum size of limited queues is 15*1024*1024 bytes. During 

the same test condition setting, the queue size was set equal for all 

protocols. 

 

Figure 1. The bitrate of the test sequence. Bars including a key 

frame are darker. 

The test sequence was created by concatenating four commonly 

used test videos: “Pedestrian area” (pa), “Sunflower” (sf), “Rush 

hour” (rh) and “Station” (st). The sequences were originally 

downloaded from LIVE Video Quality Database [15], [16]. At the 

database, those videos are downsampled to the spatial resolution 



of 768x432 pixels and they are approximately 10 seconds long. 

The concatenated 40 second h.264 video was encoded with 

FFmpeg using x264 encoder. The target bitrate was set to 1000 

kbps and the frame rate to 25 fps. The key frame interval was 250 

frames, and the four key frames were in the beginning of each 

concatenated sequence (scene). The video includes no audio. The 

default profile, High@L3.0, of FFmpeg encoding was used. 

Figure 1 represents the bit rate profile of the sequence. 

The test sequence was streamed as on-demand from a Wowza 

Streaming Engine 4.0.3. Limited and lossy communication 

channel was emulated with a Linktropy 5500 WAN emulator. The 

emulation was performed only from server to client to let 

feedback from the receiver travel unimpaired. The server and the 

client were on their own subnet and other network traffic was 

minimized. The server was connected to the emulator through a 

fibre channel.  The adaptive bitrate video streaming wasn’t used 

to simulate the playout behavior at the lowest bitrate with each 

protocol. With TCP-based protocols, the TCP variant was Cubic. 

The testbed is presented in Figure 2. 

 
Figure 2. The test environment. 

4. FRAME RATE DEPICTING USER 

EXPERIENCE 
Frame rate monitoring during streaming depicts well the progress 

of the playout and brings out the changes that user perceives in 

streaming quality. In a network containing packet loss or 

insufficient throughput, a player may decrease the playout rate or 

start rebuffering. In those cases, the player may still display all the 

frames included in the video, which increases the playout time. 

The player may drop image frames, which also appears to the user 

as sporadic fluidity breaks. Breaks can be hardly noticeable, or 

they can be longer frame-freezing periods. They are often caused 

by the decoder’s strategy to discard the video frame that is 

corrupted and repeat the previous frame instead, until the next 

valid decoded frame is available [13]. All those reactions by the 

player cause changes in the frame rate. 

As network conditions were weakened in our environment, 

FFPlay reacted primarily by dropping image frames with TCP-

based streaming protocols. The displayed image frames were 

flawless in most cases. The viewer observes the frame drops as 

sporadic breaks or jerkiness. At the packet loss ratio of 8%, the 

player drops video images with every tested streaming protocol in 

the test environment. Figure 3 shows examples of frame rates 

when packet loss is set to 8% and thus indicates the differences in 

the behaviors of protocols with FFplay player. The three highest 

diagrams (UDP/RTSP, TCP/RTSP and HLS) illustrate well the 

jerkiness a viewer observes. With the RTMP protocol, the playout 

stops once and the video picture freezes for a few seconds. Other 

than that, the sequence plays smoothly. However, in the playout 

with UDP/RTSP, the displayed image frames were also severely 

distorted. 

 

Figure 3. Examples of frame rates when packet loss ratio is set 

to 8% and the size of video queue is limited. 

The bandwidth limit which introduced visible changes in the 

streaming playout with every tested protocol was 900 kbps in our 

testbed. In Figure 4, examples of frame rates are shown at the 

bandwidth of 900 kbps. The figure demonstrates how RTMP 

manages to keep the frame rate longest. With HLS, the playout 

time increases. This indicates that the player uses either very short 

rebuffering periods or decreases playout rate to cope with 

insufficient bandwidth. In these examples, RTMP displays most 

frames, 968 out of 1000. HLS displays 953, RTSP via UDP 873 

and via TCP 785 frames. 

The irregularities in playout often occurred near the key frames. 

The key frames lay in our test sequence only in the scene cuts. In 

addition, the observed quality could vary significantly between 

scenes. Figure 5 demonstrates the differences in scenes during the 

playout. The data was collected from the same test runs as in 

Figure 4. The crosses connected with a dashed line depict the time 

spent on each scene compared to the actual duration. The dots 



connected with a solid line are the portions of displayed video 

pictures. If the streaming conditions were sufficient, both values 

would stay at 100%. In RTSP/TCP streaming, the third 

concatenated clip (“rush hour”) loses most frames. The streaming 

gets better at the final scene, managing to play almost all the 

frames, but the increased time spent on it indicates unsmooth 

playout. Playing the 40 second test sequence took approx. 44 

seconds with HLS. With RTMP, the first three scenes were played 

perfectly. 

 

Figure 4. Examples of frame rates when the bandwidth is 

limited to 900 kbps. The video queue size was not limited. 

5. RESULTS 
The streaming protocol effects on application performance in poor 

network conditions were studied by inducing packet loss, and 

limiting bandwidth with the WAN emulator. To simulate the 

player buffer size modification, the tests were conducted with two 

different player’s video queue sizes. Reducing the queue size 

better brings out defects in streaming and may highlight the 

differences between the streaming protocols.  

As the FFPlay reacted primarily by dropping image frames, the 

ratio of displayed video frames was measured for each streaming 

session. The metric is related to changes in the frame rate. When 

image frame dropping was present, there was always frame rate 

variation. In this chapter, the bandwidth and packet loss ratio 

limits for the quality changes demonstrated in the previous 

chapter are sought for. 

 

Figure 5. Examples of displayed video pictures and the time 

spent on playout when bandwidth is limited to 900 kbps. The 

video queue size was not limited. 

5.1 Packet loss 
The WAN emulator discards packets randomly, based on the 

specified loss rate. Since packets are dropped after they have been 

rate throttled, discarded packets will consume link bandwidth 

[10]. Figure 6 represents the number of displayed video pictures 

when packet loss was increased from 1 to 10% at the bandwidth 

of 2Mbps. The test video was played 5 times with each setting. In 

Figures 6 (a) – (d), the video queue size of FFplay was not 

limited. With the RTSP/TCP protocol, the first interferences were 

observed when the loss was 4%. The defects increased at a steady 

rate as the loss percentage was raised. For HLS, the limit was 8% 

and, for RTMP, 9%. For these settings, RTMP was the only one 

for which the connection broke in the middle of streaming, but 

before that it was able to maintain flawless playout. According to 

the figure, in RTSP/UDP streaming the number of displayed 

image frames and packet loss rate are directly proportional. 

Nevertheless, RTSP/UDP couldn’t cope even with 0.5% loss ratio 

but displayed severely distorted video pictures. Clearly, FFplay 

doesn’t provide any support for UDP resending. 



In Figures 6 (e) – (h), the size of the player’s video queue is 

limited. Since the quality of RTSP/UDP streaming was already 

poor, the change in the queue size didn’t make any fundamental 

difference in quality. HLS couldn’t display all frames from 1% 

and RTSP/TCP from 5% onward. RTMP again maintained perfect 

quality until 7%. HLS may lose more frames, but it manages to 

keep the connection and play the whole sequence with these 

settings. Because the type of the lost packet has a great impact on 

propagation of errors and maintaining the streaming quality, there 

is some deviation also in the displayed image frames metric. 

5.2 Bandwidth Limitation 
The WAN emulator throttles the frames to the specified WAN 

bandwidth. Frames in excess of the specified WAN bandwidth are 

queued to the configured emulator’s maximum queue depth. 

When the queue is full, newly-arriving frames are discarded [10]. 

To explore player’s reactions in slow bandwidth condition, large 

queue depth, 10 000 ms, was used to minimize packet loss caused 

by the emulator. Bandwidth was limited from 2 Mbps downward. 

The portion of displayed frames with both video queue sizes is 

presented in Figure 7. In tests with restricted bandwidth, the 

sequence was played almost identically every time at the same 

setting. As in packet loss, the frame dropping manifested itself as 

jerkiness and short interruptions. With RTSP/UDP, corrupted 

video pictures also occurred. 

In Figures 7 (a) – (d), the video queue size was not limited. The 

streaming was fluent with all protocols until the bandwidth of 1 

Mbps, which was expected as the average bitrate of the test 

sequence was about that size. Below 1 Mbps, HLS started to drop 

some video pictures, causing jerkiness. RTMP got to the point it 

couldn’t maintain the connection to the server. RTSP streaming 

reacted by dropping video pictures more radically, and lost also 

the connection a few times. When RTP packets were streamed on 

top of UDP, there were also distorted pictures at the bandwidth of 

800kbps. All those distorted pictures featured at the final 

concatenated 10 second sequence in the 40 second video.  

In Figures 7 (e) – (h), the video queue size was limited. With 

RTSP/UDP, the player displayed severely distorted video pictures 

already at the 2 Mbps bandwidth. As the bandwidth was 

decreased near 1 Mbps, video pictures were displayed perfectly, 

with just minor jerkiness. The transient quality improvement may 

indicate that, with faster bandwidth, player’s video queue fills up 

and discards the excess packets. When the bandwidth was limited 

to 800 kbps, the video pictures in the final 10 seconds were 

distorted as in the case where video queue wasn’t restricted. 

The change in the video queue size didn’t cause any fundamental 

differences in the player’s performance with RTSP/TCP. In HLS 

streaming, the jerkiness started at higher bandwidth than with the 

unlimited queue size. Similarly, in RTMP streaming, the 

connection was lost already at the bandwidth of 900 kbps. 

6. DISCUSSION 
In this study, different streaming protocols were compared in the 

same environment in a communication channel including packet 

loss and unsufficient bandwidth. For these network parameters, 

we tried to find boundaries after which the streaming quality starts 

to decrease. According to the simulations, there are clear 

differences in streaming quality between TCP- and UDP-based 

streaming protocols. The difference became emphasized due to 

the fact that there was no application layer resend mechanism 

implemented for UDP. This means, that every dropped packet will 

cause artifacts that the user perceives, and the number of dropped 

packets may work alone as a good quality indicator. Usually the 

resend mechanism is implemented, and, in that case, for example 

the number of retransmitted packets should be used.  

For TCP-based protocols, the frame rate, the ratio of 

dropped/displayed picture frames and the playout duration 

monitoring depict well the progression of streaming playout and 

stalling effects. These metrics can be measured from the 

application layer and changes in them can be assumed to be 

perceptible to the user. Especially the frame rate changes bring 

out the characteristics of the streaming protocols. The ratio of 

dropped/displayed picture frames indicates changes in frame rate 

and/or duration of playout. Thus, the number of 

dropped/displayed picture frames is a metric that compresses the 

information and is more suitable for evaluating large samples.   

 

 

Figure 6. Displayed video pictures as a portion of all image frames in a test sequence in lossy channel. The value marked with cross 

depicts a test case when streaming connection broke before the end. In (a) – (d), the video queue size was not limited, whereas in (e) 

– (h), the size was limited. 

 



There were two pull-based protocols in our tests. The HLS 

protocol was the only one which didn’t break the connection 

during the poor network conditions. On the other hand, when the 

player’s video queue size was reduced, the streaming via HLS 

protocol was first to show changes in quality in both lossy and 

limited bandwidth conditions. This may indicate that the protocol 

consumes more bandwidth than the other TCP-based protocols. 

RTMP managed to keep the quality slightly longer than the 

others.  

In addition to missing UDP resend support, the FFPlay also 

defines different video queue sizes to RTSP when compared to 

HLS and RTMP as defaults. In these simulations, this was taken 

into account and altered. However, this demonstrates that players 

compatible with multiple streaming protocols may contain 

implementations that aren’t equal. 

7. CONCLUSION 
In this study, the effects of the RTSP/RTP, HLS and RTMP 

protocols on player’s reaction in disturbed network conditions 

were observed. The study shows that, when delivering streaming 

media in a platform compatible with multiple streaming protocols, 

the quality may differ in same network conditions between 

streaming protocols. 

RTMP seemed to keep the quality slightly longer than the others. 

HLS was the most resilient not breaking the connection once 

during our tests. RTSP/TCP may induce more variation in quality 

when packet loss is present. On the other hand, when bandwidth 

was limited, reducing player’s queue size didn’t have any effect 

on the quality. RTSP/UDP performed worst due to the lack of 

UDP resend mechanism. 

To expand the research, more developed player supporting 

multiple streaming protocols should be studied. With the simple 

media player used, the concealing methods aren’t very 

sophisticated. 
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