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ABSTRACT 
Several core network protocols and applications adjust their 
operation dynamically based on current network conditions. TCP 
and IEEE 802.11 are notable examples, both of which periodically 
adapt the retransmission timeout and the contention window size 
depending on the average round trip time and the degree of 
collisions, respectively. Consequently, accurate network state 
estimation is critical to the performance of networks and their 
applications. 

In this paper, we present a novel mechanism to estimate "near- 
future" network state based on past network conditions. Smart 
Experts for Network State Estimation, or SENSE, uses a simple, yet 
effective algorithm combining a machine-learning method known as 
Fixed-Share Experts and Exponentially Weighted Moving Average 
(EWMA). SENSE introduces novel techniques that improve the 
performance of the basic Fixed-Share Experts framework by: (1) 
making SENSE's accuracy considerably less sensitive to the number 
of experts; and (2) making SENSE more responsive to network 
dynamics at different time scales, i.e., long- and medium-term 
fluctuations as well as short-lived variations. We evaluate SENSE 
using synthetic and real datasets. Our results show that it yields 
superior performance for all datasets we used in our experiments 
when compared to "pure" Fixed- Share Experts and EWMA. We 
confirm that the performance of EWMA is quite sensitive to its 
"smoothing" factor, which specifies how much weight will be placed 
on the "past" versus the "present" when predicting the "future". 
Another key advantage of SENSE is that, unlike Fixed-Share 
Experts, it needs no a-priori information about the dataset. In our 
experiments, SENSE yields up to 24% and 30% prediction accuracy 
improvement over the Fixed-Share algorithm and EWMA, 
respectively. 

Categories and Subject Descriptors 
C.2.5 [Local and Wide-Area Networks]: Internet 

General Terms 
Algorithms, Measurement, Performance, Experimentation 

1. INTRODUCTION
Most computer network protocols and algorithms try to adapt to 
current network state via a number of operational parameters that 
dynamically estimate current conditions in the network. Notable 
examples include the Transmission Control Protocol (TCP) and 
IEEE 802.11 (Wi-Fi) which adjust the retransmission timeout and 
contention window size, respectively, according to network 
congestion and wireless channel state. More specifically, to recover 
lost packets in a timely manner yet minimizing the number of 
unnecessary retransmissions, TCP periodically evaluates the degree 
of network congestion under the assumption that network conditions 
will stay almost the same until the next evaluation period. It uses the 
round-trip time (RTT), i.e., the time between sending a segment and 
receiving confirmation from the other end that the segment was 
received, as a way to gage network load. TCP adjusts its 
retransmission timeout, i.e., the interval of time the TCP sender will 
wait for a segment's acknowledgment from the TCP receiver before 
retransmitting the segment, based on TCP’s current estimate of the 
RTT. To compute its estimate of the RTT, TCP runs a simple 
mechanism known as Exponentially Weighted Moving Average 
(EWMA) with one tunable parameter, which determines the relative 
weight between the current RTT measurement and the previous RTT 
estimate. 

The IEEE 802.11 responds to congestion build up in the network by 
exponentially inflating its back-off window, which stipulates the 
average amount of time that a node should wait to transmit after a 
collision has occurred. The rationale for this exponential back off is 
that collisions are used as congestion indicators; and, after a failed 
attempt to transmit due to a collision, the transmitter needs to wait 
longer before trying again. To estimate the "near-future" channel 
state, IEEE 802.11 counts the number of consecutive collisions that 
took place during the current estimation time window and 
exponentially expands the size of the back-off window according to 
this collision count. 

Clearly, the performance of these widely used network protocols 
heavily relies on how correctly their prediction mechanisms forecast 
"near-future" network state. Their implicit assumption is that 
network conditions change smoothly, i.e., that "near future" state is 
closely correlated to previous history. As a result, their performance 
can be negatively affected when their operational parameters are set 
without accurately accounting for network dynamics. TCP, for 
instance, statically presets the weight factor in its RTT EWMA 
equation irrespective of the target network environment and 
conditions. As previously pointed out, the fixed weight factor in 
TCP's RTT EWMA calculation is a relative ratio deciding how much 
the current RTT measurement and the current RTT estimate should 
influence the new RTT estimate. The more dynamic the network 
conditions, the more weight should be placed on the current RTT 
measurement. Therefore, to achieve better performance, the fixed 
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weight factor should change dynamically depending on network 
conditions. 

IEEE 802.11 rigidly cold-starts and counts collisions at every new 
frame’s transmission without considering previous channel state. 
This means that considerable resources may be wasted in the process 
of reaching an adequate congestion window since 802.11's network 
estimation technique does not keep track of the network state after 
successful transmissions. 

Motivated by the need to accurately estimate near-term future 
network state that may slowly or rapidly change, this paper 
introduces Smart Experts for Network State Estimation (SENSE). 
SENSE is a simple, yet efficient machine-learning based predictor 
that is based on the Fixed-Share Experts approach [1] [2] [5] [6]. 
Unlike conventional network state estimators, SENSE provides a 
general framework that can incorporate any traditional estimator as 
an "expert" and then dynamically selects the best experts among the 
set of all experts being used depending on their performance. It 
chooses experts that more faithfully capture network dynamics by 
penalizing poorly performing experts. 

The original Fixed-Share Experts algorithm [1], however, has four 
main drawbacks. First, a fix value within the range we are trying to 
predict is assigned to each expert at the beginning of each trial. Thus, 
the range of the estimation is required for proper assignment of these 
values. Second, its accuracy is sensitive to the number of experts and 
typically, the more experts, the more accurate the prediction since 
the algorithm basically singles out a few well-behaved experts 
among the set of competing experts. There is clearly, a "diminishing 
return" effect after the number of experts gets too high. Third, the 
"loss function" penalizing experts, relies exclusively on the 
magnitude of the current error, instead of whether errors have 
recently increased or decreased. Additionally, all poorly performing 
experts are equally penalized. Depending on the recent error 
variation history, the loss function should intensify or alleviate the 
penalty for each individual expert to accelerate convergence. Finally, 
since the original Fixed-Share algorithm is not equipped with a 
mechanism to offset what it has learned, it cannot swiftly adapt to 
abrupt changes even when recent measurements become distinctly 
different from previous ones. 

To address these problems, SENSE introduces three techniques, 
namely: (1) smart experts, (2) META-learning, and (3) Level-Shift. 
To reduce the sensitivity to experts and eliminate the need for pre-
trial data knowledge, SENSE employs EWMA equations with 
different weights as its experts and normalizes errors by the 
maximum observable output. SENSE's META-learning algorithm 
expedites convergence by tracing recent past history and adjusting 
each expert's penalty accordingly. Finally, the Level-Shift 
mechanism [11] employed by SENSE improves its response to 
sudden data changes by bounding SENSE's learning time window, 
and upon detecting dissimilar data patterns, SENSE reinitializes its 
tunable parameters and starts to relearn. 

We evaluate SENSE using synthetic and real data. In all cases, 
SENSE outperforms predictors based on pure EWMA as well as 
Fixed-Share Experts. Furthermore, a key advantage of SENSE is that 
it automatically adjusts to the data it is trying to predict. As a result, 
SENSE yields superior performance for all datasets we used in our 
experiments when compared to "pure" Fixed-Share Experts and 
EWMA. Our results also indicate that the performance of EWMA is 
quite sensitive to its "smoothing" factor, which determines how 
much weight will be placed on the "past" versus the "present" when 
predicting the "future". Another key advantage of SENSE's ability to 
automatically adjust to the data is that, unlike Fixed-Share Experts, it 

needs no a-priori information about the dataset and is minimally 
sensitive to the number of experts. In our experiments, SENSE 
yields up to 24% and 30% prediction accuracy improvement over the 
Fixed-Share algorithm and EWMA, respectively. 

The rest of the paper is organized as follows. Section 2 presents 
some background on EWMA and the Fixed-Share Experts algorithm 
while section 3 describes SENSE in detail. Section 4 compares the 
performance of SENSE against EWMA and fix Fixed-Share Experts. 
Section 5 provides an overview of related work and finally, section 6 
concludes the paper with directions for future work. 

2. BACKGROUND 
SENSE's predictor is based on a combination of the Fixed- Share 
Experts algorithm and EWMA. Therefore, as background 
information, in this section we review EWMA and the Fixed-Share 
Experts algorithms in details. 

2.1 EWMA 
EWMA based predictors, calculate an exponentially weighted mean 
of the previous data. Equation (1) shows the basic equation of 
exponential smoothing given by Hunter [13] where  and  
represent, respectively, a sequence of data point that have been 
observed and sequence of output forecast by the predictor. 
Furthermore,  in (1) is the "smoothing factor", a value between 0 
and 1 specifying how much relative weight is given to previous 
estimates (i.e., the "past") versus new samples (the "present"). 

There has been no generally accepted statistical technique for 
choosing . Low values of , favor the "past" over the "present" 
when computing the current estimate, whereas with high , the 
"present" plays a more important role. In other words, low  has 
EWMA acts as a low-pass filter smoothing out sudden fluctuations 
occurred in the input data series, while high  acts as a high-pass 
filter hardly filtering out measurement noise. 

The problem of using EWMA based predictors is choosing 
appropriate  based on the dataset. SENSE runs a small number of 
EWMAs with different ’s and, using the Fixed-Share Experts 
technique, dynamically picks the best performing EWMA depending 
on network dynamics. 

                          (1) 

2.2 Fixed-Share Experts Algorithm 
  The Fixed-Share Experts algorithm is a member of the 
multiplicative weight algorithmic family that has shown to yield 
performance improvements in a variety of on-line problems [7]. 
Aiming at minimizing the prediction’s error, this family of 
algorithms combines predictions of a set of experts  to 
compute the overall prediction denoted by . To denote the impact 
of each expert on the overall predictor, it associates each expert with 
a weight from . After each trial, the weight of each 
expert is updated depending on the difference between its prediction 
and the real data represented by . Weights of “well-performing” 
experts are not changed, while the weights of experts that are not 
performing well are reduced. 

Several schemes have been proposed for updating experts' weights in 
multiplicative weight algorithms. Among them, Fixed-Share Experts 
[1] is well known due to its simplicity, and efficiency. The main idea 
of Fixed-Share Experts algorithm is to share a fixed fraction of the 
weight of "poorly-performing" experts among the other good 
experts. 

Figure 1 shows the Fixed-Share Experts algorithm pseudo code with 



N experts applied to TCP's RTT estimation [2]. The Prediction step 
in Figure 1 computes the current prediction by summing, over N 
experts, the products of the expert multiplied by its current weight 
and then normalizing the result by the sum of the weights. Using a 
given “loss function”, the Loss function step checks, at each 
prediction trial, how good of a prediction each expert yields. We 
have experimented with different loss functions and picked the one 
shown in Figure 1 for its efficiency as well as simplicity. In the 
Exponential updates step, the loss or error is then used to adjust the 
experts' weights. Finally, to prevent abrupt weight changes, the 
Sharing weights step redistributes evenly a certain fixed fraction of 
pool, which is the sum of a preset portion of each weight. 

As an illustration, Figure 2 shows the implementation of the Fixed-
Share Experts algorithm with N experts using a hardware block 
diagram. The shaded boxes on the left column and the middle 
column correspond, respectively, to the experts denoted as  and the 
penalty function. The process of updating weights and generating the 
final predictions are represented as a circuit employing the addition, 
division, and multiplication operators. 

 
Figure 1: Fixed-Share Experts algorithm 

 

 
Figure 2: Hardware block diagram of Fixed-Share Experts 

algorithm 
 

Equation (2) summarizes the pseudo code of Figure 1 into a 
mathematical formula. As shown in (2),  can be represented by a 
sum of products of and  where  is the experts’ weights 
( ) which are dynamically and systematically adjusted 
and  is each expert’s prediction.  Equation (2) confirms that the 
Fixed-Share Experts algorithm is a selection process, which favors 
experts whose predictions are closer to the real data by incrementally 

growing their weights, while reducing other experts' weights. 

 

 

Where =                    (2) 

 
Although the Fixed-Share Experts algorithm has been shown 
to perform well when estimating network variables, it still exhibits 
four main weaknesses. First, it must have a priori knowledge of the 
dataset's range in order to properly set the value of its 
experts. Second, the accuracy of the algorithm is quite sensitive to 
the number of experts whose values define the granularity over the 
range of values that the variable in question can assume. Third, since 
the loss function is statically predetermined regardless of the target 
environment and application, it is not always able to exhibit 
adequate convergence. Finally, Fixed-Share Experts is not 
sufficiently "agile" to adapt to rapid changes in the dataset since it 
"remembers" what it has learned and captures it into the weight of 
each expert. Even though weights of poorly performing experts 
decay over time, it is hard to swiftly adapt to rapid changes.  

3. SENSE 
This section provides a detailed description of our online estimator, 
SENSE, which employs a combination of Fixed-Share Experts with 
EWMA.  

More specifically, SENSE is a modified version of the Fixed-Share 
Experts estimator, where, instead of fixed valued experts, EWMA 
filters are employed as experts. As shown in the EWMA experts step 
of Figure 3, the prediction of each expert, , is calculated as a 
weighted sum of the previous seen data  and the previous 
prediction  where  represents the relative weight between  
and . At the beginning of the whole process, each expert is 
assigned a weight, , where N is the total number of 
experts; each experts is also assigned an  value between 0 and 1 
which differentiates experts from each other.  

As illustrated in the Prediction step of Figure 3, at every trial t, 
SENSE calculates the current prediction  by adding the weighted 
predictions from N experts. After the completion of trial t, the loss 
function step in Figure 3 calculates the absolute difference between 
the actual outcome,  and each expert’s forecast and then 
normalizes this error with the maximum observable outcome . 
Finally, the loss function, , is set to either the normalized 
error  or the NULL function depending on the size of errors. If 

 lies within the satisfactory boundary EL, SENSE does not 
penalize experts differently than the original Fixed-Share Experts 
algorithm, which constantly adjusts the weight until the prediction 
equals the outcome. Here, EL can be set to any fraction between 0 
and 1 according to the accuracy required by the application. 

After that, SENSE runs META-learning step, which either 
multiplicatively increases or decreases  by  if three consecutive 
errors keep growing or shrinking respectively. Otherwise, it does not 
change . To prevent each expert’s  from being unrealistically 
too small or too large, ’s range is specified as [ , ]. 
We explore how ’s range impact SENSE’s behavior in section 
4.4. The goal of META- learning step is to speed up convergence of 
each expert’s prediction to the observed outcome. For updating  
with what has been learned, Weight update step multiplies  with 



the exponent function whose power is a product of a  and 
learning factor .  

Figure 3: SENSE algorithm 

Finally, SENSE employs a Level-Shift step [11] to detect any 
significant change in the mean of the observed data. Suppose 

 is the sequence of data, where  is the first data 
after the last detected level shift. The measurement  is an 
increasing (decreasing) level shift if it satisfies the following three 
conditions: 

1) Data  are all lower (higher) than the data 
, 

2) The median of  is lower (higher) than the 
median of  by more than a relative difference , 
and 

3) . 

The last condition assists to prevent misinterpreting an outlier as a 
level shift. Upon the detection of a level shift, SENSE restarts its 
experts by only considering data after the level shift occurrence and 
resetting  for each expert. This means that the weight of each expert 
is determined only by the accuracy of prediction after the last level 
shift. In other words, the Level-Shift step slides its learning window 
to include only data after the last level shift into the weight of each 
expert.  

In summary, SENSE employs three main techniques as follows:  

• Smart experts reduce the sensitivity to experts and eliminate 
the need for pre-trial data knowledge. SENSE employs 
EWMA equations with different weights as its experts and 
normalizes errors by the maximum observable output.  

• META-learning expedites convergence by tracing recent 
past history and adjusting each expert's penalty accordingly. 

• Level-Shift improves SENSE's response to sudden data 
changes by bounding SENSE's learning time window; upon 
detecting dissimilar data patterns, SENSE reinitializes its 
tunable parameters and starts to relearn. 

4. EXPERIMENTS AND RESULTS 
We experiment with SENSE, using a variety of input data and 
compare SENSE's performance against that of the original Fixed-
Share Experts algorithm and EWMA.   

In the first set of experiments, we evaluate SENSE on synthetic data 
that exhibit different periodic patterns. We use both sine and 
square wave signals with a range of frequencies. This experiment 
systematically tests how well SENSE can track the variation of input 
data over a wide spectrum of frequencies when compared to EWMA 
with different values of its smoothing factor, .  

For a thorough comparative study, we also apply SENSE to the same 
set of RTT dataset used in [2] and compare the result against: (1) the 
original Fixed-Share Experts algorithm, (2) Jacobson's TCP RTT 
estimation algorithm [14] (which is a variant of EWMA), and (3) 
“pure” EWMA with different smoothing factors.  

In addition, we run SENSE over real collision rate data collected 
from a production Wireless LAN environment where access points 
(APs) periodically collect traffic and load statistics such as the 
number of retransmissions, total number of frames transmitted, etc. 
Finally, we investigate the effect of SENSE's parameters on its 
overall accuracy.  

4.1 Datasets with Periodic Patterns 
These first sets of experiments compare SENSE's accuracy with 
EWMA when estimating datasets that follow periodic patterns. We 
use a dataset consisting of 1,000 samples. For the sine wave pattern, 
these samples create one period for 0.001 Hz and 200 periods for 0.5 
Hz. The amplitude of our sine waves fluctuates between 0.25 and 
0.75. For the square wave, these samples generate 40 periods for 
0.025 Hz and 200 periods for 0.5 Hz. The amplitude of our square 
waves fluctuates between 0.1 and 0.7.  

Choosing the best  value depends on data autocorrelation and is a 
key factor for EWMA based estimators’ performance. Values of  
closer to one have less of a smoothing effect and give more weight 
to recent changes in the data, while values of  closer to zero have a 
greater smoothing effect and are less responsive to recent changes. 
We show that SENSE eliminates EWMA's dependency on . Note 
that the best value of  needs to be decided based on the rate of 
changes in the data. Smaller  worsens the accuracy for rapid 
changes, while larger  degrades the accuracy when data 
fluctuations are smoother. 

Our implementation of SENSE runs four EWMA experts with  
values uniformly distributed between 0 and 1, i.e., 0.2, 0.4, 0.6, and 
0.8; we set  and EL to 2 and 0.01, respectively. In 5.4, we examine 
the impact of SENSE's parameters on SENSE's performance and 
show that SENSE's accuracy is quite insensitive to the number of 
experts and . As previously discussed, EL's value is set depending 
on the application's accuracy requirements. In order to cover low, 
medium, and high EWMA smoothing factors, we test EWMA with 
three  values, namely: 0.25, 0.5, and 0.75. As for the input data 
function, we use two patterns: sine- (results plotted in Figure 4) and 
square waves (results shown in Figure 5).   

Figure 4 plots the average error of SENSE and three EWMA filters 
as a function of the sine wave frequency. Each point in this figure is 
calculated by averaging the absolute error of all 1,000 samples. At 
higher frequencies, the input's current value tends to be further apart 
from the last outcome so that it is harder to accurately predict. This 
figure confirms that SENSE produces lower average error than any 
of the three EWMA filters over the entire frequency range. This is 
especially true at higher frequencies. As the frequency goes up, 



errors from EWMA filters rise steeply regardless of the  value. 
EWMA with higher  tends to exhibit better accuracy over the lower 
frequency range, while EWMA with lower  performs better for 
frequencies higher than 0.1 Hz. The reason for this phenomenon is 
that at low frequencies, where each sample is very similar to its 
previous sample, EWMA with higher  (which places more weight 
on recent trials) outperforms EWMA with lower  (that puts more 
weight on the history). When the frequency increases, recent trials 
are less correlated to the upcoming trial. Therefore, lower  yields 
better accuracy.  

In contrast to "pure" EWMA, SENSE dynamically adapts according 
to the frequency by choosing an appropriate EWMA expert for a 
given frequency range. As the frequency increase, SENSE shifts its 
reliance from EWMA with higher α to EWMA with lower .  

 
Figure 4: Average error comparison over sine waves 

 
Figure 5: Average error comparison over square waves 

 
Figure 5 shows the average error of SENSE and three EWMA filters 
when driven by square waves. This figure exhibits very similar trend 
as Figure 4 where SENSE outperforms all EWMA predictors at all 
frequencies. SENSE’s smart experts are able to automatically switch 
between EWMA with high  value at low frequencies and EWMA 
with low  over the high frequency range. 

4.2 Estimating TCP Round-Trip Times (RTT) 
We also evaluated SENSE's accuracy when applied to real datasets. 
As discussed in section 1, TCP, one of the most widely deployed 
Internet protocols, uses round-trip time (RTT) as an indication of 

network load. TCP employs its RTT estimates to trigger TCP's core 
functions such as error- and congestion control. Motivated by how 
critical accurate RTT estimates are for TCP's performance, we 
evaluate SENSE's accuracy in estimating RTTs in comparison to the 
Fixed-Share Experts algorithm employed in [2], as well as TCP's 
original RTT estimator based on Jacobson’s well-known EWMA 
variant [14] as shown in Equation (4), where  is typically set to 
0.85.  

                  (4) 

For these experiments, we use the RTT dataset in [2]. These RTTs 
were measured when a 16 MB file was transferred over a real 
network. As shown in Figure 6, SENSE is able to keep track of the 
RTT variations more faithfully than Fixed-Share Experts and 
Jacobson over the entire observation period. Table 1 summarizes the 
average normalized error of SENSE, the three different EWMA 
filters, Fixed-Share Experts and Jacobson’s algorithms when applied 
to the same RTT data of Figure 6. In order to calculate the average 
normalized error, we first divide the absolute error of each sample by 
the real data it is trying to predict; then, we average these normalized 
errors. To compute the error ratio, we choose SENSE’s average 
normalized error as baseline. Then, we calculate the other methods' 
relative error compared to SENSE as the difference between their 
average normalized error divided by SENSE’s average normalized 
error. The resulting error ratio confirms that SENSE's accuracy 
outperforms both Fixed-Share Experts and EWMA.  

 
Figure 6: RTT prediction by SENSE, Fixed-Share Experts and 
Jacobson for each data sample (represented by a trial number) 

 
Table 1: Average normalized error comparison for RTT 

 SENSE Fixed-
Share Jacobson EWMA-

0.25 
EWMA-

0.5 
EWMA-

0.75 

Average 
normalized 

error 
0.27 0.33 0.79 0.57 0.39 0.32 

Error ratio 
(%) - 24% 191% 111% 44% 20% 

4.3 Estimating Collision Rates 
To further evaluate SENSE's ability to forecast network dynamics in 
real environments, we applied SENSE to collision rate datasets 
measured in a production Wireless LAN (WLAN) environment. 
Collision rates were collected at access points (APs) as they send 
traffic to a node associated with it while other associated nodes 



concurrently communicate with the AP, as they usually do. 
Specifically, we transmit 100 Mbps of UDP traffic from the AP to a 
node for 200 seconds while we simultaneously run different types of 
traffic between interfering APs and interfering nodes (i.e., located 
close to the node receiving data from the AP). Collision rates are 
calculated every second as the ratio of the number of retransmitted 
packets to the total number of transmitted packets. Since the test AP 
and the test node are physically close to one another, we assume that 
retransmitted packets are solely due to collision, and not to noise 
interference. 

Figure 7 depicts how SENSE tracks a time series of real collision 
rates gathered from the test network for 200 seconds. We observe 
from Figure 7 that, initially, the dataset contains considerable 
"noise" caused by bursty traffic generated by short-lived flows from 
applications like the Web. After 100 trials (seconds), longer-lived 
flows resulting from traffic such as wireless video transmission 
becomes dominant, yielding "smoother" collision rate variations. 
Figure 7 shows while SENSE does not closely follow the sudden 
jumps in the first half of the time series, it is capable of accurately 
tracking the variations observed in the second half of the graph. 

 
Figure 7: Trace of SENSE’s collision rate prediction for each 

data sample (represented by a trial number) 
 

 
Figure 8: SENSE vs. EWMA for highly variant portion of 

collision rate  
 

Figure 8 shows a closer view of the behavior of SENSE compared 
against two EWMA filters over a 25-second interval between 65-90 

seconds of Figure 7. Note that in this span of time, data fluctuate 
significantly, which makes it very difficult for any predictor to 
predict accurately. In this period, SENSE behaves like a low-pass 
filter, e.g., EWMA with  set to 0.25, while the curve corresponding 
to EWMA with  value of 0.75 looks like the real data but delayed 
by a full trial, which results in the highest error. Table 2 summarizes 
the results shown in Figure 8 by comparing the average error and 
error ratio for the first 100 trials of the collision rate dataset. It 
confirms that, for the first half of the dataset which is quite "noisy" 
and, as a result, EWMA with  = 0.25 outperforms  =0.75, SENSE 
acts as an EWMA predictor with lower  and shows slightly better 
performance than EWMA with = 0.25.

Figure 9 zooms in the performance of SENSE and two EWMA 
filters over the interval of 100-145 seconds in Figure 7. As shown in 
Figure 9, SENSE quickly catches up with collision rate changes and 
behaves similarly to EWMA with  = 0.75 (acting as a high-pass 
filter). In contrast, EWMA with  value of 0.25 lags behind and 
cannot keep up with the collision rate variation. During this period, 
EWMA with  value of 0.25 exhibits poor performance comparing 
to the other methods.  

Table 2: Average Error for First 100 trials of Collision rate Data 

 SENSE EWMA-
0.25 

EWMA-
0.5 

EWMA-
0.75 

Average 
error 0.0323 0.0333 0.0337 0.0356 

Error ratio 
(%) - 3% 4% 10% 

 

Figure 9: SENSE vs. EWMA for smooth portion of collision rate 

Table 3 lists the average error and error ratio for the last 100 trials of 
Figure 7. During this interval where EWMA with  = 0.75 is clearly 
a better choice, SENSE behaves as EWMA predictor with high  but 
achieves slightly higher accuracy.  

Table 4 summarizes the average error and error ratio of the five 
different forecast schemes over the whole collision rate dataset 
depicted in Figure 7. It confirms SENSE’s ability to automatically 
adapt its performance based on network dynamics. In the case of 
uncorrelated behavior, SENSE gives more weight to experts with 
low  and in the case of correlated data, more weight is given to 
experts with high  value. Since EWMA does not have this 
capability, for the first half of the dataset, EWMA with  =0.75 is 
worse than SENSE by 10% (from Table 2) and for the second half of 



the dataset, EWMA with  =0.25 is significantly worse than SENSE 
(30% from Table 3). Table 4 clearly evidences that SENSE yields 
higher accuracy when compared to all the other four methods by at 
least 7% for the complete dataset. We also ran EWMA with weight 
matching our SENSE’s highest and lowest  values (0.8 and 0.2) 
and we saw no significant difference in EWMA average error results 
compared to the ones we have presented in Table 4. This comparison 
confirms SENSE’s dynamic behavior to selectively and swiftly 
chooses the best expert according to the observed network dynamics. 
During noisy periods in the dataset, SENSE picks an expert with low 

 while during periods when the data changes more smoothly, 
SENSE prefers an expert with high  value. 

Table 3: Average Error for Second 100 trials of Collision rate 
Data 

 SENSE EWMA-
0.25 

EWMA-
0.5 

EWMA-
0.75 

Average 
error 0.0138 0.0180 0.0152 0.014 

Error ratio 
(%) - 30% 10% 3% 

 

Table 4: Average Error for collision rate dataset 

4.4 Impact of Parameters 
In this section, we evaluate the effect of SENSE's tunable parameters 
such as number of experts, ,  and . Although results 
presented in this section are from experiments using datasets 
following sine wave patterns only, we observed similar results when 
we ran these experiments with our other datasets.  

Figure 10: SENSE’s sensitivity to number of experts over sine 
waves 

Figure 10 displays SENSE’s sensitivity to the number of experts and 
verifies that SENSE’s performance barely changes when the number 

of experts increases beyond 2. In our experiments, SENSE uses 4 
experts with  values of 0.2, 0,4, 0.6 and 0.8, which are uniformly 
distributed between 0 and 1.  

Figure 11 shows the impact of META-learning's  parameter on 
SENSE’s behavior by plotting the average error-frequency curves 
for different  values. We observe that the difference in accuracy is 
almost indistinguishable for different . This can be explained by the 
fact that each expert does its best to keep track of the input data. 
META-learning is invoked only when errors tend to continuously 
increase or decrease since it is designed to severely penalize static 
experts that maintain their prediction regardless of current 
measurements.

Figure 11: SENSE’s sensitivity to  over sine waves 

Figure 12 displays the impact of  and , which are also 
META-learning parameters. The average error rate is shown in this 
figure for each pair of  applied to sine waves with 
different frequencies. As it is shown, different boundary limits do 
not have significant effect on SENSE’s performance. In our 
experiments, we limit  value between 10 and 100.  

Setting Level-Shift parameters depends on the application's accuracy 
requirements. By choosing small values for n, k and , level shift 
detection becomes more sensitive. In our experiments, we set n and k 
to 8 and 2 respectively. The value of  is proportional to the median 
of  . We set this ratio to 1/3 for our tests. 

Figure 12: SENSE's sensitivity to ETHA-min and ETHA-max 
over sine waves 



4.5 Impact of Level-Shift and META-learning 
We evaluate the effect of the Level-Shift and META-learning 
methods on SENSE's performance.  Figures 13 and 14 show the 
increase in accuracy when SENSE uses:  (1) Level-Shift only, (2) 
META-learning only, and (3) Combined Level-Shift and META-
learning. Both figures confirm that these techniques improve the 
performance of SENSE. Note that the improvements resulting from 
Level-Shift on RTT are much higher than on collision rate. The 
reason is that he RTT data has a large number of level shifts and 
SENSE can detect them and adjust its experts to follow the 
variations in the data. On the other hand, in the collision rate dataset, 
data fluctuates significantly and does not trigger the Level-Shift 
mechanism.  

Similarly to Level-Shift, META-learning yields larger contribution 
to SENSE’s performance for the RTT dataset than collision rate. 
And again, the reason is that the RTT dataset exhibits smoother 
behavior; therefore, META-learning is able to effectively increase 
the weight of good experts and decrease the weight of bad experts, 
which improves SENSE's performance overall. Consequently, the 
combined improvement of both techniques for the RTT dataset is 
almost 25% and just below 10% for the collision rate dataset.  

Figure 13: Impact of Level-Shift and META-learning methods 
on RTT dataset 

Figure 14: Impact of Level-Shift and META-learning methods 
on collision rate dataset 

5. RELATED WORK 
Several network protocols and applications make use of heuristics to 
estimate and adapt to the dynamics of the underlying network. Since 
the literature on the topic is quite extensive, in this section, we focus 
on reviewing work that is more closely related to ours. 

EWMA is a well-known technique adopted by several 
communication protocols. As previously pointed out, TCP uses 
EWMA to estimate near-term round-trip time (RTT), which is used 
to set TCP's retransmission timeout (RTO). Since, depending on the 
network environment, RTTs may vary considerably in short 
timescales, a number of mechanisms have been proposed to either 
replace or augment EWMA. DualPats, a real time TCP throughput 
prediction service for distributed applications, was introduced in 
[12]. It utilizes EWMA to make throughput predictions of large 
transfers augmented with active probing. In [11], EWMA along with 
other simple linear predictors was employed to show that; in general, 
history-based methods predict the throughput of TCP transfers more 
accurately than formula-based techniques, i.e., mathematical models 
that express TCP performance as a function of network path 
characteristics. 

More recently, a few efforts have used machine-learning techniques 
to estimate near-term network variables. For instance, the work in 
[2] proposed a TCP RTT predictor based on a simple yet efficient 
machine-learning algorithm called Fixed-Share Experts [1]. The 
results presented in [2] show that, for a variety of network scenarios 
and conditions, the proposed Fixed-Share Experts based predictor 
was able to improve RTT estimation significantly (thus yielding 
higher throughput) compared to existing approaches. Support Vector 
Regression (SVR) [9] also introduced a machine-learning method, 
which can accept multiple inputs to generate accurate predictions. 
This method was used in [10] to predict the end-to-end TCP 
throughput for arbitrary file sizes. 

A variant of the Fixed-Share Experts approach has also been 
employed in the context of medium-access control (MAC). More 
specifically, in [8], a collision-free schedule based MAC that uses 
fixed-share experts to predict offered traffic load was proposed. 
Simulations as well as testbed results show the benefits of traffic 
prediction to schedule flows at the MAC layer in terms of delivery 
delay and delivery ration when compared to contention based MAC 
protocols. In [3], a method to predict direct and staggered collision 
probabilities of each node in WLANs has been introduced. Using 
information from an access point (AP) about network traffic 
broadcast as well as the AP's local measurements, each node obtains 
a spatial picture of the network in order to estimate probabilities of 
collisions locally. Similar techniques to the one used in [3] have 
been employed in [4] to improve throughput and link adaption in 
802.11 networks with hidden terminals. In particular, a link adaption 
algorithm, in which nodes estimate the channel conditions by 
comparing the observed loss statistics to the expected loss statistics 
based on the estimated collision probability, is employed to select 
the ideal modulation rate under the estimated network conditions. 

6. CONCLUSIONS AND FUTURE WORKS 
In this paper, we introduced SENSE (Smart Experts for Network 
State Estimation) a novel network state predictor based on a simple, 
yet efficient machine-learning technique called Fixed-Share Experts. 
SENSE improves the Fixed-Share Experts algorithm by employing 
Exponentially Weighted Moving Average (EWMA)-based "smart" 
experts, META-learning, and Level-Shift techniques. Our 
experiments on both synthetic and real datasets confirm that SENSE 
can automatically adapt to fluctuations of different time scales, 
which sets it apart from "static" techniques such as "pure" 
EWMA and Fixed-Share Experts. Our experiments over a large set 
of data indicate that SENSE provides up to 24% and 30% prediction 
accuracy improvement over the Fixed-Share algorithm and EWMA, 
respectively. 



As future research directions, we plan to apply SENSE to various 
network protocols such as IEEE 802.11e and X-MAC, which require 
channel state estimation to achieve better performance. To flexibly 
manage the degree of differentiation among classes of IEEE 802.11e 
traffic, we plan to adjust the protocol’s contention window based on 
the collision rate forecast by SENSE. In power-aware MAC 
protocols such as X-MAC, we will develop an algorithm to 
dynamically adjust the sleep time of nodes according to the traffic 
load predicted by SENSE. We will also continue to improve SENSE; 
for example, we plan to devise a mechanism that allows the experts' 
smoothing factor, , to be automatically derived based on the input 
data. 
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