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Abstract—In this paper, a new method to locate a person
using multimodal non-visual sensors and microphones in a
pervasive environment is presented. The information extracted
from sensors is combined using a two-level dynamic network to
obtain the location hypotheses. This method was tested within
two smart homes using data from experiments involving about
25 participants. The preliminary results show that an accuracy
of 90% can be reached using several uncertain sources. The
use of implicit localisation sources, such as speech recognition,
mainly used in this project for voice command, can improve
performances in many cases.

I. INTRODUCTION

Several technologies have been used to set up smart envi-

ronments able to ease the person’s life and to provide adequate

assistance (e.g., infra-red sensors, video cameras, RFID . . . ).

Audio processing technology has a great potential to become

one of the major human-machine interaction modalities in

smart home. It is physically intangible and does not force the

user to be at a particular place in order to operate. Moreover,

it can provide interaction using natural language so that the

user does not have to learn complex computing procedures or

jargon. Voice interfaces can be much more suited to disabled

people and seniors who have difficulties in moving or seeing,

than tactile interfaces (e.g., remote control) which require

physical and visual interaction. Moreover, audio processing

is particularly adapted to distress situations. A person, who

cannot move after a fall but being conscious, can still call for

assistance while a remote control may be unreachable. Despite

this, few smart home projects have seriously considered audio

technology in their design [3], [6], [7]. Part of this can be

attributed to the fact that this technology, though mature, still

needs to address important challenges [10].

To improve autonomy, comfort and security at home, we

are developing a new smart home system called Sweet-Home

whose main human-machine interaction modality is based on

audio processing technology. Among the first data processing

tasks a smart home must implement, automatic locating of

the person is essential. Indeed, the location of the person

plays a crucial role to make appropriate decisions for many

applications (e.g., home automation orders, heating and light

control, dialogue systems, robot assistants) and particularly

for health and security oriented ones (e.g., distress call, fall,

activity monitoring). Automatic locating becomes particularly

challenging when privacy issues prevent the systematic use

of video cameras and worn sensors. Another source of lo-

calization can be derived from household appliances and

surveillance equipment [5], [11]. The analysis of the audio

channel is another interesting modality in home automation,

which, in addition to providing a voice command, can bring

various audio information such as broken glass, slamming

doors, etc. [9]. There is an emerging trend to use such modality

in pervasive environments [1], [7], [9]. The audio information

requires far less bandwidth than video information and can

easily detect some activities (e.g., conversations, telephone

ringing). However, if the video is sensitive to changes in

brightness, the audio channel is sensitive to environmental

noise [10]. It appears that no source taken alone makes

possible a robust and cheap location. It is therefore important

to establish a location method that would benefit from the

redundancies and complementarities of the selected sources.

In this paper, we present a new method developed for

automatic dweller location from non-visual sensors. After

an introduction to the Sweet-Home project in Section II,

the approach we adopted to locate a person is presented in

Section III. This approach was tested within real smart homes

and the results of the experiments are described in Section IV.

The paper ends with a brief discussion of the results.

II. SWEET-HOME: AN AUDIO-BASED SMART HOME

SYSTEM

The Sweet-Home project (http://sweet-home.imag.fr) is a

French national supported research project aiming at designing

a new smart home system based on audio technology focusing

on three main aspects: to provide assistance via natural

human-machine interaction (voice and tactile command), to

ease social inclusion and to provide security reassurance by

detecting situations of distress. If these aims are achieved, then

the person will be able to pilot their environment at any time

in the most natural way possible. To assess the acceptance and

fear of this new technology, a qualitative user evaluation was

performed. 8 healthy persons between 71 and 88 years old,

7 relatives (child, grand-child or friend) and 3 professional

carers have been recruited. During about 45 minutes, they

were questioned in co-discovery in a fully equipped smart

home alternating between interview and wizard of Oz periods

followed by a debriefing. The four important aspects of the

project have been assessed: voice command, communication

with the outside world, domotic system interrupting a person’s

activity, and electronic agenda. Succinctly, in each case the

voice based solution was far better accepted than more intru-

sive solutions. Thus, audio technology appears to have a great
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potential to ease daily living for elderly and frail persons.

The input of the Sweet-Home system is composed of the

information from the domotic system transmitted via a local

network and information from the microphones transmitted

through radio frequency channels. The Sweet-Home system

will be piloted by an intelligent controller which will capture

all streams of data, interpret them and execute the required

actions. The diagram of this intelligent controller is depicted

in Figure 1a. The knowledge of the controller is defined using

two semantic layers: the low-level and the high-level ontolo-

gies. The former ontology is devoted to the representation of

raw data and network information description. State, location,

value and URI of switches and actuators are examples of

element to be managed by the I/O processors. The high level

ontology, whose taxonomy is shown in Figure 1b, represents

concepts being used at the reasoning level. These concepts are

organized in 3 main branches: the Abstract Entity represents

the different actions that can be performed in a home and the

context in which a home can be (e.g., making coffee, being

late), the Physical Entity represents things that are present in

the home (e.g., the dweller, electrical devices), and finally,

the Event concept represent the transient observations of one

abstract entity involving zero or several physical entity (e.g.,

at 12:03 the dweller is sleeping). This separation between low

and high levels makes possible a higher re-usability of the

reasoning layer when the sensor network and the home have

to be adapted [4]. The estimation of the current context is

carried out through the collaboration of several processors,

each one being specialized in a certain context aspect, such as

location detection or activity recognition. All processors share

the knowledge specified in both ontologies and use the same

repository of facts. Furthermore, the access to the knowledge

base is executed under a service oriented approach that allows

any processor being registered to be notified only about

particular events and to make inferred information available to

(a) The Intelligent Controller Diagram
(b) Excerpt of the
high level ontology

Fig. 1: Intelligent Controller diagramm and excerpt of the

Sweet-Home ontology.

other processors. This data and knowledge centred approach

ensures that all the processors are using the same data structure

and that the meaning of each piece of information is clearly

defined among all of them. Once the current context has been

determined, the controller evaluates if an action must be taken,

such as making an emergency call in case of a circumstance

of distress.

III. LOCATION OF AN INHABITANT BY DYNAMIC

NETWORKS AND SPREADING ACTIVATION

The method developed for locating a person from multiple

sources is based on the modelling of the links between events

and location assumptions by a two-level dynamic network.

Recently, Niessen et al. [8] presented an approach based on a

two-level dynamic networks to disambiguate the recognition

of sound events. The input level is composed of sound events,

level one represents the assumptions related to an event (e.g.,

ball bounce or hand clap), and level two is the context of

the event (e.g., basketball game, concert, play). Each event

activates assumptions according to the input event and the

contexts to which these assumptions are linked.

We adapted this method to multisource fusion with the aim

of locating a person. The dynamic network that we designed

is organized into two levels: the first level corresponds to

location hypotheses generated from an event; and the second

level represents the contexts for which the activation indicates

the most likely location given the previous events. Thus, the

activation Ah
i of the ith hypothesis depends exclusively on the

probability given by the event e at time tn which generated

it. It is computed using formula 1.

Ah
i (tn) = P (location = i | etn

) (1)

And the activation Ac
i of the ith context depends on its

previous value and its associated hypothesis. It is computed

using formula 2.

Ac
i (tn) = e−

∆t
τ Ac

i (tn − ∆t) + Ah
i (tn) (2)

time

e(tn−1) e(tn) e(tn+1)

CA CB CC CD

h1(tn−1) h2(tn−1) h3(tn−1) h1(tn) h2(tn) h1(tn+1) h2(tn+1) h3(tn+1)

Input events Location contexts Hypotheses

.1 .6 .3 .2 .8 .1 .15 .75

Fig. 2: Example of a Dynamic network

Figure 2 gives an example of activation for this network.

At time tn−1, the event e(tn−1) appears and generates 3

hypotheses: h1(tn−1) with a weight of 0.1 towards context



CA, h2(tn−1) with a weight of 0.6 towards context CB

and h3(tn−1) with a weight of 0.3 towards context CC .

If there was no prior event, context CB will be the most

certain. At time tn, the previous weights will be weighted by

e−
tn−tn−1

τ to which will be added the weights generated by

the assumptions related to the event e(tn): h1(tn) and h2(tn)
towards contexts CB and CD respectively. The introduction

of the time constant permits us to estimate the certainty of

finding a person in a room according to its latest location.

The decrease of this certainty is implemented by the forgetting

function e−
∆t
τ . The method will be applied in the same way

at time tn+1 when the context CD will receive the greatest

activation and will be selected.

IV. EXPERIMENTATION

A. Pervasive Environments and Data Used

The approach was tested on corpra acquired in two fully

equipped smart homes: the Sweet-Home corpus and the HIS

corpus. The HIS corpus was acquired during experiments [2]

aiming at assessing the automatic recognition of Activities of

Daily Living (ADL) of a person at home in order to automati-

cally detect loss of autonomy. The data considered in this study

consisted of about 14 hours of 15 people recordings using the

following sensors: 7 microphones (Mic) set in the ceiling; 3

contact sensors on the furniture doors (DC) (cupboards in the

kitchen, fridge and dresser in the bedroom); and 6 Presence

Infrared Detectors (PID) set on the walls at about 2 metres

in height. The Sweet-Home corpus was acquired in realistic

conditions, using the DOMUS smart home described in Figure

3. This smart home was designed and set up by the Multicom

team of the Laboratory of Informatics of Grenoble to observe

users’ activities interacting with the ambient intelligence of

the environment. The data considered in this study consisted

of about 12 hours of 10 people recordings performing daily

activities using the following sensors: 7 Mics; 3 DCs on the

furniture doors; 4 contact sensors on the indoor doors (IDC);

4 DCs on the windows; and 2 PIDs set on the ceiling.
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Fig. 3: Layout of the DOMUS smart home and position of the

sensors.

B. Weight Estimation

The hypothesis-context relationship is, in our case a one-to-

one relation because a location hypothesis is related to only

one room. It is a experimental choice as some assumptions on

weakly separated rooms (e.g., lounge/bedroom) could activate

several contexts. The weight of this relationship is always 1.

The event-hypothesis relationship is unidirectional and one-

to-many. The weights and the hypotheses generated vary

according to the source of the event and to the topology of

the home. In the case of contact sensors on the furniture and

on the windows as well as in the case of the PID, the event

was linked to only one hypothesis. Indeed, the DCs and PID

delivered non-ambiguous information, thus an event activated

with a weight of 1 the hypothesis of the room in which it was

situated. For the case of the IDCs of the Sweet-Home corpus,

two use cases were considered : the door opening, and the door

closing based on the hypothesis that when a door is being open

it is more probable that it implies a change of room while when

a door is closed the change of room is not certain. Thus, con-

ditional probabilities were computed using the data of 5 partic-

ipants which were not used in the final test data. When a new

DC event arrives at time tn, the weight W for room Room is

given by W (Room) = P (Room | DC,S,Context) , where

DC,Room ∈ {Study, Bedroom,Kitchen,Bathroom}, the

state S ∈ {Open/Close} and the context Context =
arg maxRoom P (Room) at tn−1. These values were calculated

for all the combinations of the variables DC,S and Context.
Then, during the execution of the method, weight estimation

was performed dynamically using the learned data. Results

of the conditional probabilities estimation indicate that most

of the time (97% of cases) when a door is open from a

room then a transition to the contiguous room is produced,

whereas when the door is closed the transition is less certain

(66% of cases). It seems to support the hypothesis of the

two use cases mentioned above. For sound events, the hy-

pothesis weights were computed dynamically. A sound event

is generally part of a set of events E = {ej} detected

simultaneously on multiple microphones. In this data set, only

the sounds classified as speech were considered. Hypotheses

were generated from the rooms where the sound events

occurred. The weights of the relations event-hypothesis were

computed for each location hypothesis pi using the Signal-

to-Noise Ratio (SNR) of each detection with P (pi | E) =∑
ej∈E∧ej .room=pi

snrl(ej)/
∑

ej∈E snrl(ej) where ej is an

atomic sound event, pi is the ie room and ej .room (resp

ej .snr) is the room where the event was observed (resp. SNR).

Thus, the sound event with the highest SNR generates the most

likely hypothesis.

C. Results

Sensor PID DC Mic+ PID+ PID+ PID+

DC DC Mic Mic+DC

glob. acc. Sweet-Home (%) 63 73 77 82 65 84

S-H no DC on doors (%) 63 60 64 72 65 73

glob. acc. HIS (%) 95 39 44 96 91 92

participant #10 HIS 60 31 78 61 97 97

TABLE I: Accuracy with several combinations of sources

For each participant’s record, the events from DC, PID and

Mic were used to activate a dynamic network to estimate the

location of the inhabitant. Location performance was evaluated

every second by comparing the context of the highest weight to



the ground truth. If they matched, then it was a true positive

(TP), otherwise it was a confusion. The results were sum-

marised in a confusion matrix from which the accuracy Acc
was computed by Acc = nb(TP )

nb(test) where nb(test) corresponds

to the duration of the record in seconds. Table I shows the

results of both corpus.

For Sweet-Home it is clear that the fusion of information

improved the accuracy since it rises as more sensors infor-

mation are combined. Even when the precision of infrared

sensors was good, the overall results of the method using

only these sensors is low (63%) as only two of them have

been set in the 4-room flat. This led to a poor sensitivity. In

the second row, the accuracy without using the information

of door contact on room doors is reported. It can be noticed

that the learned probabilities have a significant impact on the

performance. In every case, DC on room doors had a positive

impact on the performances. From the results on HIS corpus,

it can be noticed that, in some cases, fusion of information

did not improve the accuracy. The door contact information

slightly improved the accuracy compared to that obtained only

with the infrared sensors. On the other hand, adding the sound

information decreased the performance (91 % versus 96 %).

One reason for this may the high level of confusion between

sound and speech of the AUDITHIS system [9] which reached

25% of classification errors.

Nevertheless, the sound information was useful to improve

localisation in some cases. Indeed, there were situations where

the room change was not detected by the PID while speech

was well identified, which compensated for the low infrared

sensitivity. The last line of Table I shows the results for

participant #10. In this case, it is clear that each source taken

alone did not lead to good location but that the combination

of sources provided a clear performance gain (60 % to 97 %).

Figure 4 shows the evolution of the value of the activation

for each of the event occurrences and the decisions made.
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Fig. 4: Example showing changes in levels of activation

contexts and selected contexts for the possible locations

V. DISCUSSION AND PERSPECTIVES

The results showed that the information fusion by spreading

activation is of interest even when the sources have very good

accuracy. It is the case for infrared sensors (but with imperfect

sensitivity) and for door contact sensors. The use of less

certain localisation sources, such as speech recognition, can

then improve performance in many cases. Another important

finding is that it is possible to leverage the semantics of the

events to gain a higher accuracy as was done with the contact

sensors of the room doors for the Sweet-Home corpus. In

that case, the knowledge of room transitions was expressed

in terms of conditional probabilities and its exploitation was

demonstrated to be useful.

The next step is to continue the implementation of the

intelligent controller, to implement the voice command recog-

nition, and to test the general suitability of the approach

by confronting the system to actual users (elderly and frail

people). More challenging tasks will be to make speech

recognition robust to environmental noise and to be able to

deal with several users.
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