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ABSTRACT 
Recent advances in mobile computing coupled with the 
widespread availability of inexpensive mobile devices are the key 
motivating factors for the development of mobile health 
monitoring systems. However, to leverage the full potential of 
such systems for continuous and real time monitoring, there are a 
number of challenges that need to be addressed. This paper 
proposes a situation-aware mobile health monitoring framework 
that aims to increase not only the accuracy in identifying the 
occurring health conditions but also the cost-efficiency of running 
algorithms (e.g. the activity recognition classifier) using a 
situation-aware adaptation technique. The proposed framework 
integrates high level knowledge (i.e. user activity) with low level 
sensory data (e.g. heart rate) in situation reasoning and data 
fusion. Such holistic situational information can significantly 
improve accuracy of clinical decision making and self-
management of chronic diseases. The implementation and 
evaluation of the framework for a health monitoring application is 
described.   

Categories and Subject Descriptors 
C.3 Special-purpose and Application-based systems - Real-time 
and embedded systems, and D.4.7 Organization and Design - 
Real-time systems and embedded systems.

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Situation-aware computing, data fusion, mobile healthcare, 
activity recognition, energy management. 

1. INTRODUCTION 
Mobile health monitoring is a fast growing area of research that 

capitalizes on mobile technologies and communication to provide 
real-time and continuous monitoring and analyzing of vital signs 
of patients at anytime and anywhere [1, 2]. Mobile health 
monitoring applications can be used for self-management of a 
chronic disease, remote monitoring of patients out of the hospital, 
early detection of abnormalities such as cardiac ischemia and 
arrhythmia and generating different levels of alarms [3, 4]. 
Despite the rapid advancement in mobile healthcare, there are still 
many challenges for users before they widely adopt these 
applications in their everyday lives. 

Most mobile health monitoring applications mainly perform 
reasoning or analysis on an individual sensory data such as the 
heart rate [2-6]. Situation-aware computing [7, 8] is one of the 
branches of context-awareness that uses data fusion and reasoning 
methods to aggregate multiple sensory data and identify occurring 
situations. With regard to health monitoring, situation-awareness 
provides a wider view and better understanding of the patient’s 
current health-related condition, which can be affected by 
multiple physiological data [7]. Examples of situations that we 
studied include ‘hypertension stage 1’, ‘hypertension stage 2’, 
‘hypertension stage 3’ and ‘healthy’.  

Situation reasoning methods produce high level information from 
combining multiple low level sensory data. In health monitoring 
systems, accuracy of reasoning and identification of patients’ 
health-related situations can be also affected based on physical 
activities such as walking, sitting or running, which is high level 
information per se [9]. The user activity knowledge is usually 
obtained by performing machine learning (e.g. classification) on 
the accelerometer data that can be collected from external 
wearable biosensors or directly from the in-built accelerometers of 
current mobile phones. A user’s physical activities can cause 
changes in the other vital signs and the lack of this knowledge can 
reduce accuracy of situation-awareness. For example, rapid heart 
rate can represent two different situations depending on whether 
the patient is sitting or running. Inclusion of the user activity 
knowledge in the situation reasoning can improve accuracy and 
enhance clinical decision making. In the above example, it will 
allow reasoning about two different situations of ‘Fast Moving 
Hypertension Stage 1’ and ‘Stationary/Not Moving Hypertension 
Stage 1’ instead of identifying only ‘Hypertension Stage 1’.  

To enhance situation-aware mobile health monitors, we propose a 
Situation-Aware Mobile Health Monitoring (SA-MHM) 
framework that combines a fuzzy rule based reasoning approach, 

 

 
 



named FSI (Fuzzy Situation Inference) [7, 8] with the user 
activity knowledge. The hybrid reasoning approach aggregates the 
user’s activity data which is already high-level information with 
other low level sensory data such as heart rate and blood pressure 
data.  

Since performing activity recognition on mobile phones can be 
expensive in terms of energy consumption, the SA-MHM 
framework incorporates an intelligent adaptation strategy inspired 
by [10] to improve the algorithm’s cost-efficiency. The proposed 
situation-aware adaptation strategy adjusts the operations of the 
activity recognition classifier according to the accuracy 
requirement of occurring situations in a gradual and fine-grained 
manner. In non-critical situations such as healthy, which is a state 
in which the application does not require high accuracy 
(concerning mining results), it is unnecessary to perform a closer 
monitoring. Thus, the adaptation process can produce the 
classification results with a lower level of accuracy. Since the 
accuracy level is directly proportional to the resource 
consumption level, this will result in preserving energy and 
extending the mobile phone’s battery lifetime. In critical 
situations in which the application requires closer monitoring, the 
accuracy level can be increased.  

This article is structured as follows. Section 2 provides a review 
and analysis of related works. Section 3 describes the architecture 
of the proposed SAMHM framework and its components. Section 
4 discusses the implementation of the proposed approach for a 
mobile health monitoring application and details the evaluation of 
the prototype in terms of accuracy and efficiency. Finally, Section 
5 concludes the paper and discusses future work. 

2. RELATED WORK 
In recent years, there has been a growing interest in the area of 
Mobile Health Monitoring (MHM). However, there are still many 
open issues that need to be addressed before leveraging the full 
potential of such systems for continuous and real time monitoring. 
Alemdar and Ersoy [11] suggest a list of design considerations for 
the healthcare monitoring applications. These include privacy, 
security, reliability, user-friendliness, middleware design, 
scalability, interoperability and context-awareness. In this paper 
our main focus is on the latter issue.   

Context can be any information that is related to the user, device, 
application, environment or network. Context-awareness enables 
applications to adapt their behavior according to context changes 
and perform their tasks in an intelligent and efficient manner [8]. 
In mobile healthcare systems, context-awareness has been utilized 
to achieve different purposes. MediNet [12] is a mobile healthcare 
system that uses context-awareness to personalize the information 
presented to a patient based on the patient’s profile, context and 
location. Motivate [13] is a context-aware system that provides 
users with personalized advice on physical activities considering 
the time, the weather and the user location. 

In the health monitors introduced in [14, 15], contextual 
information is used to issue alerts. Harmoni [9] is a remote 
healthcare monitoring system that uses context-awareness for 
reducing transmissions to the backend. A context-aware traveler 
healthcare service system proposed in [16] enables the user to find 
a more convenient healthcare service.  

In most of the above-mentioned systems, context-awareness is 
performed based on individual pieces of context. There are few 
studies that attempt to aggregate multiple contextual parameters 
using context reasoning or sensor fusion technique to provide a 
composite view of the user’s situation. Situation-aware systems 
provide better understanding of the user’s health conditions, 
particularly those that can occur due to changes in multiple 
contextual parameters. The work proposed in [7] is one of the first 
situation-aware mobile health monitoring systems that enables the 
fusion of different contextual information using a fuzzy logic 
based reasoning method. In this paper, we extend this work with 
the user activity knowledge.  

The user activity is very important contextual information in 
health monitoring which can increase the accuracy of monitoring 
when it is combined with other pieces of information [9, 17]. User 
activities are generally determined by performing machine 
learning algorithms (also known as Activity Recognition 
methods) over accelerometer data that can be obtained from 
wearable sensors or in-built sensors in smart phones. The 
examples of activity recognition methods include neural networks, 
decision trees, Naïve Bayes, or nearest neighbor algorithms. 
However, performing real-time and continuous mining onboard 
mobile devices exhausts the limited computational resources and 
can drain battery quickly.  

Most of the current health monitoring systems that infer user 
activities [17-21] do not employ energy management techniques 
to preserve battery on mobile phones. To address this issue, we 
employ situation-aware adaptation strategies to improve cost-
efficiency of machine learning algorithms, thereby extending 
lifetime of mobile application. 

3. THE ACTIVITY ENHANCED FUZZY 
SITUATION INFERENCE (AEFSI) 
FRAMEWORK
3.1 An Overview  
This section presents the SA-MHM framework for situation-
aware mobile health monitoring. Figure 1 shows an overview of 
the proposed framework. The five key components of the 
framework include: 1) Data Collector, 2) Data Pre-Processor, 3) 
Activity Enhanced FSI (AEFSI) which extends the FSI approach 
[5] with the user activity knowledge, 4) Machine Learning 
Classifier for activity recognition, and 5) Classification 
Adaptation Manager to perform the situation-aware adaptation.  

3.2 Data Collector  
The Data Collector is responsible to collect data streams from 

wireless sensors and wearable biosensors, and convert raw 
sensory data like ECG signals into heart rate values if necessary. 
Depending on the application, different external sensors can be 
used. These sensors will use mobile technologies like Bluetooth 
for wireless communication. To collect the accelerometer data, the 
framework will support both external sensors and the 3D 
accelerometer built internally into the mobile device. The data 
collector passes the data to both the situation reasoning 
component and machine learning algorithm. 
 



 
Figure 1. The SA-MHM framework. 

3.3 Data Pre-Processing 
On the latest smartphones and mobile devices, 3D accelerometers 
are capable of continuously capturing acceleration data streams in 
the x, y and z directions. In order for sensory data to be 
meaningful for learning algorithm these data streams need to be 
pre-processed and transformed [22]. The Data Pre-Processing 
component handles all pre-processing of raw input data to prepare 
them in a format and structure required by the machine learning 
classifier. An example of the acceleration force pre-processing is 
shown in Figure 2.  

 
Figure 2. Data preprocessor. 

In the acceleration pre-processing, time series of acceleration 
force for each axis are converted to statistical mathematical 
transforms. It means if the acceleration force was captured for a 
10 second period with a 20Hz sample rate (1 sample every 50ms), 
this would produce 200 raw time series acceleration samples. The 
statistical conversation produces a single activity vector that 
represents the 200 raw accelerometer records.  
Unlike other sensory data such as temperature which can be 
passed directly into the fuzzifier without the need for pre-
processing, the raw acceleration samples need to be first 
transformed into a single tuple vector as described earlier and then 
passed into the machine learning classification algorithm. 

3.4 Machine Learning Classifier  
Depending on the application, any suitable supervised machine 
learning classifier can be used within this component. The current 
implementation of the SA-MHM framework supports decision 
trees and k-nearest neighbors (kNN).  

Training data is an essential component of the classification 
process and is usually collected by recording predetermined 
physical movements of participants through a training phase [22]. 
Each predetermined physical movement is represented by a 
training vector and identified within the instance vector as an 
activity class label. These class labels are used in the classification 
process to determine the identity of unlabeled activity instance 

vectors. The new classified activity is then passed onto the 
Activity Enhanced Fuzzy Situation Inference (AEFSI) as an input. 
This high level information will be combined with other sensory 
data (i.e. low level information) to reason about occurring 
situations. In the personalized health monitors, it is important to 
prepare training data based on the user’s activities to improve the 
accuracy.  

In the SA-MHM, we perform classification on the mobile device 
rather than sending data to a remote server. However, running 
data mining algorithms continuously over data streams on mobile 
phones can be expensive in terms battery usage. To address this 
challenge, the framework incorporates a situation-aware 
adaptation strategy that sits like an extra layer on top of the 
algorithm. The adaptation strategy enables the adjustment of the 
operations of data stream mining according to the occurring 
situations. The details of situation-aware adaptation are described 
in Section 3.6. 

3.5 Activity Enhanced Fuzzy Situation 
Inference (AEFSI) 
The Activity Enhanced Fuzzy Situation Inference (AEFSI) 
component is the core of the proposed framework. It provides a 
novel, hybrid situation reasoning approach which combines rule-
based reasoning with the learning-based method to improve 
accuracy of situation reasoning in mobile health monitoring 
applications. It extends the capabilities of the Fuzzy Situation 
Inference (FSI) [7, 8] with incorporating the user’s activity 
knowledge.  

Fuzzy Situation Inference (FSI) [8] is a situation modelling and 
reasoning approach which integrates fuzzy logic into the Context 
Spaces (CS) model [23] and infers situations from the multiple 
sensory data. FSI uses the benefits of the CS model to support the 
pervasive computing environments in terms of addressing the 
inaccuracy associated with sensory data, and applies the strengths 
of fuzzy logic to reason about imprecise and ambiguous real-life 
situations. The FSI approach consists of three main modules: 
Fuzzifier, Rule Repository and Rule Inference. 

3.5.1 Fuzzifier 
The input data to FSI includes crisp input (i.e. sensory data). The 
fuzzifier is a software component that maps crisp input into fuzzy 



Get sensory data (Linguistic variables xi)
from Data Collector  
Get classified_Activity from Classifier  
Get fuzzy_Rules from Rule Repository  
Initialize situationInference_Vector 
For each fuzzy_rule (Sj) in Rule Repository 
  Initialize confidence = 0 
  Initialize membership_degree μ= 0  
  For each conditionLV in the fuzzy_Rule(Sj)
    If conditionLV = ”activity” 
     Compute μ(activity) by calling AMF   
    Else 
     Compute μ(xi) by calling Fuzzifier 
    End If 
 Get weight of variables (xi) in conditionLV 

  confidence(Sj)
n

i
ii xweight

1
)( 

End 
For SituationInference_Vector.add(confidence(Sj))  
End For 

sets by applying a trapezoidal membership function. With regard 
to FSI modelling, the greater the membership degree of elements 
defined in a fuzzy situation rule, the greater confidence is for the 
occurrence of the situation. 

3.5.2 Rule Repository 
In the FSI approach, situations of interest (i.e. health-related 
situations) are represented by fuzzy rules. Each fuzzy situation 
rule consists of two or more conditions. FSI uses the AND 
operator to join the conditions. These rules are stored in the Rule 
Repository, and are pre-defined by system designers or domain 
experts. In our implementation, we have used the information 
provided in ‘Guide to Management of Hypertension’ by National 
Heart Foundation [24] to define the situations. An example of a 
FSI rule is as follows. 

If systolic blood pressure is ‘very high’ AND diastolic blood 
pressure is ‘very high’ AND user activity is ‘fast moving’ THEN 
situation is ‘fast moving hypertension stage 3’. 

3.5.3 Rule Inference 
To reason about a situation, fuzzy rules need to be evaluated to 
compute a single output that determines the membership degree of 
the rule’s consequent. Inspired by the CS model [23], the situation 
reasoning technique incorporates three notions of weights, 
contribution and confidence.  

Weights are values between 0 and 1 that are assigned to the 
linguistic variables (e.g. heart rate) according to the relative 
importance of attributes in representing a situation. For example, 
systolic and diastolic blood pressures are stronger indications of 
the ‘hypertension’ situation compared to heart rate and therefore 
they can be assigned with higher weights (e.g. each 0.4). The 
heart rate value can change due to performing physical activities 
and can be given a lower weight (e.g. 0.2).  

The membership degree of each variable represents the variables’ 
contribution level to the occurrence of a situation. The FSI applies 
the following technique for evaluation of FSI rules and conditions 
joined with the AND operators to compute the confidence value 
for each situation:  

Confidence
n

i
ii xw

1

)(     (1) 

The membership degree of each variable represents the 
variables’ contribution level where iw  represents a weight 

assigned to a linguistic variable, and )( ix denotes the 

membership degree of the element ix  in the fuzzy set associated 

with the linguistic variable. The result of )( ii xw represents a 

weighted membership degree of ix  and i represents a fuzzy 
condition in a rule (1  i  n). If the output of a rule evaluation for 
the ‘hypertension’ situation yields the value of 0.885, we can 
suggest that the level of confidence in the occurrence of 
‘hypertension’ is 0.885. This value can be compared to a 
predefined threshold  between 0 and 1 to determine whether a 
situation is occurring. For more details about FSI, we refer the 
reader to [7, 8].           

3.6 Activity Integration Manager (AIM)  
The Activity Integration Manager (AIM) is responsible for the 
integration of user activity knowledge into the situation reasoning 

of FSI. The AIM continuously receives the classified activity 
labels from the machine learning classifier component. Activity 
recognition methods can be used to learn about different 
categories of movements such walking, jogging, walking upstairs, 
walking downstairs, sitting, standing, etc. Compared to the other 
low-level contextual information (i.e. crisp sensory data like 
temperature) which are directly fuzzified and processed as FSI 
inputs, the activity knowledge needs to be treated as high-level 
information and processed differently by the Rule Inference 
component.  

The activity knowledge is processed through a function named the 
Activity Membership Function (AMF) which only computes a 
value of 1 or 0 for each class. If the classified activity matches the 
activity defined within the condition of the fuzzy rule being 
evaluated, the AMF will return 1, otherwise it returns 0. This 
value is then processed along with the other membership degrees 
in the FSI rule evaluation according to Equation 1. Figure 3 shows 
the algorithm of how the AMF is incorporated the Rule Inference 
process. 

3.7 Classification Adaptation Manager 
(CAM)  
The Classification Adaptation Manager (CAM) uses the situation 
confidence level, i.e. the weighted sum that is a value between 0 
and 1 per situation, as an input to perform a situation-aware 
adaptation.  

The CAM consists of Situation-Aware Adaptation and Control 
Parameter components. The CAM controls the classification sleep 
time interval based on the criticality of the occurring situations to 
preserve energy. For example, when the occurring situation is 
non-critical (e.g. the patient is healthy), it means the application 
does not require close monitoring. On the other hand, when the 
situation becomes critical (e.g. hypertension), the application 
needs to monitor the user’s activity closer, and the CAM will 
decrease the parameter value. To implement situation-aware 
adaptation in CAM, there is a need to identify the criticality level 
of each situation.  

Figure 3. Integration algorithm. 



Let all situations for a specific application be denoted by 
 where  is an element of S and . The 

criticality of a situation  can be expressed using any value 
between 0 and 1 where  and each  has been given 
a predefined value of .  
The situation criticality values for an application are subjective 
and assigned by system designers or domain experts at the time of 
defining fuzzy rules. These application-specific criticality values 
signify the importance of a situation relative to other situations in 
the set. When designing a system for mobile health monitoring, a 
particular situation can be identified as critical if its occurrence 
signifies a critical risk to the patient/user. Situations that fall into 
this category should be assigned a high criticality value close to 1. 
Yet, when situations are considered low risk they should be 
assigned a criticality value close to 0 (e.g. Healthy = 0.1, 
HypertensionStage1 = 0.7, HypertensionStage2 = 0.8, 
HypertensionStage3 = 0.9). These criticality values can be then 
used for situation-aware adaptation to calculate the initialized 
control parameter. This is explained in the next subsection. 

3.7.1 Control Parameter 
The control parameter here is considered as the parameter of the 
machine learning classifier that controls the operations of data 
mining such as input, output and iteration rate. Situation-aware 
adaptation computes the adjusted value of the control parameter 
based on the situation inference results and their corresponding 
initialized control parameter values. The initialized control 
parameter value is a pre-defined value per situation that represents 
its accuracy requirement. A non-critical situation’s accuracy 
requirement for closer monitoring is typically lower than a critical 
situation. The initialized control parameter is calculated based on 
the equation below which is adapted from [10]. 

                  (2) 

where  denotes the lower bound time interval and  denotes 
the upper bound time interval for machine learning classification 
and  is the situation criticality value per situation. The 
initialized control parameter value  calculated by Equation 2 
will produce lower time interval values for high criticality 
situations while producing higher time interval values for low 
criticality situations. 
Here, the  lower bound time interval would include the time 
taken for acceleration capture and processing, while the  
upper bound time interval value for  is defined based on the 
activity classification requirement of the low criticality situations. 
This upper bound time interval would include the lower bound 
time interval plus an additional sleep/wait period. Setting the 
lower and upper bound of the control parameter is important to 
maintain an acceptable level of accuracy. 

3.7.2 Situation-Aware Adaptation 
Generally supervised machine learning classifiers perform 
iterative operations and as discussed earlier can become 
computationally expensive and effect resource availability. They 
were originally developed for intensive data mining operations on 
powerful desktop/server based computer systems which had 
sufficient amount of memory, processing power and limitless 
energy/power capacity. In order to bring the strengths of 
supervised machine learning classification to mobile platforms 
with limited memory, processing power and battery, there is a 
need for intelligent adaptation techniques. The situation-aware 
adaptation aims to address this urgent problem.  

Situation-aware adaptation operates based on situation inference 
results received from the AEFSI. As the AEFSI generates the 
confidence values for each pre-defined situation, these confidence 
values can be used to identify the current occurring situation. The 
higher the confidence value (e.g. 0.9 or 1) generated by the 
AEFSI, the higher the probability that this is the occurring 
situation. 

In order to provide a smooth and fine grained parameter control 
approach the situation-aware adaptation strategy introduced in 
[10] is adopted here. The Equation 3 presents this method to 
compute the adjusted value of the control parameter   
considering the confidence value of all situations. 

                                                                 (3) 

Here  denotes the inferred confidence level per situation and 
 denotes the corresponding pre-defined control parameter for a 

situation , where  and  represent the number of pre-
defined situations in the application which aggregates to produce 
the adjusted control parameter  [10]. The pre-defined control 
parameter value for situation  denoted by  is application 
specific and evaluated using Equation 2.  
The situation-aware adaptation strategy is able to reduce energy 
consumption when the occurring situations are non-critical and 
there is no need for closer monitoring, and it reduces the sleep 
time interval as soon as situations transition towards critical.  
The SA adapter, mentioned earlier, will act as an extra layer on 
top of the machine learning classifier and controls its operations in 
a situation-aware and efficient manner. It will receive the output 
from the Classification Adaptation Manager which are the 
adjusted values of the classifier’s control parameter, and will 
apply them to reduce the energy consumption according to the 
occurring situations. 

4. IMPLEMENTATION AND 
EVALUATION 
The health monitoring application was developed in Java for the 
Android platform. Figure 4 shows two screenshots of our 
implementation where the user’s inferred situation is healthy with 
two different activities of stationary and slow moving. In this 
implementation, the Machine Learning Classifier (MLC) for 
activity recognition supports two classifiers, k-nearest neighbors 
(kNN) and J48 Decision Tree but the design of the prototype 
ensures that different classifiers can be used in the system. The 
kNN and J48 algorithms were chosen for the evaluation purposes 
after the model selection process and accuracy tests were 
conducted over the user activity data set published by Kwapisz et 
al. [22] (discussed in Section 7.3). The prototype’s interface 
allows the user to select one of the two algorithms and specify the 
data split of the training and test sets as shown in Figure 5. 

The interface also provides an option to enable or disable the 
Situation-Aware Adaptation. The status bars are used for 
visualization of the level of confidence in the occurrence of each 
situation that is inferred in real-time based on the data collected 
from the ECG sensor and other data sources. 

The Classification Adaptation Manager (CAM) for Situation-
aware adaptation was implemented by selecting the sleep time 
interval as the adaptation’s control parameter. At run time, this 
parameter is dynamically adjusted according to the current 
situation criticality and situation inference results of the AEFSI. 



 
A higher value of the sleep time will result in a lower level of 
accuracy while a lower value of the sleep time interval will 
increase the accuracy of classification. 

To evaluate the prototype, two Samsung Galaxy S2 I9100 
Android mobile phones with the following hardware 
specifications were used: 

Processor: Dual-core 1.2 GHz Cortex-A9 
Ram: 1GB 
Battery: Li-Ion 1650 mAh battery 
Operating System: Android 4.1.2 Jelly Bean  

4.1 Test Data 
In the health monitoring application, we defined the situations 
based on four linguistic variables of systolic and diastolic blood 
pressure, heart rate and user activity. The heart rate data was 
obtained using the Alive Heart Monitor from Alive 
Technologies™. The high blood pressure data for different stages 
of hypertension was simulated using a random data generator 
program. The system was able to collect and use the 
accelerometer data from both the Alive Heart Monitor and the 
mobile phone’s in-built sensor.  

As previously mentioned, the classification model used in the 
evaluation was trained and tested using the dataset produced by 
Kwapisz [22] called WISDM Lab dataset.  

Figure 5. The simulation interface.

Table 1. Statistics of WISDM dataset 

 Raw Data Transformed Data 

Samples 1,098,207 5,424 

Attributes 6 46 

Class Distribution 

Walking 38.6% 38.4% 

Jogging 31.2% 30.0% 

Upstairs 11.2% 11.7% 

Downstairs 9.1% 9.8% 

Sitting 5.5% 5.7% 

Standing 4.4% 4.6% 

 

Twenty nine volunteers involved during the data collection. The 
dataset consisted of two different sets, the raw data set and the 
transformed data set.

The transformed data set contained pre-processed accelerator data. 
Table 1 shows the comparison between the two data sets. The 
transformed acceleration dataset in the WISDM dataset package 
[20] is a statistical representation of the raw time series 
acceleration dataset with the 46 attributes:  

UNIQUE_ID (not used in classification) 
USER_ID 
Axis bins: X0, …, X9, Y0,…,Y9, Z0, ..., Z9 (30 attributes)  
XAVG, YAVG, ZAVG   
XPEAK, YPEAK, ZPEAK  
XABSOLDEV,YABSOLDEV, ZABSOLDEV  
XSTANDDEV, YSTANDDEV, ZSTANDDEV  
RESULTANT 
ACTIVITY_CLASS 

The evaluation performed in this research used the transformed 
data set as the basis of the test data. However, we modified the 
existing data set that supported six types of activities into the three 
classes of stationary, slow moving and fast moving.  The three 
activities of walking, walking up stairs and walking down stairs 
were considered as slow moving, and the sitting and standing 
activities were regarded as stationary. This significantly reduced 
the total number of pre-defined situations from nineteen to ten, 
and improved reasoning accuracy and system performance. Table 
2 shows the details of the new class distribution of the data set. 

Table 2. Customized user activity classes 

Transformed Dataset Activity 
Class Distribution 

Customized 
Dataset Activity 
Class Distribution 

Sitting (5.7%) Stationary (10.3%) 
Standing (4.6%) 

Walking (38.4%) Slow Moving 
(59.9%) Walking Up Stairs (11.7%) 

Walking Down Stairs (9.8%) 

Jogging (30%) Fast Moving (30%) 

 
Figure 4. Situation-Aware health monitoring screenshots.



Table 4. Statistics of WISDM dataset 
Summary J48 Unpruned Tree 3NN 

Desktop Mobile Desktop Mobile 

Correctly Classified Instances   2644 (97.60%) 2644 (97.60%) 2645 (97.64%) 2645 (97.64%) 
Incorrectly Classified 
Instances    65 (2.40%) 65 (2.40%) 64 (2.36%) 64 (2.36%) 

Kappa statistic                   0.9553 0.9553 0.9555 0.9555 

Mean absolute error               0.0188 0.0188 0.0211 0.0211 

Root mean squared error           0.1216 0.1216 0.1152 0.1152 

Total Number of Instances         2709 2709 2709 2709 

4.2 Accuracy of Situation Reasoning 
The original FSI [8] is limited to reasoning over low level sensor 
data and does not have the ability to support the user’s physical 
activity. Our proposed SA-MHM framework integrates the low 
level sensory data with the high level user activity knowledge. 
The inclusion of the activities in situation reasoning increases the 
accuracy and information granularity. For example, the 
Hypertension Stage 1 with the addition of the three activities 
classes (Table 2) can be defined as Stationary Hypertension Stage 
1, Slow Moving Hypertension Stage 1 and Fast Moving 
Hypertension Stage 1. 

Table 3 compares the situation definitions using FSI that has no 
support for the activity knowledge and the AEFSI approach that 
includes user activity. The table shows how AEFSI is able to 
provide a better understanding of the user’s health condition 
compared to the FSI. This rich and holistic knowledge increases 
the granularity of the situation-awareness and improves the 
accuracy of clinical decision making as well as self-management 
of the disease. 
As Table 3 shows, the AEFSI does not use the user activity 
(stationary, slow moving, and fast moving) for the reasoning 
about the Healthy situation, which is a non-critical situation. This 
is because when the situation is healthy, the heart rate and blood 
pressure are normal and the activity information will not add any 
value. 

4.3 Efficiency of Situation-Aware Adaptation  
A core component of the SA-MHM framework is the Situation 
Aware Adaptation. This component was evaluated to demonstrate 
its ability to improve energy management of mobile supervised 
machine learning. 

4.3.1 Evaluation of classification algorithms 
The objective of this evaluation was validating the use of the 
published activity dataset for the machine learning classification 
component within the SA-MHM implementation.  

The chosen WISDM Lab acceleration dataset [22] was evaluated 
on the Weka 3 data mining tool for accuracy with 10 fold cross 
validation experiments using the J48 Decision Tree and K Nearest 
Neighbour classification algorithms.  

After customizing the original dataset to suit the requirements of 
this research, the customized dataset was used to create training 
and test datasets for the implementation. These datasets were used 
in the final experiment where the training dataset was used to 
build classification models for J48 and kNN.   

 

Table 3. Comparison of FSI and AEFSI 

Situations Support for 
Activities 

Four situations defined in FSI: 
 
S01- Healthy 
S02- Hypertension Stage 1 
S03- Hypertension Stage 2 
S04- Hypertension Stage 3 

 
 

No 
No 
No 
No 

Ten situations defined in AEFSI: 
 
S01- Healthy 
S02- Stationary Hypertension Stage 1 
S03- Stationary Hypertension Stage 2 
S04- Stationary Hypertension Stage 3 
S05- Slow Moving Hypertension Stage 1 
S06- Slow Moving Hypertension Stage 2 
S07- Slow Moving Hypertension Stage 3 
S08- Fast Moving Hypertension Stage 1 
S09- Fast Moving Hypertension Stage 2 
S10- Fast Moving Hypertension Stage 3 

 
 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

 
The evaluation compared the accuracy of the classification models 
on the mobile implementation of the Weka Activity Classifier 
component (developed using Weka API Java) and the Weka 3 
Desktop data mining tool.  

The comparison produced identical results indicating the accuracy 
of both J48 and kNN at 97.60% and 97.64% respectively (as 
shown in Table 4). The results for the mobile implementation 
validated its capability for user activity recognition within the SA-
MHM implementation. 

We also tested the kNN with different values of K (1, 3, and 5). 
Based on the results, we considered K = 3 as the optimal value of 
K in our experiments (87.117 % correctly classified). 

4.3.2 Experiment 1: Hypertension Stage 1  
As discussed earlier, the energy savings with Situation-Aware 
adaptation are mostly achieved in non-critical situations like 
Healthy. However, based on Table 3, the healthy situation in 
AEFSI is not incorporating any user activity. Therefore, to show 
the energy savings in the two classification algorithms (i.e. J48 
and kNN), we conducted this experiment for the situation of 
Hypertension Stage 1, which is the least critical situation in our 
list after the Healthy situation. The data generator for systolic and 
diastolic blood pressure and heart rate was set to generate values 
in the range of hypertension stage 1.  



 

Figure 6. Energy efficiency evaluation results. 
By including the user activity, we tested three situations of 
Stationary, Slow Moving and Fast Moving Hypertension Stage 1.  

In this comparative evaluation, we measured and recorded the 
battery levels with and without situation-aware adaptation. To 
provide uniform testing situations for the two different 
implementations, the activity data was not read directly from the 
accelerator sensor in the mobile phone. Instead, a constant stream 
of activity data from the modified WISDM data set was read into 
the system. At the start of each test run, the stored data was read 
and fed into a data generator program that published the data with 
at a rate of 1 record/100 msec.   

To consider the energy consumption by the Bluetooth 
communication between the sensor and the mobile phone, it was 
important to include the ECG and accelerometer sensors in the 
experiments. Hence, we decided to use the sensors during the 
experiments but overwrote the data by the simulated data (for 
blood pressure and heart rate). Figure 6 shows the comparison of 
battery lifetime in hours when the situation-aware adaptation is 
enabled and disabled. The tests were conducted for both 3NN and 
J48 classifiers. The results show that the battery lifetime was 
significantly increased when the situation-aware adaptation was 
applied. The difference between the results of the two algorithms 
was marginal. The battery on the phone without adaptation 
drained completely after 43.9 hours while with the adaptation the 
phone’s battery lasted longer (i.e. 60.7 hours). This validates the 
benefits of the situation-aware adaptation approach in extending 
battery lifetime up to 38.26%.  

4.3.3 Experiment 2: Hybrid Situations 
In the Experiment 1, we generated the data for the Hypertension 
Stage 1 to show the ability of the SA-MHM approach to save 
energy. To investigate the mobile phone’s overall energy savings 
when different situations occur, in Experiment 2, we configured 
the data generator such that the data can represent all the ten pre-
defined situations in Table 3. Figure 7 depicts how situations 
gradually change from non-critical to critical and it also shows 
how the control parameter of the classifier algorithm (i.e. the sleep 
time interval) is smoothly adjusted from 90 to 27 second 
according to minor changes in situations.  

In non-critical situations, the adaptation strategy increases the 
sleep time to reduce the accuracy, leading to the efficient use of 
resources. Alternatively, in critical situations such as Stationary 
Hypertension Stage3, the adaptation decreases the parameter 
value (to 27 sec), and therefore increases the accuracy which is 
required for closer monitoring.  

Figure 7. Experiment 2 for ten situations. 
As Figure 7 shows the adaptation of the algorithm parameter 
occurs in a smooth and fine-grained manner while situations 
evolve from one to another. Without adaptation, the control 
parameter of the algorithm will remain fixed and unchanged and 
result in energy waste. 

5. CONCLUSION 
In this paper, we proposed a Situation-Aware Mobile Health 
Monitoring (SA-MHM) framework that integrates the user 
activity knowledge with other sensory data to increase the 
accuracy in identifying the occurring health conditions. The SA-
MHM also incorporates an intelligent adaptation strategy that 
controls operations of the activity recognition algorithm according 
to current situations and their accuracy needs to preserve energy. 
We described the implementation of the SA-MHM for patients 
with hypertension. The evaluation results showed an increase of 
38.26% in the application’s lifetime. 

As future work, it is important to evaluate our health monitoring 
system with domain experts and using a lab experiment in order to 
identify possible issues that could be faced in real world 
application of such systems.  

We also intend to extend the SA-MHM framework from a 
standalone system to a distributed architecture. The extended 
system will allow medical professionals to remotely monitor a 
large group of patients in real time and utilize data analytics to 
identify clusters with common trends and patterns. 
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