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ABSTRACT

One of the challenges of location fingerprinting to be de-
ployed in the real offices is the training database handling
process, which does not scale well with increasing amount of
tracking space to be covered. However, little attention was
paid to tackle such issue, where the majority of previous
work rather focused on improving the tracking accuracy. In
this paper, we propose a novel idea to enhance fingerprint-
ing’s processing speed and positioning accuracy with mix-
ture of Gaussians clustering. We realised the key difference
between fingerprinting and other un-supervised problems,
that is we do know the label (the Cartesian co-ordinate)
of the signal data in advance. This key information was
largely ignored in previous work, where the fingerprinting
clustering was based solely on the signal data information.
By exploiting this information, we tackle the indoor signal
multipath and shadowing with two-level signal data clus-
tering and Cartesian co-ordinate clustering. We tested our
approach in a real office environment with harsh indoor con-
dition, and concluded that our clustering scheme does not
only reduce the fingerprinting processing time, but also im-
proves the positioning accuracy.
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1. INTRODUCTION

Indoor localisation is the state-of-the-art to monitor the po-
sition of a person inside a building, without the need of GPS
coverage. In the past decade, location fingerprinting has
been widely considered as one of the most effective indoor
tracking methods to date. Fingerprinting-based approaches
use the communication layers such as WLAN, Bluetooth,
GSM and take advantage of the existing infrastructure to
provide location tracking service. However, one of the chal-
lenges of fingerprinting to be deployed in the real offices
is the training database handling process, which does not
scale well with increasing amount of tracking space to be
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covered. In addition, multiple inquiries from many users
need to be executed simultaneously on the training data,
especially when a moving user needs to update his position
continuously. Hence, this is undoubtedly the most costly
and time consuming process of fingerprinting. However, lit-
tle attention was paid to tackle such issue. Some researchers
attempted to apply clustering - an unsupervised machine
learning technique, to handle the fingerprinting database.
However, due to the harsh indoor environment, real-time sig-
nal data may be allocated into the wrong cluster, resulting
in poor tracking accuracy, a typical challenge of clustering
for indoor localisation.

In this paper, we propose a novel idea to enhance finger-
printing’s processing speed and positioning accuracy with
mixture of Gaussians (MoG) clustering. We aim to tackle
the indoor signal multipath and shadowing with signal data
clustering and Cartesian co-ordinate clustering. Given a new
sample, our approach picks a set of clusters based on their
probabilities, while many previous work favours a single best
cluster only. Since the design of our system is modular, we
offer a more flexible approach to indoor fingerprinting clus-
tering. For future research, we include our full fingerprinting
database, which contains a floor plan, and all raw informa-
tion such as Received Signal Strength, Link Quality, signal
orientation, channel information, and more.

The paper begins with the challenges and current state-of-
the-art of fingerprinting. We then explain our four steps to
cluster the fingerprinting database. Empirical studies in a
real office environment are discussed. Finally, we conclude
our findings and outline the future work.

2. OVERVIEW OF LOCATION FINGERPRINT-

ING

2.1 Current State-of-the-art and Challenges
Global Navigation Satellite Systems (GNSS) such as GPS
are indispensable for outdoor navigation. However, people
spend most of their times indoor, where limited or no GNSS
service is available. The demands from big organisations
such as supermarket and hospital to provide indoor navi-
gation service to their customers and staff have encouraged
much interest in the indoor localisation research in the past
decade. Fine-grained indoor positioning systems with cen-
timetre accuracy to coarse-grained room-level systems have
been successfully reported [18, 21].

Since introduced in 2001, location fingerprinting has gained



much popularity due to its simplicity, which takes advan-
tage of the existing building communication infrastructure
such as WLAN [3] or Bluetooth [13]. The algorithm works
with any type of signal that has locally constant power level,
such as WLAN, Bluetooth, FM, GSM and 3G. WLAN Re-
ceived Signal Strength Indicator (RSSI) was often used in
the past literature to represent the indoor locations due to
its ubiquity and simplicity. The fingerprinting method has
two stages. In the first stage, which is known as the off-line
phase, a training database pre-surveys the signals at every
location in the building. In the on-line stage, which is known
as the positioning phase, when a person wishes to discover
his position, he measures the signals at his current location,
and uses the training database to estimate a closest match.
Fingerprinting can be viewed as a typical machine learning
problem, where the training database composes of examples
mapping the WLAN signal (the object), to its Cartesian
x,y,z co-ordinate (the label). Our task is to predict the
right label for a known object.

Modern commercialised solutions such as SkyHook!, Eka-
hau?, or free ones like Nokia’s HERE® and Google Indoor
Maps? all use fingerprinting to power their services. Al-
though we do not know the exact details of the algorithms,
the concept of fingerprinting still requires them to maintain
a long list of indoor databases for each location or building
floor. This raises a question if fingerprinting is the right di-
rection for future indoor localisation? Below are some of our
thoughts on the strengths and weaknesses of fingerprinting.

In terms of accuracy, fingerprinting is still a long way
short of the extreme 3 cm achieved by those lateration and
angulation-based systems [18] which use ultrasonic or pulse-
width infrared signals to communicate between a wide range
of fixed beacons and the user tags. Although we have seen
a much improved sub-metre tracking accuracy reported in
recent works with fingerprinting, typically with the use of
Channel State Information CSI [5, 15, 20], there are multi-
ple independent components such as the training data reso-
lution, signal properties, and the algorithm itself, which all
contribute to the end tracking result.

Availability can be the strength of fingerprinting, thanks
to the ubiquitous indoor communication infrastructure such
as WLAN or Bluetooth. Other long range outdoor signals
such as FM, GSM, 3G can be used to boost low coverage
indoor areas.

Installation and ease of use have their pros and cons. In
most cases, the users only need to install an app on their
mobile devices to enable tracking capability. Apart from
a central server to exchange data with the users, no extra
hardware is needed, because the whole idea takes advantage
of the existing communication infrastructure of the building.
However, the initial concept of fingerprinting does require an
off-line site-survey phase, which adds burdens to the instal-
lation process.

"http://www.skyhookwireless.com
2http:/ /www.ekahau.com
http://here.com

*https://www.google.com/maps,/about /partners/indoormaps
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Maintenance is one of the weaknesses of fingerprinting.
The training database becomes outdated over time, and to
re-calibrate the whole tracking zone requires much labour
work. This is one of the reasons why fingerprinting has yet
been widely deployed in real offices.

Scalability is another major issue of fingerprinting. As
the central server has to serve many users simultaneously,
the processing speed does not scale well with the increasing
number of users, especially when the training database is
usually huge to cover a large tracking zone.

We have not discussed other aspects such as security, risk
and reliability, since they are out of the scope of this paper.
Clearly, one of the challenges for practical fingerprinting is
how the training data should be handled. Apart from the
maintenance issue, processing speed is a real concern, and
will be tackled in this paper. Our work aims to reduce the
computation overhead via a one-off clustering process to be
performed when the fingerprinting database was first set up.
In addition, we introduce our mathematical framework to
select a set of clusters for a given new signal sample.

2.2 Related Work

Clustering techniques are diverse, and can be categorised
into two broad groups. First, whether the clustering tech-
nique is hard clustering or soft clustering. The former par-
titions the dataset into disjoint groups (ie. k-Means (KM)),
while the latter allows a data point to belong to more than
one group (ie. MoG, fuzzy c-Means (FCM)). Second, whether
the method is flat or hierarchical. Flat clustering such as KM
generates a set of clusters with no explicit information to de-
scribe the relationship amongst those clusters. On the other
hand, hierarchical clustering such as agglomerative uses a
tree structure to describe the clusters.

Our clustering scheme combines soft clustering with a two-
level tree structure. Our approach addresses the challenge
of new signal sample standing in the borderline being mis-
allocated to the wrong cluster, without having to explicitly
generate overlapped cluster as proposed in [11]. For ex-
ample, when a person stands near the wall of two rooms,
which are assumed to belong to two separated clusters, he
can be associated with either cluster. In [7, 10], the au-
thors used Affinity Propagation to cluster the fingerprint-
ing database, and only when the matching cluster has been
identified based solely on the signal strength, then the Carte-
sian labels are used to output the user’s location in the end.
Similarly, [1, 17, 19] used KM and fuzzy logic to cluster the
fingerprinting database based on the signal strength. With
our approach, we combine the Cartesian label of each signal
examples along with the signal data to tackle the signal mul-
tipath and shadowing problem. The authors tried to tackle
a similar issue in [11], however, they proposed to drop the
outliers all together, while our approach maintains the clus-
ter. Our argument is if the user happens to stay in the
position, where the signal training data has been removed,
the system assumes he belongs to a different location with
a similar signal reading.

3. FINGERPRINTING CLUSTERING

Clustering is an un-supervised learning problem, where the
non-labelled data needs to be organised into groups with a



similar characteristic. With fingerprinting, the database is
a mapping from signal data to Cartesian physical location.
Since the task of fingerprinting is to find the Cartesian phys-
ical location for a user, given his current signal data, a pop-
ular choice in previous work was to cluster the fingerprinting
database based on the signal data. The key difference be-
tween fingerprinting and other applications is that we do
know the label (the Cartesian co-ordinate) of each signal
data beforehand, where other datasets are normally non-
labelled. However, this key information seems to be largely
ignored when the clustering process takes place in previous
work. In this section, we discuss the four modular steps of
our clustering scheme. The performance of each step will be
evaluated in the next section.

3.1 Finding Overlapped Clusters from Finger-
printing Database with Mixture of Gaus-

sians

Learning mixture of Gaussians is a probabilistic model-based
clustering, which uses the Gaussian distribution to model
each cluster. We do not attempt to model the signal strength
distribution, which may not be Gaussian at all. Our task
is to find a model that best fit the entire fingerprinting
database. To achieve that, we fit a Gaussian distribution
model for each group of signal data from the fingerprinting
database. The entire fingerprinting dataset is a sum or a
mixture of these Gaussian distributions. In contrary to the
wide belief that Gaussian distribution can only be used to
represent normally distributed data, a mixture of a sufficient
number of Gaussians can represent any data model.

The advantages of using MoG for fingerprinting clustering
are the flexibility of allowing a signal data to be associated
with more than one cluster, and the mixture model can rep-
resent the whole data well, if being fit properly. Compared
to ‘hard clustering’ algorithms such as KM, where the train-
ing data is partitioned into disjoint clusters, our approach
suits the fingerprinting problem better, since the observation
points in the data are often cluttered together, resulting in
multiple close clusters, in terms of their Cartesian or sig-
nal space. When a person stands at the borderline of two
consecutive clusters, it may not be clear which cluster he
belongs to with ‘hard-clustering’ algorithms. We chose the
Gaussian distribution to model each cluster, because of its
simplicity, and the ease to estimate the model parameters,
to be discussed later.

We start with a multivariate Gaussian distribution function
to calculate the probability that we have a signal strength
vector X = (s1,...,8,), with s; is the RSSI observed from
AP; (1 <i < n),given the mean vector p and the covariance
matrix 3 of a certain cluster.

P(X|, E) = ———e BXTEIX (g

— €
(2m)% |3z

Let us assume our fingerprinting database D = {X1,..., X}
can be modelled by k Gaussian components (clusters). More
details about choosing the value of k£ will be discussed later.
Each Gaussian component A/ (p;, Y;) is given a non-negative
weight w; to represent the likelihood of occurrence of that
component. These weights are important to help us decide
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which component (cluster) a new sample belongs to later on.
For example, it is more likely that an un-observed sample
belongs to the cluster with the highest weight. All these
weights must sum up to 1 to maintain the probability dis-
tribution property of the model. The entire fingerprinting
database’s model is a mixture, or a weighted sum of these k
clusters.

p(Dlw, pt, B) = wriN(D|pa, B1) ++ - +wiN (D], i) (2)

k
p(D|w7 s E) = ZwlN(Dllu‘l? Ei)v Zwi =1 (3)
i=1 i

Our objective is to maximise the above probability p(D|w, i, X).

In other words, we want to estimate the value of all the pa-
rameters w;, ui, and X; (1 <4 < k) simultaneously to max-
imise the probability to observe the fingerprinting database
D. A well-known solution to estimate said parameters is the
Expectation-Maximisation (EM) algorithm [12]. This algo-
rithm is particularly useful in our case, where the Gaussian
mixture model we chose is fairly easy to maximise. We used
the Gaussian Mixture Model package of Matlab® to perform
the EM algorithm.

In summary, by the end of this step, we find a model which
best fits the signal strength data from our fingerprinting
database. Based on this model, we define a set of k over-
lapped clusters to group the signal strength vectors together.
A vector may belongs to more than one cluster, and each
cluster has a weight to determine its likelihood of occurrence
in our probabilistic model. We will discuss the advantage of
such weight and the selection of k later on.

3.2 Deriving Sub-clusters within a Cluster
One of the challenges for indoor localisation is the multi-
path and shadowing, caused by the reflection of the wireless
signals from metal objects, diffraction around sharp corners,
scattering off walls, floors and ceilings. This results in multi-
ple copies of the original signals travelling in different direc-
tions. When two in-phase waves of a signal meet, construc-
tive interference forms a new stronger wave of the signal.
In contrast, two out-phase waves will cancel each other out,
resulting in a weaker signal version. Therefore, two distinct
locations in the building may have a similar signal strength
observation. When such signal observations are put together
in the same cluster based on their signal strengths, some of
the signal data may not be near each other at all in their
Cartesian space. Figure 1 demonstrates such phenomenon
found in our office. With 7 clusters, there are two clear is-
lands which form the black cluster, and three islands for the
blue clusters. Although some of the minor blue members are
found inside the cyan cluster, they do indeed possess similar
signal data with the remaining members of their cluster. If
a person happens to stay in the minority portions of this
blue cluster, his location prediction result predicted by con-
sidering all members of the cluster will be pulled toward the
majority of the blue cluster on the left. Our dataset and
detailed experiments will be discussed later.

To tackle this issue, we perform the clustering process again

Shttp://www.mathworks.co.uk/help/stats/gmdistribution-
class.html



Figure 1: Islands with similar WLAN signals visualised on
2-D floor plan of our office.

for each cluster found in the previous step. However, the
members inside the cluster will be judged on their Cartesian
x,y, z co-ordinate, rather than the signal strength vector as
used in the previous step. Ideally, if all members within the
cluster are close together in the Cartesian space, we will see
one cluster after the process. Otherwise, multiple distinct
clusters will be generated. Before we proceed any further,
the following conditions should satisfy: (a) The total num-
ber of clusters k is small, in proportional to the size of
the fingerprinting database. Since MoG already allows clus-
ters to overlap, a high number of clusters may not benefit
from having sub-clusters. Further, we will also pick more
than one clusters for on-line positioning. (b) The size of
the cluster is large. If a cluster is too small, it would not
be beneficial to split it further. Without the need to repeat
the clustering algorithm in the previous step, if the above
conditions are met, we simply use the same algorithm again
for individual cluster to separate their members into sub-
clusters based on their Cartesian co-ordinate. These sub-
clusters form a second layer in our two-level tree structure.
The first layer is the original parents of these sub-clusters.

At the end of this step, we have got many (sub-) clusters,
in which two of them may have the same signal character-
istic. However, all of our clusters have different Cartesian
characteristics. In the next part, we discuss our strategy to
select a set of clusters, given the user’s new signal data at
his unknown location.

3.3 Selective Clusters for On-line Positioning
When a user wishes to discover his current position, he uses
his mobile device to measure the signal data C at his loca-
tion, and submits it to a central server. Then, the system
identifies which clusters this signal data belongs to. This
process is the most challenging and error-prone one for many
clustering algorithms. If the new signal data is put into the
wrong cluster, the location prediction accuracy will degrade
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as a consequence. While many previous work picked only
the best matched cluster, our idea is to select a group of
clusters instead. Since we already constructed a probability
model of the fingerprinting database, we can calculate the
probability of any new signal data to be associated to each
of the k cluster, by substituting the new signal data C' and
two cluster’s parameters ui, X3 (1 < ¢ < k) into the Gaus-
sian Equation (4). Although the weight w does not show in
the equation, it influences the estimation of the parameters
i, 3 in the model.

T —1
6*%(0*%) =T (Cmp) (4)

p(Clps, Bi) = ——F—
=0 e

By definition, these k probabilities will sum up to 1. There-
fore, we can specify a threshold (ie. 90%) and pick all clus-
ters with the largest probability adding up to the thresh-
old. For example, with £ = 3, and the three probabilities
are 0.0,0.2,0.8, we pick both the second and third clusters,
for a 90% threshold. A high threshold will require more
clusters to satisfy, while a smaller one needs fewer clus-
ters. Without loss of generality, given a threshold value 6,
(0 <6 <1) and a decreasing order vector of k probabilities

P, = (P},..., PF), we find a set of ¢ probabilities (t < k) to
minimise the below equation.
t

arg mtm[; Pp(i) > 0] . (5)

In the next section, we learn how to estimate the user’s
position, given the set of clusters found in this step.

3.4 Finding the User Position

At this stage, a set of clusters has been identified given the
user’s signal data. We can treat this set of chosen clusters
as our new, smaller fingerprinting database and apply our
favourite algorithm to estimate the user’s position, such as
Naive Bayes or nearest neighbours. Since the main purpose
of the paper is to accelerate the fingerprinting processing
speed, and to reduce the search space via clustering, we
leave out this section due to space limit. As our ultimate
goal is to allocate the user’s new data to the correct clusters,
we will consider every member of the clusters to evaluate the
positioning accuracy in this paper.

3.5 Tuning the Value of k

Choosing the optimal value for k can be as challenging as
finding the clusters. There is still no unequivocal solution
to find the optimal number of clusters. It is worth noting
that bigger value of k does not necessarily mean longer run-
ning time, a criterion to judge the clustering algorithm to be
evaluated later. Thus, the criteria for choosing k should be
based on the structure of the training database, which is un-
fortunately different from every training set. The clustering
scheme in this paper was designed with a relatively small
number of clusters k in mind. If the reader chooses a big
k, the cluster’s size will be small, and deriving sub-clusters
will probably not benefit the overall performance. Since the
clustering process needs to be done just once, it is accept-
able to combine a trial-and-error approach in which all the
possible values of k are tested, with manual decision based
on the result from each k. On the other hand, a well-known



practice to choose the value for k without manual decision
is based on information criterion such as AIC (Akaike infor-
mation criterion) and BIC (Bayesian information criterion),
which are popular to evaluate model-based clustering such
as MoG [8]. These information criteria measure the infor-
mation loss corresponding to the model being used. The
model with the smallest information criterion (AIC or BIC)
is often selected. However, previous researches inclined to
favour BIC for model-based clustering, based on their theo-
retical and empirical studies [6, 9, 14]. We will compare the
performance of both AIC and BIC with our fingerprinting
dataset in this paper.

3.6 Bringing It All Together

Figure 2 depicts our complete clustering scheme. Given a
fingerprinting database mapping signal data to Cartesian
co-ordinate, we use MoG to find k clusters based on the
signal data only. Next, the MoG algorithm is applied again
for individual cluster with the Cartesian co-ordinate as the
clustering criteria, if the number of clusters in the previous
step is small, and the size of the cluster is large. By the
end of these two steps, we obtain a probability model for
the entire fingerprinting database, and a small probability
model for each cluster (if applicable). When a user submits
his signal data to discover his current location, the system
uses these models to highlight the clusters that best fit the
user’s signal data. Finally, the members inside the chosen
clusters are compared directly with the user data to estimate
the user’s position.

4. EMPIRICAL EXPERIMENTS
4.1 'Testbed

We will evaluate the performance of our clustering scheme in
our office building, with a 48.1 m x 45.7 m floor plan. There
are 9 WLAN APs directly inside the building (Figure 3).
The WLAN adapter used to collect the signals are Atheros
AR928X WiFi 802.11b/g/n integrated in our netbook.

Our dataset has an emphasis on the signal variation by cap-
turing the signal repeatedly at each location. Such high
level of signal density is particularly useful for the readers
who wish to use our dataset with probabilistic approach ex-
periments. There are 6,600 examples in our dataset. 6,471
of these will be used as training data, and the remaining 129
are used as test data. The majority of our test points are
picked to be difficult to analyse, i.e borderlines points and
those with a high degree of signal similarity amongst others.
The distance between two consecutive training positions is
approximately 80 cm. At each position, we recorded the
signal data 200 times, in four orientations corresponding to
the North / West / South / East. The recorded signal met-
rics are Received Signal Strength Indicator (RSSI) and Link
Quality (LQ). We will use RSSI to evaluate our system in
this paper.

We provide the dataset publicly on our website®. To help
further research, we include all raw information such as
Channel ID, MAC address, orientation (N/W/S/E), both
RSSI and LQ. Different from other training sets, we also pro-
vide the full floor plan. Each data point is not just mapped
to the traditional Cartesian co-ordinate, but is also linked

Shttp://www.cs.rhul.ac.uk/~wruf265/
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Figure 3: The heatmap of our testbed, generated by Ekahau.

to a label on the floor plan, such as door tag, room num-
ber. Therefore, many data points can be recognised by their
geographical information.

4.2 Evaluation Criteria
Using the above testbed, we aim to answer the the following
questions.

1. Can clustering increase the tracking accuracy?
Ideally, our target is to maintain the same position-
ing accuracy with or without clustering involved in.
However, by pinpointing the most relevant areas of in-
terest (clusters), we may avoid redundant signal data
examples, and the final prediction result may improve.

2. How much computation overhead our system
can reduce? There are two computational heavy pro-
cesses for fingerprinting. The first one is generating
clusters from the off-line training data, and the second
one is to find the correct cluster(s) for on-line position-
ing. We will assess both of the processes.

We will compare our clustering scheme against KM and
FCM. KM is a well-known hard clustering algorithm which
partitions data into distinct clusters. Since our clustering
scheme use the same value of k, it is natural to choose KM
as a competitor. On the other hand, FCM clustering is an-
other popular clustering algorithm to produce overlapped
clusters, which is one of the criteria to evaluate our algo-
rithm. Since the design of our system is modular, we will
evaluate individual steps, and the result of the entire process
at the end.

4.3 Generating Clusters from Fingerprinting

Database Evaluation
Figure 4 visualises the progression of the clustering process
in our office from 1 cluster to 10 clusters. The data points
are clustered based on the RSSI, then plotted on a 2-D map.
With KM clustering, each group of data is virtually sepa-
rated, while MoG allows a much higher degree of freedom for
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Figure 2: The progress of our clustering scheme.

overlapped clusters. Since each data point has a posterior
probability corresponding to the likelihood of appearance
for each cluster, the highest probability was used to decide
which cluster the data point belongs to for MoG.

The main purpose at this step is to identify a near-optimal
number of clusters k, based on AIC and BIC. Figure 5 sug-
gests that the lowest value of BIC is around k& = 17, while
AIC shows a decreasing trend, where lower values are associ-
ated with much higher k, tested with all number of clusters
from 1 to 50. The allocation and positioning accuracy (to
be evaluated soon) proved that BIC was a better indica-
tion to select k with our fingerprinting dataset. Our result
was similar to early theoretical reports that AIC tends to
overestimate the number of clusters when used in mixture
models [2, 4, 16].
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Figure 5: Optimal number of clusters with AIC and BIC.

4.4 Deriving Sub-clusters Evaluation

As discussed earlier, this step is only useful if the total num-
ber of clusters is small, and the cluster size is big. Figure 6
demonstrates the size of individual cluster, as well as the
mean and variation of a whole set of clusters generated by
each k = [1,50]. For each k, we ran the test 100 times with
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different initialisations, i.e different initial centroids for KM
and different initial values for MoG. As the total number of
clusters k increases, the box plot of MoG spreads out more,
which shows a high degree of variation amongst the clusters’
size. With MoG, we also noticed very big clusters, in pro-
portion to the smaller size of other members, demonstrated
by the red dots. On the other hand, KM maintains a steady
size for its clusters, with very little variation. Combined
with the result in the previous step, where the optimal k
was suggested to be relatively low around k£ = 17, deriv-
ing sub-clusters may benefit the positioning accuracy, to be
evaluated later.

Importantly, we noticed that FCM failed to produce
the correct number of clusters, for certain values of k,
such as 38,42,44,45,48,49 and 50. In our test, this happened
more often with high dimensional vector or big k. Despite
our effort in attempting different search iterations and im-
provement criteria, FCM did not manage to assign mem-
bers to all required k clusters, resulting in several empty
clusters. Previous work in FCM and fingerprinting did not
report this issue with their dataset, although we notice that
their datasets were much sparser and did not capture the
full signal variation in different orientations as ours [17, 22].

4.5 Selective Clusters Evaluation

For a test sample A = (RSSI4,La), we used the Cartesian
co-ordinate L4 to judge the decision making of the cluster-
ing algorithm. Normally, this Cartesian label is not available
during the positioning stage, where only the signal informa-
tion RSSI4 is supplied from the user. The test sample A
is decided to be correctly allocated to cluster X if the Eu-
clidean distance between L4 and the average of all members
of X is minimal. If there exists a cluster Y whose members
are closer to L a, we mark this sample’s allocation as incor-
rect. It is worth noting that even if a test sample is flagged
as incorrect allocation, it does not mean the positioning ac-
curacy will suffer heavily, since the clusters generated by
MoG are overlapped.
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Figure 6: Individual cluster size, mean and variation.
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Figure 7: Number of correct allocations based on Cartesian
label.

Figure 7 gives a good indication of what MoG achieved
with or without sub-clusters, and with different values of
threshold 0. For our dataset, threshold values 6 < 0.95 did
not produce much impact on the number of selected clus-
ters, which showed that the majority of the members had a
strong confidence that they were in their correct cluster. We
need to set the maximum value 6 = 0.99 for our dataset to
achieve a higher rate of correct allocation with MoG. How-
ever, we spotted some exceptional signal data points being
allocated to the wrong clusters, despite having a high prob-
ability. Upon close inspection, these data points did have
a similar RSSI with other member of the same cluster, al-
though they are positioned further away - the typical sig-
nal attenuation phenomenon. These exceptional test points
were successfully put into their own clusters by applying
our sub-clustering scheme. Overall, with MoG, we let just
20% of wrong allocations for the majority of k, while KM
and FCM struggled from k = 10 with our dataset. In the
next section, we will discuss how these wrongly allocated
test points impact the positioning accuracy.
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4.6 Final Location Prediction Evaluation
When a user submits his new signal data for positioning,
we are interested in how accurate our proposed solution
is, in terms of the distance (i.e metre) between the user’s
actual position and the estimated position. We compare
three sets of performance in this section to highlight the
benefit of using sub-clusters, the accuracy enhancement (if
any) with/without clustering, and the positioning accuracy
of MoG, KM and FCM.
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Figure 8: Location accuracy with k=17 clusters.

For simple evaluation purpose, we use no machine learning
in this part. After the corresponding algorithm has iden-
tified the clusters which match the user’s new signal data,
we simply average all members of the clusters, and compare
to the actual position recorded in the test data. The reader
may treat these clusters as a new, smaller training data, and
applies his favourite algorithm to choose a few best signal
examples, rather than using the whole clusters.

At k = 17 (the optimal k as explained above), the estima-
tion error was improved from less than 2 metres, 85% of the



time to less than 2 metre error for 90% of the time (Fig-
ure 8). Compared to KM, our approach and FCM produced
better estimation at the same number of clusters, which con-
firmed the benefit of having overlapped clusters for finger-
printing. Finally, we employed a nearest neighbour approach
with the entire fingerprinting dataset for non-clustering ap-
proach. Starting from 1-nearest neighbour to 500-nearest
neighbours, we found the positioning accuracy of each case,
and averaged results of all 500 cases for every test data.
Compared to this non-clustering approach, MoG and FCM
slightly reduced the estimation error. Hence, by pinpointing
the most relevant clusters, we avoid redundant signal data
examples and improve the performance accuracy as a result.

4.7 Processing Speed Evaluation

The training time, which the clusters are generated, is un-
doubtedly the most time-consuming process. The bigger the
fingerprinting database, the longer it takes to generate clus-
ters. Figure 9 shows that KM is the fastest option amongst
the three algorithms to generate clusters, for any specified
total number of cluster. All three algorithms used the same
200 iterations for a single running cycle, and 100 random
cycles with different initial values (different initial centroids
for KM) were repeated for each number of cluster to warrant
data point convergence.
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Figure 9: Average cluster generation time comparison.

However, when it comes to on-line positioning, which
the user submits a new signal reading to discover
his location, MoG performs as quick as KM as seen
in Figure 10. This is expected, because we only need to
use the new RSSI data as an input for the Gaussian equa-
tion, along with the mean vector p and covariance matrix >
found in our model, to calculate the probability of this new
signal data for each of the k clusters. This is an advantage
for Mo, considering its prediction accuracy is much better
than KM and FCM as evaluated previously.

With non-clustering approach, every single training example
must be searched through at least once for every test data.
With our clustering approach for a total number of k clus-
ters, firstly, we need to look through the representatives of
k clusters once to choose a set of most relevant clusters for
each test data. Then, we need to go through every element of
this set to calculate the Cartesian position for the test data,
which is similar to how non-clustering approach works. The
smaller the value of k, the quicker the first process will finish,
yet, the size of individual clusters will be large. Hence, the
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Figure 10: Average positioning time by searching through
all clusters.

second process will run slower. In contrast, the bigger the
value of k, the faster the second process finishes. Figure 11
shows that the total number of training examples we need
to go through is almost 10 times smaller with our clustering
approach (90% computational reduction) with all number of
clusters from 1 to 50.
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Figure 11: Computation overhead reduction via clustering.

S. CONCLUSIONS

We have demonstrated our idea to tackle the slow searching
time during the on-line positioning phase of location finger-
printing with mixture of Gaussians clustering. With our
approach, the signal data is allowed to be a member of more
than one cluster. Our approach addresses the problem of
a user stands at the borderline of multiple clusters, where
the signal data may belongs to either cluster. Further, we
realised the key difference between fingerprinting and other
un-supervised problems, that is we do know the label (the
Cartesian co-ordinate) of the signal data in advance. This
key information was largely ignored in previous work, where
the fingerprinting data was clustered based solely on the
signal data information. By exploiting this information, we
designed a two-level clustering process, where each cluster
is further divided into sub-clusters based on their Cartesian
label. Therefore, we tackled the typical signal attenuation
phenomenon, which creates separated islands with similar
signal in the same building. Finally, in contrary to the con-
vention of choosing a single best cluster to represent the new
signal data from the user, we made use of the probability in-
formation of each cluster offered by mixture of Gaussians to
select a group of clusters for the on-line positioning phase.



We tested our solution in a real office building with harsh
indoor environments. Based on the empirical results, we
conclude that our approach effectively reduces the position-
ing time. More importantly, while KM does not perform
well with borderline signal data, our approach maintains a
low location positioning error, which was even slightly better
than the performance of non-clustering algorithm, thanks to
our attempt in pinpointing the most relevant areas of inter-
est (clusters).

Our future work is to integrate our clustering scheme into
a united fingerprinting system, which does not only tackle
the burden in maintaining and updating the fingerprinting
database, but also executes quickly in the real world with
huge training data. We plan to deploy our system in a larger
setting with the emphasis inside the adjacent rooms. Al-
though our clustering technique alleviates the computation
overhead to process the off-line database, the scalability of
the system still depends on the number of users operating at
the same time. We have a novel idea of lifting this burden
from the central server completely by providing the mobile
user a portion of the training database, which he needs to
work out his current position himself.
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