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ABSTRACT
The growing importance of ubiquitous and context-aware
computing has led to an increasing interest in location-based
mobile application. In this paper, we are going to describe
the concept of indoor localization, as well as a real-world ap-
plication to a museum. Indoor localization is a key feature
of FIBAC, a research project aimed at creating a system
prototype able to set up customized visit routes in museums
and art galleries, thanks to a Mobile App which will locate
the visitor within the environment. For these reasons in this
paper we are going to experiment fingerprint and trilatera-
tion algorithms by means of two real-case studies. Starting
from the analysis of the correct room localization rate and
the localization error of different scenarios we describe the
adopted approach within a real museum environment (i.e.,
National Archeological Museum of Naples). Experimenta-
tion has proven the feasibility of localization-based services
in this kind of context.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software; C.2.4 [Computer-Comunication Networks]:
Distributed Systems

General Terms
Algorithms, Measurement, Experimentation, Human Fac-
tors

1. INTRODUCTION
Detecting the position of the user is a key feature in most of
mobile applications. Many services provide useful informa-

tion related to the position of the user. The Global Position-
ing System (GPS) covers most of the surface of the planet
and the cost of GPS chipsets is continually decreasing, mak-
ing their integration into mobile devices easier.

However, GPS is unreliable in indoor environments, since
walls (e.g. offices, hospitals, museums) hinder the signals
transmitted by GPS satellites. Many recent research works
deal with the persisting issues of indoor localization. First of
all, since two rooms are generally closer than two streets, in-
door localization requires a higher localization accuracy. A
10-meter localization error in an outdoor environment is not
as important as it is in a building. Secondly, indoor localiza-
tion often needs a calibration phase which can be expensive
because of the high cost of the technologies required. Dif-
ferent research works are trying to address these issues as
indoor localization becomes more and more widespread in
several domains.

Localization Based Services (LBS) are crucial in the tourism
domain and context-aware information could make the dif-
ference between relevant information and redundant news.
In particular, we have focused on the environment of a mu-
seum, where context-aware information can characterize users’
visits, thanks to a customized application specifically de-
signed for mobile devices, which will provide the visitor with
a personal guide within an unknown environment. Indeed,
the identification of the room visited by a user can enable
content related to the room itself and its artworks.

The purpose of this paper consists in analyzing the state-of-
the-art of indoor localization, experimenting this technique
in the context of a museum. In particular, we have consid-
ered two real-case studies: (i) an office and (ii) the National
Archeological Museum of Naples, where visitors can admire
the artworks on the base of their arrangement on the walls of
each room. The first case study was investigated in order to
compare existing localization techniques by simulating typ-
ical visitors’ routes, while the second one (a real museum)
was considered in order to validate the selected approach.
This latter scenario led to some research questions about
the success of the localization rate in a museum, which is the



main domain of application of the FIBAC project (Fruizione
Innovativa dei Beni Artistici e Culturali - Innovative Fruition
of Cultural Heritage Assets). FIBAC is currently an ongo-
ing project (it is expected to end in 2015) conducted by
Poste Italiane, University of Salerno and some small and
medium Italian enterprises, such as Protom Group, Space,
Meta, Nexsoft, and Lit Com. The project is focused on the
definition of a system for the dynamic generation of cus-
tomized routes in museums and art galleries in order to de-
liver customized and context-aware information which will
allow a better understanding of the artworks, on the base of
a narrative structure. Out of all the different objectives this
project aims at, this research work takes into account the
specific aspects of indoor localization in museums.

The paper has been arranged as follows: Section 2 provides a
brief overview about the context of the museum and indoor
localization systems; Section 3 describes related works and
localization technologies; Section 4 and 5 present the exper-
imentation carried out; Section 6 describes the real-world
application and Section 7 outlines conclusions and orienta-
tions for future research.

2. MUSEUM INDOOR LOCALIZATION
Information technology has changed the relationship between
visitor and museum [4]. In the past, museum communication
was usually delivered through consistent informative panels
and brochures. Today, new media and social channels allow
a shared dialogue between users and museums which actively
involves both of these subjects [5]. Recent national stud-
ies outlined three different scenarios: i) the Pragmatic Mu-
seum; ii) the Matrioska Museum and iii) the Playable Mu-
seum. Each one of them emphasizes a specific aspect of the
museum experience, such as, respectively: i) customization;
ii) in-depth analysis; iii) the possibility of playing games.
More specifically, “Pragmatic Museum” is focused on the
customization of both the duration and the content of the
visit, according to the organization of the user. This sce-
nario requires Web, e-Collaboration and mobile localization
technologies. “Matrioska Museum” provides content and
customization on the base of the specific requests of the
user. This scenario requires smartphones and connectivity,
RFID and GPS. Finally, “Playable Museum”, where edu-
cation goes hand in hand with entertainment.This scenario
requires interactive technologies and systems, in order to in-
volve communities in virtual environments. The common
aspect of these three scenarios is the mobile device. In 2007,
Marota [8] identified 6 different usage patterns for a mobile
device during a visit to a museum:

1. Informative: the device integrates pictures, videos and
other typical functions of audio-guides into the ap-
proach of a paper travel guide, so as to direct users’
attention more effectively. The inclusion of accessi-
ble contents breaks the sequentiality arranged by the
curator and expands the physical space expands the
physical space of the museum, leading it through vir-
tual channels to potentially borderless areas.

2. Prosthesis: the device is designed as a tool which al-
lows the manipulation of digital experiences. Marota
[8] states that remodeling a sculpture or changing the

colors of a painting offers visitors a more practical con-
tact with artworks, which takes concrete shape when
information is delivered through procedural learning
schemes.

3. Consultant/Prompter: the device works like an expert
guide who suggests artworks in the exhibition which
can potentially interest the user (according to spe-
cific criteria such as the author, the artistic movement,
iconography, and so on). It reacts to inputs from the
user, processing them so as to offer a new interpreta-
tion of the wider idea of museum. During the visit, it
can also suggest merchandise related to the preferences
of the user, exploiting the emotional effects artworks
produce on him/her.

4. Navigator: thanks to the use of multiple technolo-
gies, the device provides spatial orientation through
the halls of the museum, showing the visitor artworks,
services and other areas of interest.

5. Communicator: thanks to audio message functions,
the device enables communication within the museum
and during the visit, so that visitors can share their
experience and the museum administration can send
them relevant information and promotional messages.

6. Witness: the device works as a private or public mem-
ory of the visit experience. In the former case, visitors
can acquire the information delivered during previous
visits and stored in third devices, just by accessing
them through their own device, so as to extend the
visit experience itself and foster a sense of belonging
to the museum as an institution. In the latter case,
the museum becomes a database of collective knowl-
edge through the collection of assessments, comments
and opinions expressed by users.

The thematic roles proposed for the device have been de-
signed according to the habits, preferences and needs of both
visitors and operators. By comparing the results of 4,549 in-
quiries carried out during two different surveys (in 1999 and
in 2011), a recent study [13] has shown changes in the taste
and needs of Italian museum visitors over the past 12 years.
The data show that in Italy the majority of visitors is fe-
male (56%), Italian (58%) and graduate (64%). Only in the
13-14% of cases visitors are young (aged between 15 and 24)
or over 65, and they usually go to the museum with their
families and friends. Moreover, data show that 60% of vis-
itors have been informed about the exhibition proposed by
the museum (67% of which through the Internet). Services
offered by museums do not fully meet visitors’ expectations,
as 33% of them experience difficulties in finding the specific
information they are looking for. Users ask for thorough
information about the whole exhibition, its historical and
geographical background, as well as specific details about
single artworks. Visitors’ interest is mainly focused on living
a sort of cognitive, aesthetic and hedonic experience. They
are willing to meet knowledgeable and experienced guides,
and 40% of them turns out to be favorable to the use of
technological tools (such as tablets and smartphones) dur-
ing the visit. The interest in the use of innovative devices is
inversely proportional to the age of the visitors interviewed.
These considerations has been confirmed by several studies



at international level. Indeed, the Smithsonian Institution1

affirms that technology in an art museum enhances the visit
experience, while the Sackler Gallery states that “four out
of five visitors believe that both videos and interactive de-
vices are useful in art museums”2 According to Goldman’s
work [3], visitors are favorable to the use of new technologies
and mobile devices. A museum visit is a dynamic experi-
ence, and the study carried out by D. Wessel and E. Mayr
[15] has shown that such an experience can be improved by
the use of technology in response to the need for a small,
lightweight and transportable device designed to give access
to the services offered by the museum. These features make
the device suitable to individual users, but not for the needs
of groups of visitors. On the basis of these considerations,
mobile devices can provide highly customized information as
they can be adapted to the characteristics of the visitor. The
possibility to use their own mobile phones allows visitors to
enjoy the whole visit, without wasting any time on learning
how to use a new device, so as to avoid cognitive overload
and reduce the cost of technology for the museum [1]. More-
over, LBS within museums are enriched using mobile device
in pre-visit and post-visit phases, allowing visitors to look
for additional information through the web. In particular,
pre-visit inquiries will enable visitors to identify artworks
and exhibitions which will interest them the most, giving
a greater focus to their visit, while post-visit inquiries will
allow them to deepen their knowledge by acquiring further
information and linked references.

IBM developed a particularly interesting app related to Ital-
ian museums, which is available (with some differences) both
for Android ad iOS. The device detects the position of each
visitor and suggests a “smART” tour with routes leading to
the different artworks. Moreover, the app allows the visi-
tor to photograph the QR code inside the MAXXI museum
(National Museum of XXI Century Arts) and acquire infor-
mation about the artworks located in each room. Similarly,
the American Museum of Natural History aims at ensuring
a better experience for visitors, both on-site and on-line, by
facilitating the navigation, by providing an application that
encourages to repeat the visits, and by improving the in-
formation without affecting the exhibitions. This app was
developed for the iOS operating system, and studies have
proven that Wi-fi triangulation allows an identification of
the location inside the museum accurate enough to detect
the exhibition hall where the visitor is.

3. LOCALIZATION TECHNOLOGIES
Several relevant projects concern issues related to localiza-
tion within museums and, more generally speaking, indoor
localization. The i-Locate project is focused on three scenar-
ios: (i) Guidance of patients through a health care path, (ii)
Smart tracking and asset management for lean asset man-
agement models, and (iii) Guiding visitors to reach specific
indoor locations3. In particular, the third scenario implies
location-based e-gov services, and the museum experience is
an example of their application. In this domain, the PEACH

1http://www.si.edu/
2Institutional Studies Office, America Meets Asia: A Report
based on the 1995-1995 Freer Gallery of Art and Arthur M.
Sackler Gallery Visitor Study (Washington, D.C.: Smithso-
nian Institution, 1995).
3http://www.i-locate.eu/

project (Personal Experience with Active Cultural Heritage)
has produced a multimedia platform able to localize the visi-
tor in the museum rooms. InLite [11] is an indoor navigation
system that uses pseudo satellites to locate subjects in big
multi-level buildings.

3.1 Methodologies for indoor localization
In 2010, Jorge Torres-Solis et al. [14] classified some selected
papers, related to the indoor localization context, into five
categories (i.e., radio frequency, photonic, sonic waves, me-
chanical, other) according to the physical quantities mea-
sured (see Fig. 1).

Figure 1: Taxonomy of indoor localization technolo-
gies [14].

Fig.2 summarizes the technological details, the localization
technologies and the metrics Torris-Solis adopted for the
above-mentioned classification. The acronyms used stand
for: TR for triangulation, PR for proximity, SA for scene
analysis, DR for dead reckoning; T time, D direction, I in-
tensity, and O other.

An in-depth analysis of such technologies has shown that
the systems based on WLAN, Bluetooth, ZigBee and UWB
technologies are characterized by simple and cheap archi-
tecture. On the other hand, these technologies are able to
produce just a rough localization (as they’re characterized
by a meter-level accuracy), they often require an off-line
work-phase in order to track the signal and they’re very
sensitive to noises and environmental changes. n addition
to the need for signal mapping, LTE and WiMax-based sys-
tems also suffer from a lack of infrastructures. RFID and
NFC-based systems offer a centimeter-level accuracy but
have a limited operative range. Setting them up is not ex-
pensive, since the RFID TAG are very cheap and the NFC
technology is installed on a lot of smartphones. Systems
using the Pattern Recognition offer a good accuracy (less
than a meter) and are able to direct the user. However,
their performances are highly affected by light conditions.
Systems based on Dead Reckoning are very resistant to en-
vironmental changes, and provide a continuous upgrade of
the position of the user. Unfortunately, these systems must
be constantly calibrated due to their tendency to accumu-
late error. In 2003, radio waves were taken into account in
order to locate the position of the user through specific algo-
rithms. Wi-fi radio waves had been initially used, but they
were then replaced by UWB and Bluetooth. In 2008, sev-
eral studies examined ZigBee-based localization systems, as
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Figure 2: Taxonomy of methodologies/technologies
for indoor localization.

well as the sensors embedded in the last generation of smart-
phones, that are able to realize dead reckoning techniques.
Although all these kinds of techniques are very interesting,
the experimentation described in this paper will be focused
on radio-frequency-based technologies, which can be classi-
fied as follows:(i) Personal Area Network (PAN) and Local
Area Network (LAN): IEEE 802.11 (WLAN); IEEE 802.16
(WiMax); Bluetooth; ZigBee; Ultra-Wideband (UWB); (ii)
Broadcast and Wide Area Network : mainly WAN networks;
and (iii) Tag (RFID, NFC). Thanks to PAN and LAN, mo-
bile device localization can be carried out through one of the
solutions proposed, or even through a hybrid solution which
combines together two or more of the above-mentioned tech-
niques. Fingerprint or Triangulation algorithms are usually
used in order to locate a device. The most common met-
rics are those based on time, direction, and intensity of the
radio signal. The following paragraph show an overview of
the PAN and LAN technologies for indoor localization, high-
lighting the relevant scientific studies.

3.2 Algorithms
Localization algorithms can be classified into two main cat-
egories: (i) Geometrical: these kinds of algorithms locate
the position using geometrical principles and rules; Scene
analysis (Fingerprint): these kinds of algorithms locate the
position using a prior mapping of the environment. More-
over, there are hybrid algorithms that locate the position by
combining several techniques and exploiting the difference
between each technique’s error rate. The device used to lo-
calize will be called MS (Mobile Station) and the localization
stations will be called BS (Base Station).

3.2.1 Geometrical Algorithms
Lateration is a technique that calculates the position of a
device by measuring the distance between the MS and a set
of known and fixed points, which are the BS’s. In trilater-
ation algorithm, if the position of the BS is known, as well
as its distance from the device (MS), the position of this
latter will coincide with one of the endless points located on
the circumference whose center matches with the position of
the BS and whose radius coincides with its distance from the
device. If this operation is repeated for each one of the three
BS’s, three different circumferences will be generated, and
the position of the device will coincide with the point stand-
ing simultaneously on all of the three circles [4]. Basically,
in order to determine the position of a MS it is necessary:
(i) to detect the wi-fi signal, (ii) to identify BS, and (iii) to
deduce its position by interpreting the intensity of the signal
in terms of distance.

The hyperbolic lateration [4] is based upon the calcu-
lation of the of the difference in distance between the MS
and 2 BS’s. The use of measurement techniques in order to
estimate the difference between the two distinct estimated
times of arrival will make it possible to put some limits to
the potential position of the MS within the space considered.
The MS position will be located on a hyperbolic line, with
the two BS’s as focus points. Three BS’s generate three hy-
perboles (even though two are enough), and the MS position
will coincide with their intersection. The triangulation al-
gorithm is based upon the direction of the MS arrival signal
estimation made by the BS. In this algorithm the position
of the MS can be determined by the intersection of sev-
eral couples of angles direction lines, each joining the single
BSs to the MS. An advantage is that this algorithm does
not need any synchronization time. On the other hand, the
hardware needed for its implementation is very complex and
the estimation of the position get worse in relation with the
distance between MS and BS since the signal is subject to
multiple reflections. Finally, the proximity algorithm [7]
is based upon the creation of a thick grid of antennas (BS),
each one of them in a known position. When a device (MS)
is detected by an antenna, the position of the device will
coincide with the position of the antenna. When the device
detects the signal of multiple antennas, the MS position will
coincide with the position of the antenna transmitting the
strongest signal, or with a position equal to the weighted av-
erage of the different measurements carried out. This system
is mainly implemented by infrared and RFID technology.

3.2.2 Fingerprint
Fingerprint algorithms, also named ”Scene Analysis”, are
mainly used for wireless localization, thus it is possibile to
use them in different contexts as well, such as localization
through video cameras or passive infrared sensors. Scene
Analysis algorithms consist of two different phases [10]:

• Offline or training’s, when the radio map, when the
radio map, including all the signal levels for different
space points, is created

• Online, in which the position of the device is deter-
mined using localization algorithms based upon the
matching of the measurements acquired.



At the end of the first phase, the device, that detects the sig-
nal, compares it with the measurements obtained during the
training phase, estimating the device position on the base
of the similarity between the actual measurement and the
one recorded during the training phase. The similarity be-
tween the measurements can be calculated in several ways,
but the Euclidean distance is often used. For instance, if
we consider the measurements of N access points related to
the two phases, (S1, S2, . . . , SN ) for the offline phase and
(R1, R2, . . . , RN ) for the online phase, the Euclidean dis-
tance is calculated as follows:

E =
√

(S1 −R1)2 + (S2 −R2)2 + · · ·+ (SN −RN )2

Roxin et al. [10] classified two different types of algorithm
to use during the online phase: (i) algorithms with deter-
ministic techniques, such as Nearest Neighbour in Signal
Space (NNSS), Nearest Neighbour in Signal Space-Average
(NNSS-AVG), Approximate Point-In-Triangulation (APIT);
(ii) algorithms with probabilistic techniques ((such as the
conditioned probability principle and Bayer’s theorem [7]).

3.3 Remarks
Inquiries carried out on research projects, business solutions
and smartphone applications have revealed that, at the mo-
ment, only a few solutions for indoor localization are avail-
able, as well as that technological solutions fully integrated
into mobile devices are to be preferred for museums. Other
hardware solutions are still too expensive. Furthermore, the
Dead Reckoning technique, although integrated into devices,
still suffers from a severe limit related to error accumulation.
Although the importance of topographic information for a
visit to a museum has been made widely clear, out of all the
apps considered, only a few provide location-based services
at the moment. Wi-fi technology is usually preferred for the
rare cases when a tracking service is provided. Moreover,
it’s worth pointing out the fact that, although it is always
preferable to use localization systems as precise as possible,
a less accurate localization technique still can be effective in
order to provide useful information about artworks.

4. MATERIALS AND METHODS
The experiments described in this paper were conducted in
a typical office environment consisting of open space rooms
(see Fig.3) and in a real museum environment, i.e., MANN
(Museo Archeologico Nazionale di Napoli, National Archeo-
logical Museum of Naples) as depicted in Fig.4. Experiments
were conducted by a human operator carrying a smartphone
HTC Desire HD and Samsung Galaxy Tab2 with Android
OS. Three wireless devices (i.e., D-Link DIR-300 called“Dlink”,
Shintek Wireless G 54 Mbps called“Shintek”and Cisco AIR-
AP1121G-E-K9 called “Cisco”) were placed at the indicated
locations to cover the entire area in both experiments. In the
office environment the Access Points (APs) or Base Stations
(BSs) were placed at various heights from the ground (D-
Link: 1.72 m, Cisco: 2.33 m; Shintek: 2.15 m). In the mu-
seum environment the devices were placed at a lower heights
with respect to the previous ones for technical issues.

The hardware selection for experiment was heterogeneous
and low cost, which are a worst-case condition and represent
a generic network infrastructure not specifically created for
the purpose of indoor localization.

Figure 3: Office Environment showing the location
of the three wireless Access Points and the grid.

Figure 4: Museum Environment showing the posi-
tion of Access Points and the grid.

In Section 5, we are going to prove the variability of AP’s
signal power. Generally speaking, it should be highlighted
that Cisco AP presents an inefficiency exceeding of about
25%. Other APs do not show signal loss, but they have
extreme variability in signal power (14 e 15 dBm). It is one
of the worst cases, compared with situation of stable signal
power[12].

4.1 Procedure
As preliminarily described in Section 3, a typical system of
indoor localization needs two main steps, an offline phase,
in order to build a database of fingerprints of signals reached
from every access point, and an online phase, in which the
signal is acquired instantly.

First of all, a set of Reference Points (RPs) was selected, and
a Mobile Station (MS) was positioned in every RP in order
to measure the signal of different APs. Taking the hard-
ware used and the literature in this field in consideration, it
was regarded as appropriate to test three different types of
mapping: (i) with a single orientation, (ii) with four orienta-
tions, and (iii) with four filtered orientations. In the case of
single-orientation mapping for each one the 45 RPs selected,
the strength of the signals taken by each AP was considered
directly, without any alteration, and the database was filled
with the arithmetic mean of 100 scans. In the case of four-
orientation mapping, instead, the antenna directivity of the
mobile was considered, because there could be a different
sensitiveness depending on the orientation between mobile
and AP, as described in [2] and [9]. So for each RP 100 scans
were taken at 0◦, 90◦, 180◦ and 270◦. For these orientations
the arithmetic mean was calculated and the database was
filled with the new arithmetic mean of these values. Be-



cause of the instability of signals, caused by the commercial
hardware adopted, some filtering techniques were used in
order to remove erroneous spikes. So, for every orientation,
100 scans were taken as usual, and the mean values (μ), the
variance and the standard deviation (σ) were calculated. In
particular, the mean of the values belonging to the interval
[μ− σ, μ+ σ] was taken in consideration.

During the online phase, which typically consists in a simple
comparison between the signal acquired from the mobile at
runtime and the set of values stored in the database, two dif-
ferent typologies of acquisition were planned: (i) 100 scans,
from which the mean value to compare with those of the
mapping was calculated, (ii) 100 filtered scans, with a selec-
tion based on the comparison with the standard deviation,
such as it was planned for the offline step.

In order to validate the algorithms tested in the online step,
we planned to perform two different acquisitions of signals
for the comparison, a static one and a dynamic one. In
the former modality the device was stationary during the
acquisition performed for the online phase. In the latter
one, instead, the localization was performed while the user
was moving in the experimentation area.

4.2 Metrics
In order to measure the signal intensity for localization pur-
poses, the RSSI (Received Signal Strength Indicator) was
taken in consideration. In an empty space, the RSSI value
varies depending on the square of the distance d between
the transmitter and the receiver. Saying Pr(d) stands for
the received power depending on the distance d, we have:

Pr(d) =
PtGtGrλ

2

(4π)2d2

where Pt is the transmitter power, Gt is the transmitter an-
tenna gain, Gr is the receiver antenna gain, and λ is the
wavelength of the transmitted signal expressed in meters.
The propagation in an empty space is just an idealization,
since the signal propagation is affected by reflection, diffrac-
tion and scattering phenomena. Therefore, in order to calcu-
late the distance and carry out the localization it is necessary
to apply adjusting factors. RSSI decays with the square of
the distance as a function of the space it crosses [6], so that
the distance d for the trilateration algorithm is evaluated as
follows:

d = 10
10 log(P0)−10 log(Pr)

10α

where P0 indicates the signal intensity at a distance of one
meter and α is a coefficient of attenuation typical of the en-
vironment. The values of P0 were obtained by placing the
MS at a distance of one meter from each AP, and performing
100 scans. The mean RSSI value was used to determine the
three P0: 42.33 dB, 49.25 dB, and 41.25 dB respectively for
Cisco, Shintek and D-Link AP. Considering that a museum
is often situated in a historic building, where the walls be-
tween rooms are very thick and it is difficult for the signal to
cross them, or in large areas, where the signal does not meet
any hindrances, an empirical evaluation of α was selected.

5. EXPERIMENTATION
In this section we are going to describe the different exper-
imentation performed. First of all, we are going to analyze

the way signals’power differs as different mobile devices are
used (both smartphones and tablets). Secondly, we are go-
ing to test fingerprint and trilateriation algorithms described
in Section 3. Then, we are going to examine the results in
order to define pros and cons related to different options for
a real museum environment.

5.1 Experimenting signal strength detected by
two mobile devices

For the correct execution and interpretation of experiment
results, we need to estimate the signal strength of access
points. Fig. 5 shows a plot of the signal strength recorded
for the three APs, i.e., Shintek (see Fig.5(a)), Cisco (see
Fig.5(b)) and Dlink (see Fig.5(c)). Signal strength was recorded
by smartphone and tablet in 100 consecutive scans per sec-
ond in the same point of experimentation area. These mea-
surements were carried out twice. The second measurement
confirmed that the signal strength recorded by the access
point was very variable. In other words, data analysis did
not show any predictable behavior and so it is not possi-
ble to take countermeasures to limit the influence of this
uncertainty in the following tests.

Another important consideration is about the way smart-
phones and tablets are held. Antennas severely suffer from
the hindering effect caused by users’ hands. This problem
seems not so important when using a tablet, but it becomes
more relevant with mobiles, in which the antenna is located
at the top of the device. When the device is held in a verti-
cal position, the problem is almost negligible, but when the
device is held horizontally, there is a substantial decrease
of the signal which can adversely affect the efficiency of the
algorithm. The different sensitivity of the hardware and the
way the device is held affect the performance of localization
systems, producing a considerable decay in the quality of the
localization. However, this is a problem scientific literature
has rarely dealt with, and there is no single solution for it.

5.2 Fingerprint Algorithm Experimentation
In order to investigate the accuracy of the fingerprint tech-
nique, an office environment was selected (see Fig.3) as well
as k − nn algorithm, with a k value ranging from 1 to 7,
according to Li et al. [6]. Therefore, three scenarios were
tested, consisting in an online step with 100 scans and an
offline one with different types of mapping, as explained in
Section 4. For each test the localization process was carried
out in each RP and for every value of k. Once defined the
correct position (PR) and acquired the estimated position
(PS), it is possible to calculate the localization error (er), as
follows: er = |PR − PS |

In the first test (single orientation mapping) the k with most
instances and with minimum error is k = 6, in the sec-
ond test (four-orientations mapping) it is k = 5, while in
the third one (four-filtered-orientation mapping) it is k = 4
(even if for k = 5 a similar behavior was recorded).

Furthermore, it has been noticed that the RPs with the high-
est error rates are the one on the outer sides of the room,
typically affected by structural defects such as refraction and
multipath fading. Fig.6 compares the results obtained for
each algorithm in every RP. The graph also highlights the
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(c) Dlink

Figure 5: Variation of signal strength detected by
smartphone (black) and tablet (grey).

peaks of errors repeated in the same RPs.

The Correct Localization Rate (CLR) is the ratio between
the number of instances correctly located and the total num-
ber of occurrences. CLR can be defined at a whole-room
level (correct room localization rate) or at a specified level
within the room (i.e., 3, 4, 5, and 6 meters). In Table 1,
results show a success rate within the room for all of the
three configurations.

In order to thoroughly analyze these findings, in Fig. 7

0

2

4

6

8

10

12

RP
 (1

,1
)

RP
 (1

,2
)

RP
 (1

,3
)

RP
 (2

,1
)

RP
 (2

,2
)

RP
 (2

,3
)

RP
 (2

,4
)

RP
 (3

,1
)

RP
 (3

,2
)

RP
 (3

,3
)

RP
 (3

,4
)

RP
 (4

,1
)

RP
 (4

,2
)

RP
 (4

,3
)

RP
 (4

,4
)

RP
 (5

,1
)

RP
 (5

,2
)

RP
 (5

,3
)

RP
 (5

,4
)

RP
 (6

,1
)

RP
 (6

,2
)

RP
 (6

,3
)

RP
 (6

,4
)

RP
 (7

,1
)

RP
 (7

,2
)

RP
 (7

,3
)

RP
 (7

,4
)

RP
 (8

,1
)

RP
 (8

,2
)

RP
 (8

,3
)

RP
 (8

,4
)

RP
 (9

,1
)

RP
 (9

,2
)

RP
 (9

,3
)

RP
 (9

,4
)

RP
 (1

0,
1)

RP
 (1

0,
2)

RP
 (1

0,
3)

RP
 (1

0,
4)

RP
 (1

1,
1)

RP
 (1

1,
2)

RP
 (1

1,
3)

RP
 (1

1,
4)

RP
 (1

2,
2)

RP
 (1

2,
3)

er
ro

rs
 [m

] 

RPs 

K=6 K=5 K=4

Figure 6: Comparison between algorithm selected
in every test.

Table 1: Fingerprint Algorithm: CLR as a function
of K and localization threshold

K Room 3 m 4 m 5 m 6 m
6 100 % 22 % 49 % 78 % 89
5 100 % 36 % 58 % 82 % 93
4 100 % 36 % 64 % 73 % 87

we have plotted the number of occurrences which have a
localization error equal or lower than the one specified on
the x-axis. We can state that, for errors smaller than 5
meters, the best algorithm is k = 4, between 5 and 7 meters
it is k = 5 and for errors greater than 7 meters it is k = 6.
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Figure 7: Comparison between errors at varying k
values.

In the FIBAC project, whose aim is to localize the user in
the room, k = 5 was selected. In order to optimize the wait-
ing time, the test was repeated several times using different
series of scans. It has been proven that a reduction of the
number of scans from 100 to 10 makes the algorithm ten
times faster without affecting significantly its results.

Once selected k value was selected, the dynamic modality
was tested on two different routes. In the first one, about 90-
meter long, for most of the time the user had to walk close



Figure 8: Routes simulated for the dynamic modal-
ity.

Table 2: Fingerprint Algorithm: Mean and max er-
ror at varying route and number of scans.

Path Scans Mean error Max error

1 5 3.35 7.58

1 10 3.51 5.55

2 5 2.58 4.36

2 10 2.88 4.26

Table 3: Fingerprint Algorithm: CLR at varying
route and number of scans.

CLR

Path Scans Room 3 m 4 m 5 m 6 m

1 5 100% 51% 70% 82% 87%

1 10 100% 47% 63% 81% 94%

2 5 100% 72% 86% 97% 100%

2 10 100% 68% 87% 100% 100%

to the walls, while in the second one, which was a little bit
shorter, the user had to cross the experimentation area (see
Fig.8). The purpose of this choice was to simulate typical
behaviors of cultural visitors, according to the way relevant
literature describes them.

For each route the algorithm was launched three times, with
5 and 10 scans, in order to make experimentation results
more reliable. The localization error rarely exceeds 5 meters
when the user walks the first route, while it rarely exceeds
4 meters when he/she crosses the experimentation area. As
shown in Tab.2 and Tab.3, using 10 scans instead of 5 implies
lower computation time and leads to better results, even
when the visitor was walking close to the walls. In both
cases, anyway, the room was correctly detected (see Tab.3).

5.3 Trilateration Algorithm Experimentation
Similarly to the fingerprint experimentation, trilateration
was tested in an office environment (see Fig.3).

Such as in the case of fingerprint experimentation, experi-
mentations were conducted according to two modes, a static

Table 4: Trilateration Algorithm: CLR without cor-
rection and with correction.

Algorithm 3 m 4 m 5 m 6 m

Trilateration 28.8% 42.2% 46.6% 55.5%

Trilateration
with correction

28.8% 44.4% 53.3% 64.4%

one and a dynamic one.

In order to compare the data obtained with the two different
techniques for the static mode, the Trilateration algorithm
was applied to the RSSI values detected during the finger-
print experimentation. The test was repeated three times
and the data obtained are presented in the following charts,
where, for each point of the map, the error in estimating the
exact position (in meters) is shown (grey bar). In case the
estimated point is located outside the grid area, it is possi-
ble to apply correction mechanisms. Such mechanisms tend
to replace the item with the one estimated on the edge of
the area closest to the testing point itself. Fig.9 shows the
error in meters with the correction technique (black bar).
Using this simple correction, it is possible to reduce errors
and improve significantly the algorithm.
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Figure 9: Error for each RP for trilateration (grey
bar) and trilateration with error correction (black
bar).

With this simple correction, the success rate is improved
(compared to the case of standard trilateration), especially
for severe errors (see Tab.4).

The second and third tests confirmed the results of the first.
The results obtained with the static mode for trilateration
show an error of 6 meters. So the performance of the al-
gorithm was quite poor and success rate has never reached
70%.

Experimentation with the dynamic mode was conducted in
an office environment with the same routes and procedures
used for the fingerprint experimentation (see Fig.8). Tra-
ditional trilateration and error correction techniques were
taken in consideration, and the results obtained through the
dynamic mode on the base of 10 scans (i.e., average CLR



Table 5: Trilateration Algorithm: CLR at varying
path.

Path Correction 3 m 4 m 5 m 6 m

1 No 15.53% 34% 54.13% 60.63%

1 Yes 15.53% 37.92% 56.20% 65.53%

2 No 26.67% 31% 38.33% 50.83%

2 Yes 26.67% 35% 46.67% 65.83%

for a series of 3 tests) are shown in Tab.5.

Results in both routes show how trilateration leads to ac-
ceptable results for an error around 6 meters, while the per-
centages of success are very low for errors of 3-4 meters.
Although the performances are similar for the two routes,
the route 2 shows slightly lower errors due to the fact that
it takes place in the innermost part of the area so that its
points are less affected by errors due to multipath fading,
reflection and refraction. On average, the error is about
5.5 meters, but it is nonetheless possible to find peaks that
reach 12 meters. Although correction techniques can lead
to better results, the maximum error is still quite high and
it can produce a false detection of the room where the user
is located.

5.4 Comparing trilateration and fingerprint
In order to compare the experimentation results obtained
from the algorithms described, first of all, success rates in
the dynamic mode were analyzed, since its characteristics
are quite similar to the ones of a museum scenario.

Comparing Tab.3 with Tab.5, it is possible to state that fin-
gerprint techniques show better performances than trilatera-
tion. There are two reasons for this: the fact that the signal
is characterized by spikes and the hindering effect caused by
objects which do not allow a correct translation of the signal
intensity in distance. In addition, the translation of RSSI
in distance still is a matter of discussion among researchers.
On the other hand, fingerprint requires long times for the
offline step: this can take up to 100 hours for a building
of reasonable size. Moreover, this technique can suffer from
changes in the environment.

In conclusion, it is possible to assert assert that trilateration
algorithm shows better performances from the point of view
of adaption to changes. For example, the addition or the
removal of an AP in the trilateration algorithm would just
require to add or delete a value stored in the database, while,
in the fingerprint algorithm, it would require to calculate the
offline step again. After all since the fingerprint algorithm is
not affected by hindering effects, as they’re included in the
signal value, it produces better results in terms of precision
and correctness. For these reasons, the fingerprint algorithm
was selected as the ideal candidate for the validation phase
in a real-world application at MANN museum.

6. REAL-WORLD APPLICATION
As mentioned before, for the validation phase a simulation
in the National Archeological Museum of Naples was per-
formed (see Fig.4) in order to prove the feasibility of the

selected algorithm in a real museum. In particular, we se-
lected two rooms dedicated to the “Tempio di Iside” on the
first floor of the museum, as shown in Fig.10.

Figure 10: Isis’ Temple: Rooms used for the exper-
imentation.

The algorithm selected, as mentioned before, is fingerprint
with k values ranging from 1 to 7, described in previous sec-
tions. For validation purposes, obviously, we used the same
hardware of the experimentation inside the office and, in
order to compare the results with those obtained in other
experimentations, also the same mapping, with a 3x3 grid,
which produced, in this case, a result of 21 RPs. Unfor-
tunately, it was not possible to install the APs at exactly
the same height, but we placed them on mobile supports
near the electrical sockets available. Inside the museum, as
a result of preliminary simulations, an offline step with a
four-orientation mapping was planned. The online step, in-
stead, was simulated in a dynamic mode (along the route
shown in Fig.11) using 10 scans.

Figure 11: Isis’ Temple: Visitor’s route.

In this phase, we also tested the k − nn algorithm with k
ranging from 1 to 7. Fig.12 shows the number of times
every algorithm produces the specified errors in meters. In
this case, as in the office environment, the best behavior
coincides with k = 5, in which we find a mean error smaller
than 6 meters as well as the smallest maximum error.

In MANN experimentation we detected a mean error equal
to 2.88 m (maximum error is 5.99 m), a correct room local-
ization rate equals to 96%, CLR3m = 62%, CLR4m = 67%,
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Figure 12: Isis’ Temple: Errors.

CLR5m = 81%, and CLR6m = 100%. On average, the al-
gorithm has a similar behavior in both the environments.
Structural and architectural characteristics of the museum
caused a higher attenuation of signals in different rooms and
therefore a better distinction of fingerprints. This kind of
analysis also revealed that in historic that in historic struc-
tures such as MANN, it is often necessary to install one AP
per room, because for each AP the signal can propagate it-
self for no more than two rooms. Different considerations
arise if the museum is composed by very large rooms such
as large exhibition areas.

7. CONCLUSIONS
In this paper we have investigated fingerprint and trilatera-
tion algorithms in two real-case studies. We aimed at com-
paring the two approaches in an office environment and at
suggesting a specific approach for the museum environment.
Experimental results have proven that trilateration shows
better performances in terms of adaption to changes (e.g.,
an addition or a new AP). On the other hand, fingerprint
shows better results in terms of precision and correctness.
The application of our results to the National Archeological
Museum of Naples confirmed the highest correct localization
rate at room level (i.e., 96%) and a mean error of visitor’s
position of 2.88 m. The results also confirmed the possibility
to implement a location-based service for museum visitors.
Indeed, in future research, we are going to examine a visi-
tor’s experience in a large museum in order to define his/her
real behavior and analyze the common patterns. Thus, by
detecting the position of the users, the system will provide
localization-based services in terms of customized contents
related to the rooms and artworks they admired during their
visit to the museum.
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