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ABSTRACT
In order to make context-aware systems more effective and provide
timely, personalized and relevant information to a user, the con-
text or situation of the user must be clearly defined along several
dimensions. To this end, the system needs to simultaneously rec-
ognize multiple dimensions of the user’s situation such as location,
physical activity etc. in an automated and unobtrusive manner. In
this paper, we present SenseMe - a system that leverages a user’s
smartphone and its multiple sensors in order to perform continuous,
on-device, and multi-dimensional context and activity recognition.
It recognizes five dimensions of a user’s situation in a robust, auto-
mated, scalable, power efficient and non-invasive manner to paint
a context-rich picture of the user. We evaluate SenseMe against
several metrics with the aid of 2 two-week long live deployments
involving 15 participants. We demonstrate improved or compara-
ble accuracy with respect to existing systems without requiring any
user calibration or input.
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1. INTRODUCTION

In order to make context-aware systems more effective and pro-
vide timely, personalized and relevant information to the user, the
context or situation of the user must be clearly defined along sev-
eral dimensions. Though a user’s situation can have multiple di-
mensions or aspects at any given instant of time, some of the most

important ones are: where he is (location), what he is doing (ac-
tivity), and when (time) i.e. “Who, What, Where and When?" [6].
These aspects form the W4 model proposed by Castelli et al. [13]
to represent contextual information about physical world objects,
which can be employed by both users and context-aware systems.
An additional aspect - whom the user is with, proposed by Schilit
et al. [24], can be added to augment this model. Taken together,
these five dimensions paint a context-rich picture of the user.

To determine these aspects of a user’s situation, the context-
aware system needs to simultaneously recognize multi-dimensional
contextual information of a user at a given instant of time. More-
over, for large-scale adoption by users, this information should be
acquired in a non-invasive manner, without placing undue burden
on them. As a result, automated sensing ability is highly desirable
for any information system powered by context-aware computing.
In addition, this ability to sense users should be embedded in de-
vices that they can carry around without effort and the user interac-
tion should minimal so that it is unobtrusive.

The ubiquitous smartphone, with its multitude of sensors and
capabilities, has become the best choice for this purpose. Today’s
smart phones come equipped with an increasing range of sensing,
computational, storage and communication capabilities. This has
enabled sensing and tracking applications to emerge across a wide
variety of applications areas such as location based services, per-
sonal healthcare, and social networking etc. A key challenge of
mobile phone sensing is to process raw data from multiple sensors
in order to infer higher level activities and context in real-time and
in a robust, generic and energy efficient manner.

In this paper, we present SenseMe - a system that leverages the
smartphone and its multiple sensors in order to perform continu-
ous, on-device, and multi-dimensional context and activity recog-
nition for a user. It achieves this in a robust, automated, scalable,
power efficient and non-invasive manner. Table 1 summarizes the
set of five dimensions of a user’s situation (and their possible dis-
crete values) that SenseMe recognizes, with a temporal resolution
of a minute1, to determine the aspects “Who, What, Where, When,
and Who you are with?”. The dimensions are:

1. Environmental context - This dimension represents whether
the user is Outdoors (outside a building), Indoors (inside a
building), or Indoor-Outdoors (close to or in a semi-open
building or inside a building but near a door or large win-
dow). It is significant as it enables context-aware localiza-
tion(explained next).

2. Context-aware Location - This dimension represents loca-
tion of the user in both indoor and outdoor environments. If
he is ‘outdoors’, SenseMe uses GPS for localization and re-
verse geocoding in order to resolve the logical address of the
user’s location. If he is ‘indoors’ or in the ‘indoor-outdoor’

1This time slice duration is long enough to be discriminative and
short enough to provide high accuracy labeling results.

In order to make context-aware systems more effective and pro-
vide timely, personalized and relevant information to the user, the
context or situation of the user must be clearly defined along sev-
eral dimensions. Though a user’s situation can have multiple di-
mensions or aspects at any given instant of time, some of the most



Situation Possible
Dimension Values

Environmental {Indoor, Outdoor,
Context Indoor-Outdoor}

Physical {Stationary, Walking,
Activity Running, In-vehicle}

Context-aware Set of locations determined by Wi-Fi
Location (indoors) or reverse geocoding(outdoors)

Device Task the user is engaged in on the
Activity device such as phone call or messaging

Social Number of people around the
Context user at any given instant of time

Table 1: Situation dimensions being captured by SenseMe at any
instant of time

Device Range Resolution

Magnetic Light Magnetic Light
Field (μT) (lux) Field(μT) (lux)

Google
Nexus 9830.0 65528.0 0.15 0.2

Motorola
Xoom 2000.0 208076.8 0.0625 0.05

Table 2: Comparison of Range and Resolution for Magnetic Field
and Light sensors on two different devices

area, SenseMe performs indoor localization using Locus [12]
which is a Wi-Fi based indoor localization system for multi-
story buildings.
Since the location should be in a human understandable for-
mat, SenseMe determines a high-level logical location in ad-
dition to a low-level location in a raw format. It further iden-
tifies a location type (restaurant, academic building, student
center etc.) for each resolved location. This enables tracking
of a user’s location history at fine and coarse grained levels
throughout the day and also helps in identifying the places
where they spend a significant amount of their time.

3. Physical Activity - This dimension represents the physical
activity of the user such as walking, running, stationary or in
a vehicle (car, bus, bike etc.).

4. Device Activity - This dimension represents the task the user
is currently engaged in on his/her smart device (checking
mail or phone call). It is equally important as the physical
activity due to the growing proliferation of mobile devices
and their increasing usage as opposed to desktop and lap-
top computers. Most people carry their smart devices every-
where and perform a substantial set of their everyday activi-
ties such as web browsing on it. As a result, we believe that
it forms a significant dimension of the user’s situation.

5. Social context - This dimension represents the social activity
of users i.e. how much time they spent interacting or being
around people.

Thus, at any instant of time t, SenseMe represents the user’s sit-
uation S as a feature vector in a multi-dimensional Situation Space.
For example, S(t) for a user is: <Indoor; Stationary; Phone Call;
A.V. Williams Building - College Academic Building; With 4 people>.

SenseMe has been completely implemented on the Android plat-
form and runs on off-the-shelf Android smartphones and tablets.
We evaluate SenseMe extensively against several qualitative and
quantitative metrics, with the aid of 2 two-week long live deploy-
ments involving 15 participants. We demonstrate improved or com-
parable accuracy with respect to existing systems without requiring
any user calibration or input.

The rest of the paper is organized as follows: In Section 2, we

discuss existing related work in the field of Context and Activity
Recognition and highlight their shortcomings and differences with
our approach. Following that, we explain the key contributions of
our work in Section 3 and training data collection in Section 4.
Section 5 describes the SenseMe system. We present the evaluation
of SenseMe in Section 6 and briefly describe the SenseMe API in
Section 7. Finally, we conclude by summarizing our contributions.

2. RELATED WORK
There have been several recent efforts in the field of context and

activity recognition. We discuss some notable and relevant exam-
ples here including those whose goals are similar to ours i.e. they
use off-the-shelf devices such as mobile phones rather than propri-
etary hardware or sensors. We also highlight their limitations and
differences with our approach. Moreover, most of these efforts have
been isolated and capture a single dimension of context or activity
as opposed to multi-dimensional context and activity recognition.

2.1 Environmental Context Recognition
IODetector[27] is a sensing service that runs on the mobile phone

and uses light and magnetic field sensors, and cell tower signals in
order to detect whether the device is outdoors, indoors, or semi-
outdoors2. However, sensors such as the magnetic field and light
sensors often depend on device manufacturer. As shown in Table
2, the range and resolution of these sensors vary with each device.
The output of these sensors also varies with time of the day and
weather. Hence, extensive calibration and hand tuning as done in
IODetector[27] is not a robust and accurate method. In addition,
they use the cell tower signal strength but many smart devices such
as tablets do not come equipped with the cellular radio. Overall, it
has an average accuracy of 88%.

The unavailability of a GPS fix has been used by Ravindranath et
al. [23] to infer that the user is in an indoor environment. However,
just the availability or unavailability of the GPS fix is not a robust
parameter and can lead to many false positives. It is possible to
have a GPS fix indoors even if its weak.

TempIO [19] determines environmental context by comparing
the environment temperature, measured using proprietary hardware,
with the current outdoor temperature obtained from a web service
or external thermometer. A major limitation of this work is that
web services usually provide temperatures at a coarse granularity
of a city or locality rather than an exact fine grained location. More-
over, users have to carry the external hardware along with them as
temperature sensors may not be available on all devices.

On the other hand, SenseMe performs environmental context
recognition using NMEA 0183 data[5], obtained from GPS, which
is a standard data specification used for communication between
electronic devices such as GPS receivers and other types of instru-
ments. This makes it robust and independent of time, weather, and
device manufacturer.

2.2 Physical Activity Recognition
CenceMe [21] is mobile phone system which uses accelerom-

eter, GPS, audio and bluetooth to infer human activities such as
‘Walking’, ‘Standing’, ‘Running’, ‘Sitting’ and ‘Vehicle’. It runs
on the Nokia N95 with components written in both JME and Sym-
bian C++. To preserve phone resources, certain computations are
split between the phone and a back end desktop server. The ac-
curacy of the classifier varies with the activity being classified -
high (94%) for ‘Walking’ but low(<80%) for the others. CenceMe
uses kMeans clustering to identify significant locations inhabited
by users. It injects the users’ presence and current activity on a
social network which can be privacy invasive. Moreover, there are

2We use the same definitions in SenseMe for Indoor, Outdoor and
Indoor-Outdoor respectively.



latency challenges in splitting the computation between the phone
and a backend server as this slows down the response time of the
system and requires network connectivity at all times. In addition,
there are privacy concerns and other costs associated with upload-
ing personal data of users to a server or cloud.

Jigsaw [20] is an application with a similar premise but different
implementation. It uses three different pipelines for accelerometer,
GPS and microphone and runs entirely on the phone. The classi-
fier accuracies for the same set of activities as CenceMe is about
94%. The microphone pipeline detects activities such as brushing,
showering, typing, vacuuming etc. and its accuracy ranges from
84% to 88%. While the ability to detect higher number of activi-
ties is definitely an advantage, the tradeoff between accuracy, utility
and energy consumption must be maintained. The microphone is
a power hungry sensor and hence, using it for activity recognition
poses significant challenges. Additionally, this raises privacy con-
cerns [18] and can have legal implications as recording audio in any
form may require users’ permission.

Using accelerometer for activity recognition suffers from several
limitations which make it a non-robust method:

• High likelihood of false positives - if a user shakes his phone,
it is often labeled as a physical activity.

• Dependency on the gait of a user,
• Dependency on placement of the phone - whether it is placed

on the body or if its in a bag or a purse.
• User calibration is required in order to make it independent

of orientation and body position[20].
To address these limitations, SenseMe recognizes a user’s physi-

cal activity based on the speed of the device obtained from the GPS,
which makes it agnostic to gait, body position and orientation.

2.3 Localization
There exists a wide spectrum of research in indoor and outdoor

localization using off the shelf devices as well as instrumented se-
tups. All of them focus mainly on either indoor localization (Wi-Fi
based systems such as RADAR[9], Horus[26], Active Campus[14]
and Locus[12]) or outdoor localization (GPS based systems such as
EnTracked[17] and StarTrack[8]). However, our aim in SenseMe
is to enable context-aware localization i.e. localization in both in-
door and outdoor environments through technologies that are read-
ily available through the smartphone - GPS and Wi-Fi. This aids in
capturing all of the user’s locations in an unobtrusive manner using
a ubiquitous device.

2.4 Social Context Recognition
CenceMe [21] determines social context by scanning a user’s

environment for recognized bluetooth devices and displaying the
number of ‘CenceMe buddies’ (other CenceMe users) that are around.
However, this requires location sharing which can be privacy-invasive.
Hence, in SenseMe, we address the general problem of determin-
ing how many people are around the user, irrespective of whether
they use SenseMe or not. Moreover, many users may not consent
to sharing their data especially location with other users and as a
result, we do not support that in the current system. Instead, we use
bluetooth to recognize a user’s social context.

2.5 Device Activity Recognition
There are several commercially available smart phone applica-

tions that track the application usage of a user and organize the
applications based on the Most Frequently/Recently used applica-
tion. On the other hand, in SenseMe, we add a temporal aspect to
the application usage and observe it in tandem with other recog-
nized dimensions.

2.6 Logging raw sensory information
In the FunF project [7], Aharony et al. log a variety of sensory

Classifier
Environmental Physical Training

Context(%) Activity(%) time (s)

C4.5 96.87 93.18 0.1

kNN 92.74 83.77 0.2

Random Forest 92.65 94.79 34

Table 3: Comparison of classifier accuracies(%) and average
training time(s) for the training datasets

information from the devices of 55 users with a maximum tempo-
ral resolution of 6 minutes. Wagner et al. [25] undertake the chal-
lenge of large scale smartphone usage data collection from Android
devices of 21,350 users over a period of 2 years. The data col-
lected includes accelerometer readings, call logs, cell tower scans
etc. However, these approaches log low level data without inferring
any high-level context or activities from it.

3. KEY CONTRIBUTIONS
Our key contributions in this paper are:
1. We present a robust, generic and scalable technique for per-

forming environmental context recognition which is inde-
pendent of time, weather, and device manufacturer.

2. We present a robust, generic and scalable technique for per-
forming activity recognition, for select physical activities,
which is independent of gait, body position and orientation.

3. We utilize the user’s environmental context and physical ac-
tivity to perform opportunistic context-aware localization us-
ing existing technologies that are generic and easily scalable.

4. We capture the user’s device activity as well as social context
to augment his multi-dimensional situation.

5. We implement the aforementioned techniques as part of a
generic system, SenseMe that runs entirely on the smart de-
vice and is completely non-invasive.

6. We demonstrate improved or comparable accuracy with re-
spect to other existing systems without requiring any user
calibration or input.

Since SenseMe uses GPS and several other sensors, managing
power consumption is crucial. To this end, we have implemented a
resource efficient duty cycle that employs power conservation tech-
niques to control GPS usage without sacrificing accuracy.

4. TRAINING DATA COLLECTION
To implement the SenseMe system, we first collected NMEA

0183 and speed data over a period of one month in different en-
vironments (such as university, office buildings, high rises, apart-
ment complexes) and in different road conditions (such as high-
ways, downtown, city and local roads).

The NMEA training data samples includes specific NMEA sen-
tences received in a time span of a minute. NMEA sentences con-
sist of several words separated by a ‘,’ and the first word, also called
the data type, defines the interpretation of the rest of the sentence.
The two sentences that interest us the most are the GGA and GSA
sentences. These sentences contain meta-data about the GPS fix
such as number of visible satellites and the Dilution of Precision
(DOP) [4]. The DOP is the relative accuracy of horizontal (HDOP)
or vertical (VDOP) position as the case may be. It is a number
where a smaller value means a higher level of accuracy. Once an
NMEA listener is enabled on the device, it starts receiving these
sentences every second irrespective of a GPS fix being achieved
and independent of the GPS sampling rate. The speed training data
samples consist of raw speed values of the device received in a time
span of a minute sampled at a minimum interval of 10 seconds.

The data was collected by 4 members of our lab (including the
authors) at several times in a day as well as in different weather
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Figure 1: Architecture of the SenseMe system

conditions, to study their effects (if any) on the data. All the par-
ticipants who collected the data also annotated it carefully to pro-
vide ground truth values for each dimension being captured. We
computed Pearson’s linear correlation coefficient on the collected
NMEA data and determined that the weather specifically outlook
had a strong correlation with it. Hence, we removed it from our set
of features. The total data collected was approximately equivalent
to a continuous run of 168 hours.

We experimented with 3 classifiers on both the NMEA and speed
training datasets: C4.5, kNN (k=3) and Random Forest (10 trees).
The Weka[15] implementation of each classifier was run on these
sets with 10 fold cross validation. Table 3 shows a comparison of
the classifiers’ accuracies as well as average training time for envi-
ronmental context and physical activity recognition. C4.5 proved to
be faster, more accurate and efficient than both kNN and Random
Forest for environmental context recognition. For physical activity
recognition, it proved to be more accurate than kNN and slightly
less accurate than Random Forest but faster than both.

Since smart devices have memory, CPU and power constraints,
it is most effective and efficient to use a fast, accurate and light-
weight classifier. The C4.5 decision tree is a light-weight classi-
fier as opposed to the kNN classifier (which is an instance based
method for classification and hence requires in-memory storage of
training instances) and Random Forest (which is an ensemble clas-
sifier). As a result, we selected the C4.5 decision tree on the basis of
its performance and also because it is fast and not computationally
intensive. We implemented it in SenseMe for environmental con-
text and physical activity recognition. There are more advanced
techniques like Support Vector Machines which generate a confi-
dence measure with each classification label. This can then be used
as an input to a Hidden Markov Model for smoothing. However,
in SenseMe we attempt to balance resource usage efficiency with
accuracy on a resource constrained platform and the C4.5 classifier
achieves it superbly.

5. THE SENSEME SYSTEM
We now describe the SenseMe system in detail.

5.1 System Design and Architecture
Figure 1 shows the architecture of the SenseMe system. It has

been completely implemented on the Android platform. It consists
of a background Android service called SenseMeService, which
consists of 5 individual services (one for each dimension), a SQLite
database called SenseMeDb and a foreground proof of concept vi-
sualization called SenseMeVis. The temporal context and activity
information recognized by each service is stored in SenseMeDb.
SenseMe can run on the user’s phone as an application which can

Do accelerometer and rotation vector detect motion?
No

Yes
YesPiggyback on existing location sensing requests

Check if another application is using the GPS? No Start  GPSLocation sensing

Is GPS Location being sensed?

Stop GPS Location sensingYesNo

Figure 2: GPS Duty Cycle

be easily pushed to the background where it continuously func-
tions, collects and processes data. Whenever the application is
brought to the foreground, SenseMeVis retrieves the information
from SenseMeDb in order to render it on the device display.

5.2 GPS Duty Cycle
Zhuang et al. [28] propose several techniques for preserving

energy consumption of location based applications specifically on
the Android platform. These include: (i) Substitution (replacing a
more accurate but energy intensive provider such as GPS with a less
accurate but efficient provider such as Network), (ii) Suppression
(using low power sensors to suppress the usage of GPS), (iii) Piggy-
backing (synchronizing the location sensing requests with existing
requests) and (iv) Adaptation (adapting the system-wide sensing
parameters such as time and distance, when battery level is low).
Some of these techniques such as Substitution and Adaptation pre-
serve the battery at the cost of location accuracy.

In SenseMe, we utilize the GPS in an energy and resource ef-
ficient manner without sacrificing accuracy. Figure 2 shows the
workflow of the GPS Duty Cycle in SenseMe. It employs the fol-
lowing techniques to conserve power usage:

5.2.1 Suppression
Several systems such as SenseLess [10] and Nericell [22] have

been proposed to utilize the accelerometer as a control for the GPS.
On a similar line, SenseMe uses the linear accelerometer as well
as the rotation vector sensor as a means to control or suppress the
GPS usage. Since they are light-weight sensors and consume very
little power, they can be used as an effective trigger for turning the
GPS on when motion is detected and off otherwise.

We calculate the �2 norm root of the linear acceleration and ro-
tation vectors to get the overall linear acceleration and rotation of
the device. Some of the samples can be noisy and hence we do not
rely on raw values. Instead, we calculate the average and variance
of the acceleration and rotation values obtained from 150 samples
to obtain four parameters, termed as μacc, σacc, μrot and σrot re-
spectively. These samples can be spread over 10 to 30 seconds
according to the sampling rate, as specified in the Android API[2].

We empirically studied the linear acceleration and rotation vector
values obtained from different Android devices when a user was
stationary and when he/she was in motion. We determined suitable
thresholds for all the parameters. If all the parameters are greater
than their respective threshold values, it implies that the device is in
motion. In all other cases, it implies that the device is not moving.

5.2.2 Piggybacking
When the linear acceleration and rotation vector sensors detect
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motion, the system checks if another application is already using
the GPS. If yes, it piggybacks location sensing on the existing re-
quests. If not, it explicitly starts the GPS for location sensing.

5.2.3 Sensing Adaptation
We attempt to balance the trade-off between accuracy and power

consumption, by employing an optimum sensing interval (in terms
of time and distance) for location updates[1]. This is based on the
intensity of the physical activity (walking as opposed to driving) of
the user and further aids in preserving battery life and consumption.

5.3 The SenseMe Service
The SenseMe service consists of the following individual ser-

vices:

5.3.1 The Environmental Context Recognition Ser-
vice

This service uses NMEA 0183 data from the GPS to recognize
the environmental context for a user. Figure 3(a) shows the pipeline
for it. It has the following stages:

• Framing - Since NMEA sentences are received every second,
we operate on frames of these sentences where each frame
consists of τ= 10 seconds.

• Feature Extraction - For each frame, we average the number
of satellites and the HDOP for both the GSA and GGA sen-
tences to create a feature vector of the form < #SatGGA,
HDOPGGA,#SatGSA, HDOPGSA >.

• Classification - This feature vector is then used as input to
a C4.5 classifier, to generate either of the following labels -
‘Indoor’,‘Outdoor’,‘Indoor-Outdoor’. Thus, we have a vec-

Is PA(t)  = `Stationary’ & PA(t-1) != PA(t)? No
Yes

Is EC(t)  = `Indoor’ or `Indoor-Outdoor’?

Do nothing

Yes
Yes

Resolve Location from GPS using Reverse Geocoding and determine location type

No

No Store the unresolved location 

Localize using Locus and determine location type

Perform Retrospective Localization for all unknown locations

Is Network Connectivity available?
Is Network Connectivity available?

Yes
Logical location obtained?No

Figure 5: Opportunistic context-aware Localization performed by
the Localization service

tor of six labels < l1, l2, l3, l4, l5, l6 > for every minute.
• Majority Voting - We then perform majority voting on this

vector to generate an environmental context value, EC(t), for
each minute.

• Temporal Smoothing - For smoothing outliers, we have im-
plemented this service as a stateful service and modeled the
environmental context as a 1st order Markov Chain, where
the current state i.e. environmental context at time t, EC(t),
is dependent only on the previous state at time t-1 i.e. EC(t-
1). Figure 4 shows the transition probabilities for the Markov
Chain and is derived from the fact that any person when mov-
ing from ‘indoor’ to ‘outdoor’ state or vice versa will always
go via the ‘indoor-outdoor’ state.

5.3.2 The Physical Activity Recognition Service
This service uses raw speed data from the GPS to recognize the

physical activity of a user. Figure 3(b) shows the pipeline for it. It
has the following stages:

• Framing - According to the duty cycle, the service receives
speed data at a minimum interval of 10 seconds and a maxi-
mum interval of 60 seconds depending on the motion of the
device. Each frame consists of τ = 60 seconds and for each
frame, we get a raw speed vector S = < v1, .., vn >, where
n ∈ [1,6].

• Feature Extraction - We extract statistical features from this
raw speed vector to generate a feature vector of the form
<minSpeed, maxSpeed, avgSpeed, varSpeed> where min-
Speed is the minimum, maxSpeed is the maximum, avgSpeed
is the average and varSpeed is the variance, of all the speed
values in S.

• Classification - This feature vector is used as input to a C4.5
classifier, to generate one of the following labels - ‘Station-
ary’,‘Walking’, ‘Running’ and ‘In-vehicle’. Thus, we get a
Physical Activity value, PA(t), for the user for every minute.

• Temporal Smoothing - This service is a stateful service and
we store the values PA(t-1) and PA(t-2) at any given instant
of time. We use a sliding window smoother of size 3 to
smoothen any outliers out.



5.3.3 The Localization Service
Although SenseMe senses the raw location of the user in accor-

dance with the GPS duty cycle, we resolve the location to a logical
address only when the user is ‘Stationary’. This serves three pur-
poses: (i) It reduces irrelevant contextual information in the form
of multiple logical locations that the user could be passing through.
For instance, if the user is driving on a highway, he/she will pass
through multiple locations within a few seconds. (ii) It prevents un-
necessary network bandwidth usage. (iii) It can help determine the
user’s mobility patterns such as daily commute routes and travel
paths. It also capture the places, where they spend a significant
amount of their time (such as home, work, restaurants and coffee
shops), with fine-grained accuracy.

Figure 5 shows the workflow of the Localization service. As
shown, the Localization Service performs context-aware localiza-
tion on the basis of the user’s current environmental context i.e.
EC(t) and the current physical activity i.e. PA(t). Thus, if PA(t) is
determined to be ‘Stationary’, after a transition from another phys-
ical activity, SenseMe localizes the user to a logical indoor or out-
door address. If EC(t) is ‘outdoor’, it resolves the location obtained
from the GPS (which is in latitude and longitude format) to pro-
vide a logical address using the Android Reverse Geocoding API.
If EC(t) is ‘indoor’ or ‘indoor-outdoor’, it employs the Locus [12]
system to determine the Room #, Floor #, and Building the user
is in. The main benefits of Locus are that it is a calibration-free,
readily deployable, scalable and robust system for floor as well as
location determination in multi-story buildings. It relies on exist-
ing infrastructure and off-the-shelf mobile device capabilities, and
requires no proprietary hardware to be installed.

If an indoor location could not be obtained using Locus (due
Wi-Fi being off or disconnected), SenseMe resolves the last sensed
outdoor location so that a coarse-grained location for the user can
be obtained. This is only to ensure that the user is always localized
whenever he/she is stationary and there are no unknown locations
in the user’s location history. If a network or data connection is
not available at any time, SenseMe performs what we term as Ret-
rospective Localization. It stores every unresolved location where
the user was stationary and localization could not be performed.
As soon as a data or network connection is available, SenseMe per-
forms opportunistic localization of all unknown locations.

Once localization has been done and a logical address is obtained
for the location, the Localization Service also determines the loca-
tion type if available. If the user is outdoors, the location type is
a Foursquare category obtained via the FourSquare Venues API3

(such as “College Academic Building") or a Google Place type via
the Google Places API4. If the user is indoors, the location type
has two fields: a coarse-grained “Building Type" which refers to
the type of the Building or establishment the user is in and a fine-
grained “Room Use" which specifies the category of the room the
user is in, for example, “Research Laboratory". This is useful meta
information that can enable semantic place prediction.

5.3.4 The Device Activity Recognition Service
This service determines the task that the user is engaged in on

his smart device, for instance, a phone call, web browsing, or using
a navigation application such as Maps. It polls the device OS every
minute to determine which application is running in the foreground
while the screen is on and active. If a media file such as an audio
or video file is being played, SenseMe also records its metadata
(track, artist, album name etc.).

5.3.5 The Social Context Recognition Service
This service uses bluetooth to scan the user’s environment ev-

ery 2 minutes to determine a social meter i.e how many people

3https://developer.foursquare.com/overview/venues.htm
4https://developers.google.com/places/

Figure 6: Screenshot of the SenseMeVis timeline (best viewed in
color)

and/or their devices are around the user in any given time inter-
val of 2 minutes. It obtains the device class[3] of all the devices
it hears and filters them on the basis of their type. Thus, portable
devices such as phones, laptops, hand held PDAs and wearable de-
vices are counted, while other devices are not, as these devices are
more likely to be carried around by people. Since bluetooth scans
take about 60 seconds on an average to complete [16], we have set a
threshold interval of 60 seconds between successive scans in order
to balance power consumption with accuracy.

5.4 Proof of Concept Visualization - SenseMeVis
As mentioned earlier, SenseMe continuously operates as a back-

ground service. Whenever the application is resumed or brought
to the foreground, the multi-dimensional context and activity in-
formation recognized by it is rendered on the device display via a
foreground proof of concept visualization called SenseMeVis. The
information is visualized for a maximum period of 24 hours in ret-
rospect from the current time instant.

Figure 6 shows a screenshot of SenseMeVis visualizing the multi-
dimensional contextual information recognized by SenseMe while
it was running on a user’s device. It is a scrollable timeline that
runs from top to bottom, showing the multiple dimensions of con-
text and activities. Time units are fixed, thus, allowing the user
to compare the information without needing to interpret how long
something took place. The time and date at which SenseMe was
started is at the top of the visualization. Markers on the left hand
side of the visual along with dashed lines partition the hours to help
temporally anchor the rendered information across the screen.

There are three types of visualizations that portray the 5 dimen-
sions of context and activity that SenseMe recognizes:

1. The vertical central bar of varying thickness (known as the
Context bar) represents environmental and social context.
The environmental context is conveyed through the color of
the bar - a blue segment indicates the user was indoors, green
symbolizes outdoors and red is the indoor-outdoor state. The
thickness of the bar conveys the social context. The wider



the bar, the more the number of people and portable devices
the user is surrounded by. A very skinny bar indicates the
user is not near anyone.

2. The horizontal solid black lines and subsequent labels parti-
tion the timeline based on location and physical activity. As
mentioned earlier, the localization service performs context-
aware localization only when the user is ‘Stationary’ after
a transition from another activity. Similarly, for clarity and
legibility of the visualization, we display either a location (if
the physical activity is not ‘Stationary’) or a physical activ-
ity. Thus, if the user were stationary, SenseMe displays his
location but if the user were in motion, SenseMe displays his
physical activity. This simplification prevents the rendering
of multiple locations in a short period of time. For example,
if a user is in a car traveling at 60 mph, rather than displaying
all the locations he might pass through, we summarize that
timeframe with his physical activity - ‘In vehicle’.

3. The vertical lines of varying colors, on the right side of the
context bar, represent the device activity of the user. Each
activity is assigned a column and a color. This ensures that
all entries for a given activity always fall within the same
column and are colored the same to facilitate ease in under-
standing of the visualization. As there is no limit to the num-
ber of unique activities a user could be doing, activities may
share a column but the color will be different allowing the
user to distinguish between them easily.

As shown, the current run of SenseMe is started around 7:04 pm.
It recognizes that the user is indoors and stationary so it localizes
her and resolves a logical address for her location. She is indoors
for about 35 minutes and is surrounded by varying number of peo-
ple during this time period. She is also performing different activi-
ties on her device during this period such as checking her email and
accessing a navigation application. She then goes outdoors and is
driving alone for about 11 minutes. Finally, she parks her vehicle,
starts waking and gets home around 8 pm.

6. EVALUATION

6.1 Evaluation Metrics
SenseMe is a versatile system for continuous, on-device, and

multi-dimensional context and activity recognition. Hence, it needs
to meet the following qualitative and quantitative requirements:

• High accuracy and scalability - As a generic system that can
be used by multiple users on different devices, it should be
highly accurate when recognizing context and activities. It
should also be scalable to a large and varied set of users.

• Generality and Robustness - It should be general and robust
enough to be used at any time in any environment.

• Universal Applicability - It should be applicable to any de-
vice and independent of device manufacturer.

• Minimum latency and Robustness to network failure - It should
provide responses in real time even when there is sparse or
no network connectivity.

• Non-invasive with minimum user calibration required - It
should be non-invasive, capable of operating in the back-
ground and require minimum user input or calibration.

• Privacy preserving - Since a user’s context history has pri-
vacy implications, the data should be kept secure, confiden-
tial and shared only with the user.

• Energy efficiency - Being a system running on mobile de-
vices with constrained energy budgets, it should use resource
efficient methods and duty cycles.

We now evaluate SenseMe against each of these requirements.

6.2 Methodology
To evaluate SenseMe, we conducted two live deployments of 2

Ground Truth
SenseMe

indoor outdoor indoor-outdoor

indoor 0.984 0.016 0.0

outdoor 0.07 0.93 0.0

indoor-outdoor 0.11 0.07 0.82

Table 4: Confusion matrix for environmental context recognition
for test data

Ground Truth
SenseMe

Stationary Walking Running In-vehicle

Stationary 1.0 0.0 0.0 0.0

Walking 0.0 0.93 0.04 0.03

Running 0.0 0.0 0.95 0.05

In-vehicle 0.0 0.01 0.039 0.951

Table 5: Confusion matrix for physical activity recognition for test
data

SenseMe service Overall Accuracy (%)

Environmental Context Recognition 91.23

Physical Activity Recognition 95.75

Context-aware Localization 93.12

Device Activity Recognition 99.1

Social Context Recognition 87.5

Table 6: Accuracy of SenseMe Services (%)

Battery usage metric
Google Samsung Motorola
Nexus Galaxy Xoom

Maximum consumption (%) 18 28 40

Average consumption (%) 16 27 37.4

Average runtime (hrs) 24 24 24

Table 7: Comparison of Battery consumption and runtime during a
24 hour continuous run of SenseMe

weeks each. In the first deployment, we recruited 8 subjects - 7 of
whom were male Computer Science graduate students while one
was a male post doctoral associate. We incorporated the feedback
from them and fixed minor bugs in the system. We then conducted
a second deployment, for which we recruited 7 subjects (5 male
and 2 female) who were professionals working across USA. None
of these test subjects had participated in training data collection.
In both the deployments, we installed SenseMe on the subjects’
personal devices as giving temporary devices to them for a study
may affect their interaction and usage of the device and bias results.

All the subjects were asked to run SenseMe on their devices, in
the background, for a period of 2 weeks while going about their
daily life. They were also asked to keep a journal of their physical
activities, locations, environments and number of people around
them throughout the day. As an incentive, the subjects were pro-
vided monetary compensation. At the end of the two-week deploy-
ment period, the subjects were asked to submit their journals as
well as the SenseMeDb databases, which contained the context and
activity recognition information recognized by SenseMe. This data
was used as a test dataset to determine the accuracy of the different
SenseMe services. The estimated value for each dimension, as de-
termined by SenseMe, was compared with the Ground Truth values
provided by the subjects as part of their journals.

We used this methodology as we did not want SenseMe to be
obtrusive and disrupt their daily life. Moreover, this methodology
allowed the context and activity information to be captured in a real
life practical scenario, thus, making the evaluation more effective.

6.3 Accuracy Results



Since Environmental Context and Physical Activity Recognition
services employ multi-label classification, we define accuracy for
them as:

a =
T ∩ P

T ∪ P

where T is the set of ground truth and P is the set of predicted labels
for all instances.

For Localization and Device Activity services, we measure the
mean absolute prediction error and define accuracy as

a =
# of instances where estimated value = ground truth

Total # of instances

For Social Context Recognition service, we measure the mean
relative prediction error and define accuracy as

a = 1−
N∑

i=1

|estimated value - ground truth|

ground truth

Table 6 shows the overall accuracy of all the services.

6.3.1 Environmental Context and Physical Activity
Recognition Services

As shown, the environmental context recognition accuracy is
higher than IODetector[27] which reports an overall accuracy of
88%. The physical activity recognition accuracy is more than CenceMe
[21] for all the common activities detected. It is comparable to Jig-
saw [20] though it detects a slightly higher number of activities than
SenseMe. Tables 4 and 5 show the confusion matrices for environ-
mental context and physical activity recognition on test data. We
believe these results can be improved even further by using more
sophisticated classification and smoothing techniques.

6.3.2 Device Activity Recognition Service
The number of tasks that a user performs on a smart device dur-

ing the day can be huge and maintaining a detailed journal for each
of them can be quite burdensome. Moreover, because our tempo-
ral resolution is a minute, we do not capture device activities that
last less than that. Hence, we did not ask the subjects to maintain
detailed logs for every task that they performed on their device.
Instead, we asked them to look at the visualization periodically to
check the accuracy of the device activity and log that. Based on
their logs, it was extremely accurate.

6.3.3 Localization Service
For all the subjects, the locations recognized by SenseMe were

same as or close to their actual locations in both indoor and outdoor
environments. This is mainly because the accuracy of this service
is directly dependent on the technique being used for localization.
Reverse geocoding is usually not 100% accurate as it is often diffi-
cult to resolve every latitude/longitude to a logical address. For Lo-
cus, the floor accuracy is approximately 99% and it achieves room
level accuracy on the floor.

6.3.4 Social Context Recognition Service
Most users logged an estimate of the number of people around

them and results from this service matched that reasonably. How-
ever, a limitation of determining social context using bluetooth is
that it is constrained by the distance over which bluetooth operates.
As a corner case, one of the subjects mentioned that he was at a
wedding with several people in a large hall and SenseMe recog-
nized the people on his table only. Though co-location might be
a better alternative for determining social context, it requires loca-
tion sharing by the users which they may not consent to. Hence, it
is essential that a trade-off between accuracy and privacy is main-

tained. Since bluetooth performs reasonably well (being off by a
small margin only) we have used it in our current implementation.

6.4 Qualitative Results

6.4.1 General, scalable and universally applicable
SenseMe has been tested on 15 subjects with varied schedules

and mobility patterns. All the subjects carried devices made by dif-
ferent manufacturers such as Samsung, HTC, LG etc. and running
different versions of Android OS ranging from 4.0 to 4.2. SenseMe
ran without any major errors on most of the devices as it is based
on techniques that are independent of device or manufacturer.

6.4.2 Minimum latency, robustness to network fail-
ure, and privacy preserving

In SenseMe, all computation and processing is carried out on the
device and it does not require an external server. As a result, there is
a minimum latency of a minute (which is the smallest granularity of
computation). Only localization needs a network or data connec-
tion, but the localization service pipeline ensures that the system
carries out opportunistic localization. Moreover, the user’s data is
kept private and confidential on the mobile device and is visible
only to him/her, thus, mitigating privacy concerns.

6.4.3 Non-invasive and calibration-free
SenseMe is non-invasive i.e. it can easily run in the background

in order to collect and process user’s data without the need for any
intervention. Also, it performs context and activity recognition us-
ing techniques that are agnostic to orientation, body position, time
or weather, and hence, no calibration by the user is required.

6.5 Resource Utilization Results
We used two methods to determine SenseMe’s battery consump-

tion5:

6.5.1 Measuring the Average and Maximum % of bat-
tery consumed

For the average case, we measured the battery consumption of
SenseMe while it was running in the background continuously for
24 hours on a user’s device while he went about his daily activities.

To determine the maximum limit, we measured the battery con-
sumption of using the GPS alone, which can be the most power
consuming component of our system, in the worst case scenario.
This, of course, varies with each user since the mobility and us-
age patterns can be quite different for everyone. Hence, we first
determined the fraction of time the GPS was sensed during the en-
tire run of SenseMe. Our analysis indicated that as a worst case,
the GPS was actively sensed for 15% of the total time for which
SenseMe ran, mainly due to an effective duty cycle that uses three
different power conservation techniques. Thus, we estimated the
maximum energy consumption of SenseMe by sampling the GPS
for 15% time of a continuous run of 24 hours i.e. 3.6 hours, on
battery without charging.

6.5.2 Measuring the average runtime of battery with-
out charging

We tested the average runtime of the device battery (without the
need for recharge) in a day when SenseMe was running in the back-
ground on it. The screen was set to a low brightness level since the
screen display can consume a major chunk of the battery.

Table 7 summarizes the results of battery consumption and run-
time on three different devices. All the devices were used mod-
erately while these experiments were conducted. As shown, the
average and maximum battery consumption were at most 40% and

5The actual battery consumption often depends on device usage
and its age.
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Figure 7: Dimensions users found most and least interesting

the battery lasted for more than 24 hours during a continuous run
of SenseMe without requiring a recharge.

6.6 User feedback and Survey
On conclusion of each of the live deployment periods, we held

a short interview with each subject to discuss which dimensions
they found useful and interesting and to evaluate their user experi-
ence with SenseMe. We also wanted to uncover any issues with the
system and ask them for open-ended valuable feedback.

6.6.1 Most and Least Interesting Dimensions
Figure 7 shows the plot for the dimensions users found most and

least interesting (EC = Environmental Context, PA = Physical Ac-
tivity, Loc = Context-aware Location, DA = Device Activity and
SC = Social Context). As shown, a significant proportion found
the Environmental Context dimension to be most interesting. Two
of the subjects even referred to this dimension as “Intriguing” and
“Insightful”. A majority of the users found the Device Activity and
Social Context dimensions to be least interesting.

6.6.2 Perceived accuracy
In order to quantify the subjects’ perceived accuracy of the sys-

tem, we asked them to look at the visualization at least once a
day, during the deployment period, in addition to keeping a journal
of their day. This was done in order to help them gauge whether
the captured information represented their daily life log accurately.
During the interview, the subjects rated SenseMe’s accuracy on a
Likert scale from 1 (Very Accurate) to 10 (Very Inaccurate). The
average score across the 15 subjects was 2.2 suggesting that the
system was highly accurate in capturing their daily life log.

6.6.3 Feedback about benefits and insight
One of the subjects acknowledged that the multi-dimensional in-

formation could “help me identify patterns which I didn’t realize
before“, indicating the benefit of its temporal aspects and long-term
continuous usage. Another subject wanted to employ the location
and physical activity dimensions for increasing his productivity as
they could “help me determine if I followed my schedule.”

Some subjects expressed the desire to use the system in a more
reflective manner. One subject mentioned that she would like to
use the environmental and social context dimensions in a persua-
sive manner to help ensure she gets outside and interacts with peo-
ple in times of heavy and prolonged workloads. Reflecting on the
information captured during her two-week user study period, she
noted “Man, I live in a box..." Another subject, emphasizing the
reflective value of the device activity dimension, stated, “It could

Smartphone or web-based Client agent applications such as SenseMe Rover II - Context-Aware Middleware
Predict future intent and behavior and take appropriate action
Send user’s context, behavior and situation information

Provide Feedback for refinement
Store behavioral logs for every user Extract context and behavior history

Logs

User ModelsLearn , store and refine user behavioral  and situation models

Sense user’s multi-dimensional context
Figure 8: SenseMe acting as a client agent to a context-aware

middleware in the future

help me find the apps I use way too much and also the amount of
time that I wasted.”

7. SENSEME API
We have created a SenseMe API which will be made available to

developers for building context-aware applications using the SenseMe
system library. The API allows developers to obtain the values of
one or more of the context and activity dimensions within a win-
dow of time, listen for context changes, and set up rules to trigger
actions on context changes.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented SenseMe - a system that leverages

the smartphone and its sensors in order to perform continuous, on-
device, and multi-dimensional context and activity recognition for
a user. It achieves this in a robust, automated, scalable, power ef-
ficient and non-invasive manner. The system recognizes five di-
mensions of a user’s situation at any time instant - environmental
context, physical activity, location, device activity and social con-
text, to paint a context-rich picture of the user. The system also
displays the recognized situation dimensions to the user via a proof
of concept visualization called SenseMeVis. We evaluated the sys-
tem extensively against several quantitative and qualitative metrics
with the aid of 2 two-week long live deployments involving 15 par-
ticipants. We demonstrated improved or comparable accuracy with
respect to existing systems without the need for any user calibration
or input.

We now plan to employ more sophisticated methods for recogni-
tion and smoothing and also implement the features suggested by
our users. Additionally, we plan to enhance the system’s ability to
detect other context and activities and with a finer granularity. In
the near future, we would work on displaying periodic context and
activity summaries to users.

In our broader vision for the future, the SenseMe system would
function as a client agent application for a context-aware middle-
ware such as Rover II [11]. As shown in Figure 8, a client agent
application such as SenseMe would sense the user’s temporal and
multi-dimensional context and activity information. This would be
aggregated over a period of time in order to generate the user’s con-
textual history. The context-aware middleware would utilize this
history to learn and store the user’s behavioral and situation mod-
els for predicting future behavior. This would further enable the
context-aware system to act proactively on the user’s behalf in an-
ticipation of the user’s future goals and intentions without explicit



requests. The system would also refine these user models periodi-
cally based on user feedback.

Some of the potential usecases include modeling correlations be-
tween the different dimensions being captured (for instance, be-
tween environmental context as well as physical activities etc.) This,
in turn, can further enhance physical activity recognition by making
it context-aware based on the type of environment (indoor/outdoor).
Another potential user model could be determining the most fre-
quent locations and travel paths of a user in order to predict user’s
transportation patterns. The device activity recognition can be fur-
ther utilized to infer and predict the categories of tasks (gaming,
media etc.) that users engage in most frequently and in specific
contexts. For instance, watching Youtube when they are indoors
and relaxing, as opposed to using Google Maps when they are out-
doors and driving. Higher level context such as a user is ‘Sleeping’,
‘In a meeting’ or ‘In a party’ can be inferred based on location,
co-location (location shared with other users) as well as social con-
text. In the long run, such systems can have a profound impact on
research areas such as proactive context-aware computing, persua-
sive computing, pervasive healthcare etc.
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