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Abstract—The aim of this study is to develop a system  for 

investigating  human falls and mobility based on a Smartphone 

platform. We have designed and tested a set of software 

applications building on the inertial data captured from the tri-

axial accelerometer sensor embedded in the Smartphone.  We 

will describe here two applications: a fall detection and 

management application, and an application for the 

administration of a popular and standardized test in the field of 

human mobility assessment, namely the Timed-Up-and-Go test. 
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I.  INTRODUCTION  

Falls in older persons have multiple causes. Risk factors can 

be intrinsic and extrinsic. Intrinsic factors include a history of 

falls, high age, impaired mobility and gait, medical diseases, 

medication, sedentary behavior, fear of falling, visual 

impairments, foot problems, nutritional deficiencies and 

impaired cognition. Extrinsic factors include environmental 

hazards (like poor lighting, slippery floors, uneven surface), 

footwear and clothing and inappropriate walking aids or 

assistive devices. Meta-regression analysis of the predisposing 

risk factors has shown that gait difficulties, muscular 

weakness and an impaired standing balance are the most 

prevalent risk factors for falls [1]. 

A variety of methods and tools have been proposed for fall 

risk assessment, most of which have discriminated poorly 

between fallers and non-fallers [2], and none of which is 

universally accepted. Methods and tools for assessing fall risk 

in home-dwelling older persons with minor functional 

problems are several: Functional balance and mobility 

assessment, by use of the Berg Balance Scale, the Tinetti 

Mobility Scale, the Functional Gait Assessment (FGA) the 

Balance Evaluation Systems Test (BESTest) or the Timed Up-

and-Go[3]; Physiological fall risk assessment, by use of the 

Physiological Profile Assessment (PPA); Posturography to 

measure quiet standing by use of force plates; and Assessment 

of psychological aspects of falls by the Falls Efficacy Scale 

International[4]. Other methods are based on assessment of 

gait characteristics like gait speed [5], step width [6], gait 

variability during simple and dual task conditions [7]. 

Recent developments of feasible body worn accelerometer- 

and gyroscope-based sensor systems have made it possible to 

develop algorithms for calculation of gait characteristics over 

longer distances in natural settings and physical activity 

throughout the day. However, as yet, no standardized tests for 

predicting fall risk have been developed based on these or 

similar sensor-based assessments. Most of this work has been 

carried out during controlled trials or within observational 

studies. Other findings have been gathered during interviews 

with fallers. These rely on incomplete and sometimes 

controversial oral reports by the subjects themselves, 

witnesses and by informal or formal caregivers. For example, 

falling to the ground without an injury might not be interpreted 

as a fall by every person. There is evidence that up to 80% of 

all falls without injury are not reported spontaneously by older 

persons.  

In overview there is a paucity of evidence about older 

people’s and other stakeholders views, beliefs and attitudes 

towards the use of technologies in the detection and 

prevention of falls, and more generally in the promotion of 

active and independent living. What we do know is that older 

people are likely to embrace such technologies if they are 

congruent with their own beliefs, attitudes, lifestyle and 

aspirations and are designed in such a way as to be accessible 

to them. What we do not know is the nature of those beliefs, 

attitudes, lifestyles and aspirations that will specifically result 

in high uptake and adherence to any assistive technology, nor 

what the optimum design parameters of the technologies are 

for them to be acceptable and usable by older people. 

We believe that the need to have a user-friendly device able to 

perform an ubiquitous sensing with a full connectivity (e.g. 

WiFi, 3G/4G, Bluetooth, etc.) makes the sensorized 

Smartphones able to revolutionize many sectors of our 

economy, including business, healthcare, social networks, 

environmental monitoring, and transportation. We choose to 

design our applications on a Smartphone platform to keep all 

the advantages in terms of usability, accessibility, low cost, 

high-performance computation capabilities for real-time data 

processing, complete inertial sensing unit, and the availability 

of an open platform (such as Android). We believe that 

Android-based Smartphone solutions can meet the needs and 

requirements of older users to help them improve their 

mobility and quality of life. The first application we describe 

in this paper is aimed at the real-time detection of a fall event 

and its subsequent management. The second one is in the field 

of fall-risk assessment by collecting and analyzing the data of 

an instrumented Timed-Up-and-Go test (iTUG).  In section II 

we will provide our arguments in favour of the choice of the 
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Smartphone platform; in section III we willdescribethe“Fall

detection” application and in section IVwe will describe the 

“iTUG” application. Conclusion and Future Works will be 

discussed in section V.  

 

II. SMARTPHONE PLATFORM 

Today’sSmartphone not only serves as the key computing and 

communication mobile device of choice, but it also comes 

with a rich set of embedded sensors, such as an accelerometer, 

digital compass, gyroscope, GPS, microphone, and camera. 

Collectively, these sensors are enabling new applications 

across a wide variety of domains, such as healthcare, social 

networks, safety, environmental monitoring, and 

transportation, and give rise to the new area of research called 

mobile phone sensing [8]. Until recently mobile sensing 

research such as activity recognition,wherepeople’s activity

(e.g. walking, driving, sitting, talking) is classified and 

monitored, required specialized mobile devices to be 

fabricated. Mobile sensing applications had to be manually 

downloaded, installed, and tuned for each device. User studies 

conducted to evaluate new mobile sensing applications and 

algorithms were small-scale because of the cost and 

complexity of doing experiments at large-scale. As a result, 

the research, though innovative, gained little momentum 

outside a small group of dedicated researchers. Although the 

potential of using mobile phones as a platform for sensing 

research has been discussed for a number of years now, in 

both industrial and research communities, there has been little 

or no advancement in the field until recently. 

In the fall-detection domain the iFall [9] application has been 

developed to detect fall events: data from the accelerometer is 

evaluated with several threshold-based algorithms and position 

data to determine a fall. If a fall is suspected a notification is 

raised requiring the user’s response. If the user does not

respond, the system sends alerts message via SMS. The fall-

detection algorithm needs lots of threshold calibrations 

without any assurance about its performance. 

The Mover [10] application has been developed to monitor 

human activity level and to detect falls. In order to measure 

activity levels, Mover reads data from the phone 

accelerometer and sums it out throughout the day. People’s

average level of activity is then translated into a simplistic 

categorization of users: Sleeper, Sitter, Lagger, Walker, Mover 

or Hyper. Mover can also detect user falls and send alerts to 

user’s emergency contacts (through SMS or email). Before

calling for help, Mover will play a sound to make sure the user 

is unconscious. This feature is still experimental as the 

algorithm is still being tested. 

The PerFallD [15] is a pervasive fall detection system tailored 

for mobile phones. It has been designed with two different 

detection algorithms based on the mobile phone platforms for 

scenarios with and without simple accessories. They 

implement a prototype system on the Android G1 phone. 

The Smartphone Platform we chose for our design is Android 

because it is an open platform which allow the full 

programmability of all the relevant software components:  

sensor management (e.g. sampling frequency, sensor 

accuracy), power management, data storage management, 

connectivity management (Internet connection, SMS), and a 

complete design of the elderly-oriented user interface. In 

addition, with the Android framework we can select the best 

device in terms of computational performance, sensing 

capabilities and device size.  

 

III. “FALL DETECTION” APPLICATION  

We have designed and developed a Smartphone application 

able to analyze in real-time fall data in an elderly population. 

Data are captured from the inertial sensor (tri-axial 

accelerometer). An elderly-oriented user interface has been 

designed to make as easier as possible the interaction between 

the elderly subject and the device.  

 

A. System Architecture 

The Smartphone is at the core of the system architecture 

since it embeds a sensing unit, a computation unit, and the 

network connection. The device we choose for our design is 

the HTC Desire, carrying a Bosch BMA150 accelerometer 

(range +/- 2g, resolution 4mg, digital output resolution 10bit).  

The user wears the Smartphone on a waist belt: this allow 

to get accelerometer data near the center of body mass 

providing reliable information on body movements, minimally 

affected  by sudden limb motion artifacts. Furthermore, the 

use of a waist belt is generally perceived by elderly persons as 

non invasive [16]. 

The application collects data and runs the real-time fall 

detection algorithm and provide a secure connection with a 

remote server, typically connected with a secure protocol 

(SSL, Secure Sockets Layer), to provide access to caregivers, 

relatives or the user itself. When a fall is detected, an audio 

notification is generated for 30 seconds to verify the subject 

response. During this time the subject can press a “Stop Alert”

button to stop the notification and to disable the external alarm 

procedure. If the subject does not react to the audio 

notification, and is hence supposedly unconscious, an alarm is 

automatically sent to the caregivers (by e-mail and/or SMS) to 

start the assistance procedures. 

After each fall is detected, accelerometer data related to 

subject movement patterns immediately before and  after the 

fall event are sent to a remote server on a VPN (Virtual Private 

Network). In this way, the clinician can analyze the data 

received to get more fall related information.  

The application user interface has been designed to be as 

easier as possible because of elderly users. It only includes the 

possibility to set up some useful parameters (sampling 

frequency, telephone number or e-mail to be used for the 

alarm procedure, subject information, etc.) and give the user 

the possibility to run it in background allowing a normal use 

of the Smartphone.  

By default, the application run in background and it is 

automatically started when the Smartphone is turned on. With 

this choice the user is not asked to interact with the 

application: the only interaction is required when a fall is 

detected.  The clinician can use the application interface just to 

set up some parameters before leaving the system to the user.  



Data collected during all the monitoring time has been 

stored on the Smartphone SD-card. In this way activities of 

daily life of the monitored subject can be efficiently analyzed .  

Continuous monitoring can last no more than 11 hour 

because of battery draining. This time can be increased by the 

use of a more powerful battery or can be increased with the 

use of newer less-consuming Smartphones. 

 

B. Fall Detection Algorithm 

Several algorithms have been defined in literature using 

Sum Vector (SV) (i.e. the accelerometer vector norm [11]). 

Algorithm performances are defined in terms of impact 

detection capability and identification of the false positive 

events. These algorithms make a single or double thresholding 

or detect the subject speed before the fall occurs.  

We chose a simple single-threshold algorithm to 

implement the fall detection because it requires the lowest 

computational power and it is the most appropriate for a real-

time application. Moreover, we targeted a restricted, yet 

representative, subset of possible falls, listed in TABLE I. After 

an experimental tuning, the threshold (T) was fixed at 2.3 g for 

each subject.  

The algorithm proposed acquires accelerometer data with a 

sampling rate of 50 Hz, computes SV and makes a comparison 

with T. When SV is greater than T an impact is detected.  

Subsequently, the subject behavior is monitored, checking 

subject orientation to verify the presence of a possible fall 

recovery. Subject orientation is evaluated as the mean value on 

the vertical axis on the time window that starts two seconds 

before and ends two seconds after the fall event.  

The fall is detected when the orientation before the impact 

is“vertical”andtheorientationafter theimpactis“horizontal”

(e.g. falling during walking) or both the orientations, before 

andaftertheimpact,are“horizontal”(e.g.fallingoutofbed).

Our algorithm cannot detect those falls starting and ending 

with trunk orientation in both cases “vertical” (e.g. falling

against a wall). 

Simulated intentional falls were performed by three 

healthy subjects, age:  25 yrs (range 24-26), height: 171 cm 

(range 164-175), body mass: 62.6 Kg (range 60-66).  Falls 

have been performed on a 20 cm thick, 800 springs, mattress. 

We report here the number of different fall typologies used to 

test the system: forward with subjects starting from an erect 

position – with mattress (15); forward while walking - with 

mattress (5); forward with subjects starting from erect position 

- without mattress (20); backward - with mattress (10); lateral 

- with mattress (7); falling out the bed (5); falls sliding against 

a wall ending in vertical position (2); falls sliding against a 

wall ending in horizontal position (3). Seventeen falls were 

followed by a recovery.  

Preliminary performance evaluation of our algorithm is 

provided in terms of sensitivity and specificity. The results of 

our tests are shown in TABLE I: both specificity and sensitivity 

are 100% , except the case when fall dynamics is completely in 

the vertical direction. This is the only case in fact where falls 

cannot be recognized by our algorithm, as anticipated. This 

preliminary result supports the choices made: the combination 

of the sum vector and subject orientation can be considered 

effective and usable in an embedded system due to the low 

computational power required. In addition, the threshold 

chosen seems to be effective with SV in the limited set of 

simulated falls. As expected, false negatives are obtained in 

case the final orientation of the user after the fall is vertical. 

 
TABLE I: Classification results  

on 67 simulated fall events 

Typology of fall Recognized 
Not 

recognized 

Forward fall 40 0 

Lateral fall 7 0 

Backward fall 10 0 

Fall sliding against a wall 

final position vertical (not 

in the recognition set) 

0 2 

Fall sliding against a wall, 

final position horizontal 
3 0 

Falling out the bed 5 0 

Total 65 2 

 

IV. “ITUG” APPLICATION 

The Timed-Up-and-Go (TUG) is one of the most used clinical 

tests to assess mobility: it measures the time taken by an 

individual to stand up from a chair, walk 3m, return to the 

chair and sit down. An instrumented Timed-Up-and-Go 

(iTUG) makes use of a measurement system (e.g. an 

accelerometer) to compute a set of parameters able to more 

subtly investigate balance and gait impairments. iTUG has 

proven to be sensitive to age-related changes and fall risk 

prediction [12]. The possibility to perform an instrumented 

TUG with a low cost device and a usable application can be 

considered as a key-point to increase the knowledge of 

balance and gait impairments. 

 

A. Preliminary Study to Test Suitability of a Smartphone 

Accelerometer to Instrument the Timed Up and Go 

Before designing the iTUG application for Smartphone 

device we tested the suitability of the Smartphone sensing unit 

(accelerometer). We performed some tests to compare the 

mass-market accelerometers as those included in modern 

Smartphones (HTC Desire) with those provided by a 

commercial measurement system already used in clinical 

applications (McRoberts Hybrid node). 

The reliability of the parameters calculated using the 

Smartphone has been assessed by means of the Bland-Altman 

analysis [14]; several parameters are within the limits of 

agreement, including total duration of the TUG, duration of 

the sit to stand, cadence mean and standard deviation. For 

more details about the comparison between the two devices 

see [13]. After this study we see an evidence that in a near 

future Smartphones may incorporate suitable solutions for 



quantitative movement analysis with a clear clinical value, 

providing a pervasive and low-cost support to eHealth. 

 

B. iTUG application design 

Starting from the results of the previous comparison, we 

designed an iTUG application for Smartphone. The 

application is designed with an easier interface to increase its 

usability: the application interface only presents “Start” and

“Stop” buttons on the touch-screen. When the start button is 

pressed the application starts to collect accelerometer data. At 

the end of the timed up and go test the Stop button have to be 

pressed to stop the data acquisition and to start the data 

processing. All the significant parameters and indexes 

describing the TUG (both in the anteroposterior and the 

mediolateral plane, when applicable) are calculated and stored 

in the SD-card (i.e. total duration, sit to stand duration, RMS 

Acc.  Sit to Stand, Max Acc. Stand to Sit, Gait Duration, Mean 

Cadence, Cadence Standard Deviation, Cadence Coefficient of 

Variation, etc.).   

Also in this case the application has been designed 

assuming that the user wears the Smartphone on a waist belt. 

As an option, there is the possibility to setup the number of 

iTUG repetitions: automatic algorithms may ask subjects to 

repeat the iTUG more than once if errors while performing the 

task are detected (e.g. stopping, not turning, etc.).  Finally,  the 

user profile (name, age, gender, additional information) can 

also be included in the final iTUG report.  

After the test is over, raw accelerometer data and 

calculated parameters can be automatically uploaded by the 

application on a remote server to be analyzed by the clinician.  

The iTUG application is in its early stage of development, 

we designed it and we are now porting the algorithms for data 

processing on the Smartphone. Till now the application only 

collects data and make them available for a Matlab routine 

processing. We have developed some basic functions for real-

time data processing to test if the Smartphone is able to 

perform the parameters computation in a reasonable time. Our 

results show that the Smartphone can compute all the relevant 

parameters and store them in the SD-card in 5 to 10 seconds. 

Android is simplifying our work because it provides the 

Native Development Kit: with this kit it is possible to write the 

processing in C++ code by optimizing the application 

performance and reuse previously developed library.  

 

V. CONCLUSIONS AND FUTURE WORKS 

Falls in older persons have multiple causes. Risk factors 
can be intrinsic and extrinsic. A variety of methods and tools 
have been proposed for fall risk assessment, most of which 
have discriminated poorly between fallers and non fallers, and 
none of which is universally accepted. The needs to have a 
user-friendly device able to perform an ubiquitous sensing with 
a full connectivity (e.g. WiFi, 3G/4G, Bluetooth, etc.) make  
the sensor-equipped Smartphones a device able to revolutionize 
many sectors of our economy, including healthcare. We 
designed and tested a fall detection application to detect falls 
and start alarm procedure to reduce the effect of falls. Raw 
accelerometer data captured during the fall event (one minute 
before and one minute after) are stored to allow further analysis 

and new fall-related features to be extracted. Of course the 
sample size available in this study and its design make the 
proposed validation only preliminary. More subjects and more 
fall types (real falls ideally) need to be tested in order to fully 
validate and further improve the algorithm.We also designed a 
preliminary version of an application for the iTUG test with a 
low cost, accessible and usable Smartphone. As mentioned, 
future work, will be done to implement all the parameters 
computation for the iTUG test on the Smartphone to build an 
independent system able to collect data and perform the first 
level data processing. Finally, we think it is possible to 
implement several others mobility-oriented and fall-oriented 
applications on Smartphone device because of its widespread 
use in our daily life (according to the Eurostat Statistics, nearly 
65% of people living in the Europe aged more than 65 owned 
or used a mobile phone in 2008) facilitating the increase of its 
usability, computational and sensing capabilities. 
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