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ABSTRACT
Hospitals and residential homes have a significant need for
monitoring and recognising wandering-off (e.g. elopement)
older people with cognitive impairments because of the seri-
ous consequences arising from wandering-off such as disap-
pearances and serious injuries, for example, from collisions
with vehicles in parking lots. Due to increasing ageing pop-
ulations across the globe we can expect wandering-off to
become a significant problem of scale affecting all of us. Ex-
isting technologies used to address wandering-off are inade-
quate for providing close supervision as they use proximity
based sensing that often lead to false alarms. In this study,
for the first time, we try to mitigate false alarms by identify-
ing the traversal direction and traversal path used by people
instrumented with a single low cost batteryless UHF RFID
tag. Our approach uses a particle filtering (PF) based tech-
nique with Received Signal Strength Indicator (RSSI) maps
obtained from scene analysis to continuously track a person
wearing an RFID tag over their attire. Using real-time spa-
tial and temporal data obtained from the PF based tracking
algorithm, we develop two algorithms: i) tag traversing di-
rection (TD) algorithm to identify the tag bearer’s moving
direction (e.g. moving out of a room); and ii) tag traversing
path detection algorithm (TPD) to estimate the traversal
path used by the tag bearer. Our extensive experiments with
14 young adult volunteers show that: i) our TD algorithm
can identify the moving direction of a person with 100% ac-
curacy; ii) our TPD algorithm reduces the false alarms to <
9%, when detecting the traversing path used while eloping;
and iii) our algorithms can be implemented in a different
environment without further scene analysis.

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Scene
Analysis—Tracking ; C.3 [Special-Purpose and Applica-
tion - Based Systems]: Real-time and embedded systems
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1. INTRODUCTION
Wandering-off (e.g. elopement) [6] among older people with
dementia, Alzheimer’s disease (AD) and other cognitive im-
pairments are common [2, 12, 18, 4]. Wandering-off may
result in serious consequences such as getting lost, collision
with vehicles or even death and the responsible aged care
service providers are liable for such actions [2]. Therefore,
continuous monitoring among wandering-off patients is es-
sential. Due to ageing populations around the globe, occur-
rences of wandering-off incidences are expected to increase.
It is estimated that, by 2050 the number of people with AD
is expected to be around 900,000 in Australia [2] and about
16 million in U.S. [2]. Monitoring and recognising these
patients when they are exiting cared areas with a reliable
system can minimise the occurrence and associated risks of
wandering.

Current technologies [6, 25, 27], that address wandering-
off are mostly boundary alarms that use simple proximity
based sensing. As a result, false alarm rates (i.e. incorrectly
detecting that the person has walked through the doorway
when they are still in the cared area) are high in these sys-
tems [6]; also, information about the traversal path used by
the older person is non-existent. Using such technologies
to provide continuous care to prevent wandering-off can be
challenging, stressful and frustrating for caregivers [6].

RFID (Radio Frequency Identification) is an enabling tech-
nology in tracking applications. RFID is capable of auto-
matically and uniquely identify individuals [9]. In this study,
for the first time to the best of our knowledge, we introduce
Watchdog, a system to mitigate false alarms by accurately
and reliably identifying the traversal direction and traver-
sal path used by people instrumented with a single passive
RFID tag. Watchdog recognises the tag traversal direction
and traversal path by utilising a Particle Filter (PF) with
Received Signal Strength Indicator (RSSI) maps rssi map
obtained from the interrogation between an RFID reader
and a passive tag. Detecting tag traversal direction and
traversal path is vital among wandering-off older people be-
cause, the undesirable traversal direction of a person can be
known by a caregiver, for example, if a caregiver is aware
that a patient is moving out of their room, then the caregiver
can stop them from elopement or go in search of them imme-
diately after elopement. Furthermore, knowing the traversal



Figure 1: Example for probable direction of elope-
ment of patients in a hospital setting

path can be helpful to reduce the search space and to esti-
mate the level of risk associated while eloping. For example,
as shown in Fig. 1, knowing the traversing path used by
a patient is towards the right corridor, reduces the search
space in the event of an elopement. Knowing the travers-
ing path allows estimating the level of risk associated with
an elopement and help prioritise the searching process. For
instance in Fig. 1, if the patient has used a path forwards
to the main entrance then the associated risk with this path
is higher when compared to other paths.We summarise the
main contributions of our paper as follows:

• We propose an accurate and reliable system, Watch-
dog, to determine wandering-off among older people
wearing a low cost passive RFID tag attached over
their attire to alert the caregivers with identified traver-
sal direction and traversal path when the tag bearer
approaches or exits a doorway.

• We develop two algorithms, namely, traversing direc-
tion (TD) detection algorithm and traversing path de-
tection (TPD) algorithm to accurately identify the tag
traversing direction and tag traversing path, respec-
tively, used by the tag bearer from the spatial and tem-
poral data obtained from a real-time PF based tech-
nique.

• Finally, we implement the algorithms in two environ-
ments (a supervised environment and an unsupervised
but similar environment) and conduct extensive exper-
iments with 10 volunteers to evaluate the performance
and accuracy of our proposed algorithms. We also
compare the performance of our approach with travers-
ing direction (TD) detection and traversing path detec-
tion with scene analysis and demonstrate the superior
performance of Watchdog.

2. RELATED WORK
For a clearer overview we divide our discussion into three
parts. Firstly, we discuss some of the existing methods em-
ployed to prevent wandering-off. Secondly, we discuss litera-
ture that identify tag traversing direction, thirdly, we discuss
the traversal path detection techniques used with networked
RFID and finally, we discuss existing localisation methods.

2.1 Overview of Existing Alarm Methods
Uses of alarms on door exits is one of the well known tech-
nologies in monitoring older people. There are two types of
alarm systems [6]: i) alarms that sounds when the door is
opened; and ii) alarms that sound when a person wearing
a sensor (e.g. a battery powered wrist bracelet) approaches
the door. However, these kinds of alarms have several draw-
backs such as caregivers not hearing the alarm, inability to
immediately identify the location of the alarm, older people
removing the bracelet or battery of the worn device being
flat [6, 21]. Some of the recent researchers have used an-
droid powered phones [25] and battery powered WiFi tags
[27] to address wandering. However, a common drawback
for all the above mentioned technologies is the need to carry
bulky battery powered devices. Furthermore, in systems
that sound an alarm when doors are opened, automatically
and uniquely identifying an individual is still a challenging
task because door alarms sound when a person enters its
readable range and are not capable of differentiating care-
givers from patients. Therefore, even in case of hearing an
alarm, there is negligence among caregivers as alarms are as-
sumed to be triggered by a carer [6]. In contrast to existing
methods our PF based algorithms for continuous monitoring
of older people are robust and accurate and thus capable of
drastically reducing false alarms.

2.2 Traversing Direction and Traversal Path
Detection

Number of works that utilise passive tags for determining
tag traversal direction are limited. In [13], authors use sev-
eral antennas and record the tag events as they are detected.
Then using the order of events, tag direction is determined.
However, their research is conducted using relatively more
expensive active (battery powered) RFID tags to determine
the traversing direction of a tag. In [20], time intervals be-
tween tag detections by static reader antennas are used to
find the tag traversal direction, however, this method has
only been successful with dense tags (10 or more) and can-
not be implemented with single tag. In [30], direction of
arrival (DoA) is used to find the moving direction of a tag,
however, real-time evaluation of this method is not reported
in the paper. In [32], we developed two methods using tag
phase and its radial velocity to determine the direction of
a passive tag worn by a person. However, the accuracy of
identifying the tag traversal direction is less than 90% and
it is also likely to be adversely affected by higher walking
speeds of a tag bearer.

To the best of our knowledge, we are the first to study
traversing path of a tag bearer using passive RFID tags at-
tached to their outfit using fixed antennas. Although mobile
robots’ trajectories were investigated in [14, 11] by utilising
mobile antennas and fixed tags, mobile robots are mounted
with RFID antennas and their trajectories are determined
from the location of static (fixed) tags attached to walls.
These techniques relies on dense tag deployments on walls
to determine the trajectory used by the robot and have been
specifically designed for scenarios such as stock taking in su-
permarkets [14] where static tags are placed on shelving. If
these approaches are directly implemented in our problem
context then more resources are needed than what we cur-
rently use, for example, multiple tags have to be attached to



(a) (b)

Figure 2: (a) System overview (b) An example setup

the ground over the monitoring area. Also, patients have to
carry wrist worn battery powered RFID readers [21] instead
of low cost, lightweight and batteryless tags. In contrast, our
developed algorithms are capable of accurately and reliably
identify the traversal direction and path used by a person
instrumented with a single passive RFID tag.

2.3 Localisation Methods
Nevertheless, a number of localisation methods exists that
can be used to infer the tag bearer’s location. These RFID
based localisation techniques can be broadly classified into
three main categories [8]:

1. Distance based estimation: This kind of estimation de-
pends upon the use of properties of triangles such as
triangulation and trilateration [8, 16]. The range mea-
surement parameters are obtained from Received Sig-
nal Strength Indicator (RSSI) [10], Time of Arrival
(ToA) [13], Angle of Arrival (AoA) [28], Time Differ-
ence of Arrival (TDoA) [20] and Received Signal Phase
(RSP) [32].

2. Proximity based estimation: Proximity based estima-
tion is a kind of sensing technique which determines
how close an object is from a known priori location. If
a tag is detected by a reader antenna then the location
of the tag is assumed to be within the readable zone
of that particular antenna [16].

3. Scene analysis: Scene analysis consists of two distinct
steps [10, 19, 31, 22]. In step 1, information about the
features of the environment is collected and in step 2,
obtained real-time measurements are compared with
the previously collected data (from step 1) to infer the
current location of the object.

In [28], authors introduce a robust, fine grained RFID tag
positioning system that utilises AoA and proximity based lo-
calisation. In addition to these techniques, k -NN algorithm
is used to infer the desired tag location from the nearest ref-
erence tag. Passive RFID tags are used for both the desired
and reference tags. Landmarc [19] utilises scene analysis
technique to identify the spatial position of a desired tag
from reference tags with known locations. They first locate

the reference tags that are near to the desired tag and then
using the RSSI values and k -NN algorithm, the nearest tag
location is calculated. Some of the other works that utilise
scene analysis to localise the desired tag location with the
help of reference tags are discussed in [31, 22, ?]. In [31],
the authors localise the desired tag’s location by utilising
a 2D grid of reference tags and a proximity map, while in
[22], kalman filter based technique is used in locating the
desired tag and in [?] weighted centroid localisation and PF
are employed to track the objects. However, all the above
discussed methods, regardless of the technique they use, rely
on reference tags to localise the position of the desired tag.

In [29] indoor spatial queries are evaluated from a PF based
method. In contrast to other studies discussed, this work
does not need reference tags but introduces nodes and edges
all along the state space and assume that the object is mov-
ing only along the nearest edge by compromising on fine-
grain localisation. Also, the discontinuity in their antenna
setup does not allow continuous tracking of objects, instead,
objects missing over a period is assumed to be in one of
the rooms that is nearest to the last seen location. Al-
though such methods can be beneficial in a estimating spa-
tial queries, it cannot be directly implemented in determin-
ing the traversal direction and path. However, the research
methods used in [29] serves as a basis for our work which also
does not rely on reference tags. In contrast to [29] we are in-
teresting in continuous and accurate monitoring of temporal
and spatial coordinates of a tag bearer. In particular, our
Watchdog system is capable of identifying the tag traversing
direction (e.g. moving out of a room) and tag traversal path
from the raw RSSI readings obtained from a passive tag by
tracking the tag in real time and preserving the information
gathered in the past.

Except [29], all other localisation techniques discussed above
successfully localise a tag using more expensive active RFID
tags, in contrast, we use low cost, lightweight, passive (battery-
less) RFID tags which power themselves when they are in-
terrogated by an RFID antenna. Therefore the received sig-
nals in our system are often noisier and can only be used in
a limited working range. We are interested in using passive
RFID tags because they are maintenance free (batteryless),
unobtrusive and can be easily integrated into clothing as
washable passive RFID tags are already a commercial re-
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Figure 3: (a) State Space for scene analysis (b) rssi map for Antenna 1 (c) rssi map for Antenna 2 (d) Scene
Analysis

ality [3]. Also, hospitals are places where hygiene is a top
priority, so these low cost tags can be easily disposed. In
the next section we discuss an overview of our system.

3. AN OVERVIEW OF WATCHDOG
We introduce Watchdog, a real-time algorithm capable of re-
liably identifying the traversal direction and traversal path
used by a person wearing a passive RFID tag on their at-
tire. We named our approach Watchdog, because usually
watch dogs are trained to protect people from hazards. Also
their keen sense of smell is capable of identifying the travers-
ing path used by a particular person. Fig. 2(a) depicts an
overview of our system and Fig. 2(b) shows an experimental
setup of our system. The components we used in Watchdog
to address wandering off are: i) a four port RFID reader; ii)
four RFID antennas; iii) a passive RFID tag attached over
clothing and iv) two algorithms: detecting the tag traversal
direction and the traversing path used while eloping.

When a passive RFID tag enters the monitoring zone, the
4 mounted RFID antennas power and interrogate the tag in
order to obtain time of the read, EPC (Electronic Product
Code) assigned for each person, antenna ID that identified
the the antenna reading the tag and the RSSI value. Thus,
raw RFID reads r obtained here can be represented by the
schema: [t, patientID, ant, rssi ]. In contrast to the exist-
ing RFID localisation systems, Watchdog accurately identify
the traversal path used by a tag bearer without any refer-
ence tags deployed in the state space. Instead, Watchdog
employs an rssi map that depicts the state space features
through a scene analysis technique [10]. Further, Watchdog
enhances the system by utilising the spatial and temporal
data obtained from the PF because scene analysis is prone
to noise in RSSI measurements that can lead to location
uncertainty.

The following sections of the paper are summarised as fol-
lows: Section 4, describes scene analysis to acquire rssi map
individually, for each antenna deployed in the state space
and provides an overview of a baseline method using scene
analysis to determine TD and TPD; Section 5 describes the
PF based algorithms employed by Watchdog to to determine
TD and TPD; Section 6 presents the experimental evidence
to demonstrating the performance of our Watchdog system;

and we conclude our article in Section 7.

4. SCENE ANAYSIS
Before explaining the techniques involved in Watchdog we
perform scene analysis in the monitoring zone. First, we
partition the 2-D state space equally where the dimensions
of a partition is approximately equal to a walking step. We
denote the intersection of each partition with their x and y
axis as (x, y).

As shown in Fig. 3(a) the state space used in our experiment
is 6m in length and 2m in width, where we considered the
width of the state space along the x axis and the length along
the y axis. We divided the space in such a way that each
partition measures 25 cm in length and 25 cm in width. We
ask a tag bearer to stand static in each of these intersections
for approximately 4 seconds. Then, we calculate the mean of
the obtained RSSI values and generate an rssi map for each
individual antenna deployed in the state space. For example,
Fig. 3(b) and (c) show the rssi map for the two antennas
deployed in the inner side in our experiment scenario shown
in Fig. 2(b). The combined collected rssi map obtained from
all the antennas deployed reveals the RSSI features over the
state space.

4.1 TD and TPD with Scene Analysis
We employed scene analysis based approaches described in [10,
19, 31, 22] to serve as a baseline for evaluating Watchdog.
We utilise the scene analysis technique to detect the tag
traversal direction and tag traversal path. We partition a
sequence of tag reading r1:m = {(ti, rssii, anti)}mi=1 in a
non-overlapping fixed time segment δt for a given patientID
where t is the time stamp of a tag read, rssi is the Recer-
tify Signal Strength Indicator value and ant is the ID of the
antenna that captured the tag read at time t. From the se-
quence r1:m, we obtain the observation zt, by calculating the
mean RSSI value rssiant for each antenna ant that obtained
a tag read.

zt = {rssiant}ant=w
ant=1

where, the first time stamp t1 in r1:m is used as the time t
for the observation z and w denotes the number of anten-
nas that captured a tag response in the sequence r1:m. The
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Figure 4: (a) Supervised environment (b) Unsupervised Environment (c) Traversal path evaluated in the
experiments

obtained mean RSSI value rssiant is compared with the pre-
viously developed rssi map to infer the tag bearer’s location
and then subsequently determine TD and TPD.

Fig. 3(d) shows the result of directly comparing the rssiant

with the acquired rssi map to identify the tag traversal path
from the left corner of the state space to right corner. From
Fig. 3(d) it is clear that readings from the passive RFID
tags are highly noisy and no exact inference about the tag
traversal path can be made with just scene analysis. There-
fore in the next section we introduce a PF based TD and
TPD algorithms to overcome this location uncertainty.

5. PF BASED TD AND TPD ALGORITHM
A particle filter (also known as sequential monte carlo) works
in a recursive fashion to estimate the posterior distribution
of a hidden state (e.g., location of a patient) using the obser-
vations obtained (e.g., RSSI value) from the measurement
process [5]. Our approach is capable of continuously track-
ing the tag location with information about the tag travers-
ing direction. Our approach is also capable of overcoming
missed reads (false negatives) in the real time RFID data,
which are usually quite common in raw RFID data [23, 24].
Next, we explain the two critical models that are used to in-
fer the location of an object (e.g. tag) in a dynamic system.
They are: i) motion model; and ii) sensor model.

Motion model: Motion model or system dynamics de-
scribes how the system evolves from the time step t − 1
to the time step t.

lt = ft(lt−1, vt−1) (1)

where lt is the true state of the tag, and vt−1 is indepen-
dently and identically distributed (i.i.d.) process noise.

p(lt|lt−1) = p(lt|s, θ, lt−1) (2)

The motion model used in our system is shown in (2), where
l = (x, y) is the coordinate revealing the state of a tag. The
conditional probability p(lt|s, θ, lt−1), specifies the possible

motion of the tag from the previous iteration to the cur-
rent iteration, given the learning velocity factors: speed, s;
and direction, θ. We have considered building a model that
can dynamically adapt to the walking speed and direction
of a person. Initially we considered the moving speed s to
be the mean gait speed reported in [7] for people aged 40
and above and the probability of moving in any of the given
direction θ to be equiprobable where θ = {0o, 45o, 90o,...,
315o}. After every iteration we consider the difference be-
tween the predicted location and the estimated location to
additively increase the speed s to adapt to increasing walk-
ing speeds and multiplicatively decreasing speed to adapt to
the decreasing walking speeds and halts. The direction θ is
updated by multiplicative increases of the probability in the
direction of traversal in the previous time t-1 and decreases
in the probability of moving in all other directions.

Sensor model: Once there is an observation the measure-
ment model describes how the observation zt relates to the
true state lt of the system.

zt = ht(lt, ut) (3)

where ht is a possible non-linear function, and ut is i.i.d.
measurement noise.

p(zt|lt) = p(rssiant|lt, ant, rssi map) (4)

The sensor model p(zt|lt) used in our system specifies the
likelihood of obtaining a measurement z given the true state
of the tag lt. The probability of having a mean RSSI rssiant

for a given predicted location lt, antenna ID ant and the
corresponding map rssi map for ant is determined in our
sensor model. Below we discuss briefly the steps involved in
one iteration of the PF.

Initialize: The given particles are first initialised for the
state l. At time step t = 0, for N = 1,..,n sample the state
particles, lN0 ∼ p(l0)

Predict: Using the motion model predict the location of



Algorithm 1 PF based traversing path detection algorithm

Require: zt // rssiant, t
Require: N = state particles, where N = 1,2,..n
Require: rssi map // state space features from scene anal-

ysis
1: initialize the state particles N used in estimating the

traversing path to cover the whole state space in the first
time step

2: for ∀ particles in N do
3: at prediction, the motion model is used to predict lt

from N
4: if rssiant != [ ] then
5: update N using the sensor model
6: normalize and resample
7: end if
8: end for
9: estimate the most likely coordinates lt
10: traversing path.add(lt)
11: traversing direction algorithm (lt, traversing path)

the object at each time step. At t the state l ’s particles are
predicted to be in a location considering the state at t−1 and
the observations (z ) obtained so far. For N = 1,...,n, predict
particles, lNt ∼ q(lt|lNt−1, z1:t), where q(.) is an importance
function [5].

Update: On receiving an observation zt, the predicted par-
ticles’ locations are updated by weighting the particles using
the measurement model to obtain importance weights wt,
wN

t = p(zt|lNt ), where high weights are given to the parti-
cles nearer to the measurement.

Normalize: The particle’s weight are normalised. For N =
1,....,n, normalize the importance weight, wN

t = wN
t /

∑n
j=1 w

j
t .

Resample: Increasing number of PF iterations leads to
sample degeneracy, which means only few particles would
have non-negligible weights while the remaining would have
near-zero weights [5]. The resampling step eliminates the
lower weighted particles and replicates higher weight parti-
cles to generate a new set of particles with equal weights [29].
The new set of particles thus obtained is equal to the original
number of particles. For N = 1,....,n, set, wN

t = 1/n.

5.1 Traversing Path Detection Algorithm
We detect the traversing path used by the tag bearer using a
PF based TPD algorithm with prior knowledge of the state
space features. Algorithm 1 is called with the observation
z with mean RSSI rssiant at t. In line 1, we initialise the
N particles used in estimating the traversing path. In line
3, we predict the possible current locations from the motion
model. Line 4, checks whether the rssiant is empty, in order
to identify missed reads.

If there is a missed read in the real-time data, i.e., no read-
ing was obtained in time δt, then our TPD algorithm simply
predicts the current location and conclude the estimation
without updating and resampling. This is because update
and resample steps are only necessary when there is an ob-
servation (see lines 5 to 8). In line 9, we finally estimate the
(x,y) coordinates.

Algorithm 2 traversing direction algorithm

Require: lt
Require: traversing path
Require: get boundaries of zone A, zone B, zone C
1: if lt falls within zone A then
2: status = ‘In’
3: end if
4: if lt falls within zone B then
5: status = ‘Near door’
6: send an alert message to the caregiver with status
7: end if
8: if lt falls within zone C then
9: status = ‘Out’
10: send an alert message to the caregiver with status and

traversing path
11: end if

5.2 Traversing Direction Algorithm
In this section we explain the traversing direction algorithm.
From the estimated (x,y) coordinates from lt obtained from
the PF based TPD algorithm we find the tag traversing di-
rection. We classify the state space into three categories to
implement the TD algorithm: i) zone A is the space that is
covered uniquely by the antennas that are deployed in the in-
side region of the state space; ii) zone B is the space where
the reading zone of antennas deployed inside and outside
overlap; and iii) zone C is the space that is covered uniquely
by the antennas that are deployed in the outside region of
the state space. Our Algorithm 2, classifies the estimated lo-
cation lt of the tag bearer to a corresponding zone. If the tag
bearer is found approaching or entered the disallowed zones
an alert is given to a caregiver with the direction status and
the traversal path used by the tag bearer traversing path
(see Algorithm 2).

6. EXPERIMENTS AND RESULTS
We conducted extensive experiments in two laboratory en-
vironments (supervised and unsupervised) to evaluate the
ability of our algorithms to accurately identify the travers-
ing path and the traversal direction used by the tag bearer.
We further compare the results of our PF based TD and
TPD algorithm with the scene analysis technique described
in Section 4 as a baseline.

6.1 Settings and Data Collection
An overview of our system is shown in Fig. 3(a) and the ex-
perimental setup is shown in Fig. 4. The state space includes
an area with length=6 m, width=2m and height= 2.65m
from the ground level. We considered the wooden frame
(shown in Fig. 4) of 2m width and 2.65m height as the
threshold that partitioned the inside (cared area) and the
outside. Two antennas were deployed on inner side of the
frame and two were deployed on the outer side. The anten-
nas were located 0.75 m from the side of the frame. All four
antennas were inclined at 45◦ because a better illumination
of the state space was obtained at this angle. The four anten-
nas employed are circularly polarised antennas of model no:
Impinj IPJA1000-USA. We used an Impinj Speedway Rev-
olution UHF (Ultra High Frequency) RFID reader (R420)
and ‘Squiggle’ passive tags.
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Figure 5: (a) Initialisation (b) At first observation (c) Eloped from the secured caregiving area but still in
the reader detectable area (d) After complete elopement in the Right out direction
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Figure 6: (a) Effects of number of particles used in PF (b) Accuracy in terms of speed (c) Comparison of our
algorithm results with the supervised environment and a unsupervised environment

We considered 12 paths as shown in Fig. 3(c) where Right-
out to Left-in, Right-out to Right-in, Straight-out to Straight-
in, Left-out to Left-in and Left-out to Right-in were consid-
ered as moving in paths and Left-in to Right-out, Left-in to
Left-out, Straight-in to Straight-out, Right-in to Left-out and
Right-in to Right-out were considered as moving out paths.
Two non-traversal paths, namely No-traversal out and No-
traversal in were included to consider situations that involve
activities inside the room or simply walking towards the out-
side and turning back.

We conducted our experiments in two environments, namely,
supervised (where scene analysis was conducted) and unsu-
pervised (a new and different environment without where
scene analysis was not performed) as shown in Fig. 4(a) and
(b), in order to evaluate the robustness of our algorithms in
a different environment and to assess the ability to use the
noise model developed through scene analysis in the super-
vised environment in a completely new environment. Our
participants performed a routine of 25 moving in path trials
(a list of 25 paths randomly selected from moving in paths),
a routine of 25 moving out path trials (25 randomly selected
from moving out paths) and 20 non-traversing path trials.

Fourteen healthy, young adults aged between 25 to 35 partic-
ipated in the laboratory experiments. The mean±SD height
of our participants was 169±8 cm. However, only the first 6
participants were involved in both the experiments the last
4 participants were different in the supervised and unsuper-
vised environment experiments. The passive RFID tag was
attached over each participant’s attire using a double sided
adhesive tape over the right shoulder as shown in Fig. 4(a).
All the participants were asked to walk at their normal speed

and were not instructed to walk at any specified speed.

6.2 Illustration of the PF based TPD
Algorithm

Fig. 5(a-d) shows an step by step example of the TPD algo-
rithm’s prediction and final estimation for the path starting
from Left-in to Right-out. At the initialisation step parti-
cles are distributed over the state space as shown in Fig. 5(a)
since the location of the tag bearer is completely uncertain.
Then, after an observation our algorithm predicted the tag
bearer’s location as shown in Fig. 5(b). Red circles in the fig-
ures denote the predictions of TPD in the current time step
and blue asterisks denote the estimation of TPD. Fig. 5(c)
shows the estimated traversing path of the tag bearer in
further iterations. Fig. 5(d) shows the detected traversing
path used after eloping. Considering our TPD algorithm’s
results in Fig. 5(d) with scene analysis results obtained in
Fig. 3(d) which utilised the same path (Left-in to Right-out)
and RSSI measurements to detect the traversing path clearly
illustrates the robustness of approach even under highly un-
certain RSSI measurements.

6.3 Method for Evaluating the TPD
Algorithm

In order to evaluate the performance of our TPD algorithm
we partition our state space 2 m×6 m into 9 equal partitions
as shown in Fig. 6(a). We evaluated accuracy by counting
the number of final estimation in each of these partitions.
For example, in Fig. 6(a) we evaluate the Straight-in to
Straight-out path. Here counting the number of location es-
timations in each partition is as indicated Fig. 6(b)(i). From
this result we determine the maximum occurrence in each



Table 1: Performance of our PF based algorithms in
a supervised environment and comparison with the
scene analysis technique

Person Path TP FN TN FP Recall Precision Accuracy

Person 1 Moving in 19 6 8 2 76% 91% 77%
Moving out 21 4 8 2 84% 91% 83%

Person 2 Moving in 21 4 9 1 84% 96% 86%
Moving out 20 5 7 3 80% 87% 77%

Person 3 Moving in 18 7 7 3 72% 86% 71%
Moving out 19 6 8 2 76% 91% 77%

Person 4 Moving in 19 6 7 3 76% 86% 74%
Moving out 20 5 8 2 80% 91% 80%

Person 5 Moving in 20 5 8 2 80% 91% 80%
Moving out 22 3 8 2 88% 92% 86%

Person 6 Moving in 21 4 8 2 84% 91% 83%
Moving out 20 5 8 2 80% 91% 80%

Person 7 Moving in 18 7 8 2 72% 90% 74%
Moving out 18 7 9 1 72% 95% 77%

Person 8 Moving in 21 4 9 1 84% 96% 86%
Moving out 21 4 8 2 84% 91% 83%

Person 9 Moving in 22 3 8 2 88% 92% 86%
Moving out 18 7 8 2 72% 90% 74%

Person 10 Moving in 20 5 8 2 80% 91% 80%
Moving out 19 6 9 1 76% 95% 80%

Overall (TPD) Moving in 80± 5% 91± 3% 80± 5%
Using PF Moving out 79± 5% 91± 2% 80± 3%

Overall (TPD) Moving in 2± 3% 5± 6% 2± 2%
Using Scene Analysis Moving out 5± 4% 11± 8% 5± 4%

Overall (TD) Moving in 100% 100% 100%
Using PF Moving out 100% 100% 100%

Overall (TD) Moving in 100% 100% 100%
Using Scene Analysis Moving out 100% 100% 100%

row and flag that partition as shown in Fig. 6(b)(ii). Finally,
we compare this result with the ground truth to evaluate
the accuracy of our TPD algorithm. In this example the
the ground truth for Straight-in to Straight-out is given in
Fig. 6(b)(iii).

6.4 Statistical Analysis
In this study, we evaluated the performance of both TPD
and TD algorithms by determining: i) Recall = True Posi-
tives / (True Positives + False Negatives) and ii) Precision
= True Positives / (True Positives + False Positives); and
iii) Accuracy = True Positives + True Negatives / (True
Negatives + True Positives + False Positives + False Nega-
tives).

Since we are interested in determining if the supervised en-
vironment is similar to the unsupervised environment, we
evaluated the if the results in supervised environment is sta-
tistically significantly different from the unsupervised envi-
ronment. We used a two-tailed t-test where statistical sig-
nificance was at p-values < 0.05.

6.4.1 Traversing Path Detection Algorithm
When evaluating the TPD algorithm: True positives (TP)
were the paths that were correctly identified (e.g. Right-in
to Left-out); True negatives (TN) were paths of no interest
that were correctly identified (e.g. No-traversal in); False
negatives (FN) (i.e. missed reads) were paths that were not
identified due to lack of readings reported from the reader
antennas (e.g. Left-in to Left-out is being reported as No-
traversal out); and False positives (FPs) are other move-
ments that were identified as a moving direction of interest.

6.4.2 Traversing Direction Algorithm
Here, we define the terms used in TD algorithm. TPs were
movements that were correctly identified (e.g. moving out).
TNs were movements of no interest that were correctly iden-
tified (e.g. No-traversal in). FNs were movements that were

Table 2: Performance of our PF based algorithms in
an unsupervised environment and comparison with
the scene analysis technique

Person Path TP FN TN FP Recall Precision Accuracy

Person 1 Moving in 18 7 7 3 72% 86% 71%
Moving out 17 8 7 3 68% 85% 69%

Person 2 Moving in 18 7 8 2 72% 90% 74%
Moving out 17 8 6 4 68% 81% 66%

Person 3 Moving in 17 8 7 3 68% 85% 69%
Moving out 18 7 8 2 72% 90% 74%

Person 4 Moving in 18 7 7 3 72% 86% 71%
Moving out 16 9 8 2 64% 89% 69%

Person 5 Moving in 18 7 7 3 72% 86% 71%
Moving out 16 9 8 2 64% 89% 69%

Person 6 Moving in 18 7 7 3 72% 86% 71%
Moving out 19 6 7 3 76% 86% 74%

Person 7 Moving in 18 7 7 3 72% 86% 71%
Moving out 17 8 7 3 68% 85% 69%

Person 8 Moving in 16 9 8 2 64% 89% 69%
Moving out 17 8 6 4 68% 81% 66%

Person 9 Moving in 15 10 7 3 60% 83% 63%
Moving out 18 7 8 2 72% 90% 74%

Person 10 Moving in 16 9 6 4 64% 80% 63%
Moving out 16 9 7 3 64% 84% 66%

Overall (TPD) Moving in 69± 4% 86± 3% 69± 4%
Using PF Moving out 68± 4% 86± 3% 69± 3%

Overall (TPD) Moving in 4± 3% 8± 6% 4± 3%
Using Scene Analysis Moving out 3± 2% 6± 5% 2± 2%

Overall (TD) Moving in 100% 100% 100%
Using PF Moving out 100% 100% 100%

Overall (TD) Moving in 100% 100% 100%
Using Scene Analysis Moving out 87% 100% 91%

not identified (i.e. moving out is not being reported). FPs
are other movements that were identified as a moving direc-
tion of interest (e.g. No-traversal in is being identified as
Moving out).

6.5 Results
The results from Table 1 and Table 2 show that our TD
algorithm was able to identify the tag traversal direction
with 100% recall, precision and accuracy in both, supervised
and unsupervised environments.

Although the mean performance values for TPD were higher
in the supervised environment compared to the unsupervised
environment, the difference is performance is not signifi-
cantly different (p<0.01). Evaluating our TPD algorithms
in both environments show that precision is ≥ 86% and is
noticeably higher than recall and accuracy which is ≥ 68%
and ≥ 69%, respectively, for both moving in and moving out
paths. This is because the number of FPs are comparatively
lower than the number of FNs and hence the algorithms miss
identifying complete paths. This is mostly due to missing
readings in as a result of the tag over the shoulder being
shadowed by a persons head.

Detecting the path used while eloping had ≤ 9% false alarm
rate (chance of having incorrect path estimation such as
Right-in to Left-out as Left-in to Right-out) in the super-
vised environment and ≤ 14% false alarm rate in the unsu-
pervised environment. Consequently, as expected, there are
less false alarms in the supervised environment compared
to the unsupervised environment. Also, from Fig. 6(d) it
is clear that the overall performance (mean recall, precision
and accuracy) of the unsupervised environment is lower than
the results of the supervised environment, because we used
the same rssi map for both the environments. The actual
rssi map was generated from the supervised environment
and therefore the map was able to model measurement noise
more accurately for the supervised environment than for the
unsupervised environment.



Next, we compare the results of scene analysis from Table 1
and Table 2. As expected, our TPD algorithm outperformed
the baseline approach formulated using scene analysis to
identify the traversal path used by a tag bearer. This is
because, our PF based TPD algorithm is capable of contin-
uously estimating the location of the tag bearer in a non-
linear and dynamic system using noisy RSSI measurements,
in contrast, scene analysis technique simply compares the
real-time rssi value with the collected rssi map to infer the
person’s current location.

Comparing results for TD using scene analysis in the su-
pervised environment with that of PF based TD shows that
both approaches perform equally well. However, comparing
the algorithms in the unsupervised environment show that
the recall (87%) and accuracy (91%) results for scene anal-
ysis technique are lower in the moving out path. This is
due to the missed read occurrences in the Right-in to Right-
out path caused by the head obstructing the tag which is
attached to the right shoulder from being interrogated by
any of the deployed four antennas that are to the left of the
person. The supervised environment has a wall located ap-
proximately 1.5m from the setup and reflections from the
wall contributed to illuminating the tag on the right shoul-
der while participants were in zone C. Hence the scene anal-
ysis technique was able to predict the direction of the tag
bearer in the supervised environment. However, in the un-
supervised environment the adjacent wall was located 6m
from the right side of the setup and therefore, due to the
obstruction caused by the head, there were only a few read-
ings beyond zone B in the Right-in to Right-out path. These
missing readings resulted in FN in the evaluation of TD. In
contrast, our TD algorithm is capable of predicting a per-
sons future location in the presence of missing reads based
on the motion model that describe how the state evolves
over time and thus able to achieve better performance.

In particular, comparing the data presented in Table 1 and
Table 2 we can also observe that the results for Person 4,
Person 5, Person 8, Person 9 and Person 10 in the Ta-
ble 2 have the lowest TPs compared to other participants. A
possible reasons for the increased occurrences of FNs is the
tag shifting position over the shoulder as a consequence of
loosely worn clothing during the trial resulting in RSSI mea-
surements that cannot be correctly filtered using the sensor
model based on our measured rssi map. On further investi-
gation of the cause for the lowest number of TPs recorded
for Person 9, we observed that measured RSSI values for
Person 9 was lower compared to other participants. Per-
son 9 was in fact the shortest participant (height: 153 cm)
among the 14 persons that participated in the trial. A possi-
ble reason for the increased number of FNs is the limitation
of the measured sensor model (rssi map) to adequately re-
late the location of the person to the measure RSSI values
since the rssi map was generated using a much more taller
person with height of 170 cm.

We also evaluated the effect of a tag bearer’s traversing
speed on the accuracy of our algorithms. We varied the
walking speed from 0.18 km/h (0.05 m/s) to 9 km/h (2.5
m/s). As shown in Fig. 6(c) walking speed had some im-
pact on the accuracy. When the speed was too slow such
as from 0.18 km/h to 0.9 km/h there is a small reduction

(down to 78%), in the accuracy of the TPD algorithm. This
is because our motion model is initialised with a constant
speed with additive increases or multiplicative decreases to
adapt to the walking speed of the tag bearer over several
iterations. Therefore, the first few iterations may not accu-
rately model the speed of the tag bearer and consequently
resulted in poor location estimates. However, our TD algo-
rithm was able to, with 100% accuracy, determine the tag
direction with walking speeds less than 7.2 km/h, beyond
which the accuracy fell slightly lower to 99%. Although,
walking speed had some impact on the accuracy of our al-
gorithms, our results were consistent in the normal walking
speed (approx. 4.5 km/h to 5.25 km/h) according to mean
gait speed reported in [7] for people aged 40 and above.

7. CONCLUSIONS
We developed a novel, robust, real-time system that can
accurately detected the traversal path used by the tag bearer
and the tag bearer’s moving direction such as moving out
and moving in. In our study we used minimum number of
instruments i.e a single, low cost passive RFID tag and four
RFID antennas to achieve a 100% accuracy while detecting
tag traversal direction, ≤ 9% false alarm on traversal path
detection and ≤20% misses.

Our approach is a significant enhancement when compared
to the existing approaches and the elimination of false alarms
and misses (i.e. for TD) and the relatively accurate estima-
tions of paths travelled is likely to results in higher levels
of acceptance among caregivers since we are able to com-
prehensively address frustrations from false alarms while re-
liably identifying the eloping direction. Our algorithm can
also be generalised to solve other problems such as detect
goods that are travelling in and out of a warehouse however,
there may be limitations in the performance depending on
the speed at which goods are in transit.

Even though, our algorithm performed well throughout the
study, certain paths results such as Right-in to Right-out fre-
quently performed poorly due to the higher occurrences of
missed reads. TD performance in the unsupervised environ-
ment suggests that it is possible to use apply a sensor model
developed in a similar context in a difference environment.
However, the performance of the algorithm with respect of
heights of people still needs to be investigated.Also, we did
not investigate the accuracy of our algorithms with multi-
ple participants and we have left this as future work. We
are currently looking at developing a generic sensor model
instead of scene analysis, so that it can be directly imple-
mented in new environments to achieve similar performance
to that possible in a supervised environment.
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