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Abstract— This paper describes novel ambient technologies for 
domestic gait velocity measurement and in-home daily activity 
monitoring. This was achieved through low cost, easily 
deployable passive infrared motion detectors and an unobtrusive 
wireless sensor network. This system was deployed in the houses 
of eight older adults (1 faller; 7 non-fallers) living independently 
over eight weeks. Inter-daily gait velocity and daily activity 
metrics were derived from this data set. Consistent daily rhythms 
were found, however no correlations to clinical or daily 
ethnographic data were found. Long-term data collection, 
particularly surrounding serious life events, would validate the 
ability of this system to highlight deviations in health status. This 
paper provides a framework for collecting, analysing and 
interpreting gait velocity and daily activity data. 

Keywords: gait velocity measurement; daily activity monitoring; 
unobtrusive monitoring; ambient sensors. 

I.  INTRODUCTION 
The world’s population is ageing and this trend is set to 

increase dramatically in the next 100 years. This impending 
demographic shift will be most acute in North America, Europe 
and Japan, placing a massive burden on healthcare systems. 
Modern technological approaches may facilitate more efficient 
delivery of healthcare. A move towards ambient, distributed 
and pervasive technologies to deliver healthcare more 
efficiently is proposed as a means of reducing the strain on 
traditional hospital based healthcare delivery systems. This will 
increase quality of life and independence of all patients, 
especially elders and those with chronic illnesses, and also 
serve to reduce the costs inherent in the current hospital-centric 
system. This will reduce the number of preventable visits to 
health-care professionals, provide accurate, reliable and useful 
clinical information and efficiently synchronise to electronic 
health records complimenting current health-care systems. 

Falls in older adults are common and their incidence 
increases with age. Falls can lead to serious injury, 
hospitalisation, restricted mobility, and institutionalisation [1]. 
Various balance and mobility factors, particularly an impaired 
gait and mobility, an impaired stability when standing and slow 
voluntary stepping, have been shown to be associated with falls 
risk [2]. This has a negative effect on quality of life, leads to 
increased hospitalisation and is costly. In the community, the 
proportion of people who sustain at least one fall over a 1-year 
period varies from 28% to 35% in the over 65 age group to 
32% to 42% in the ≥75 -year age group, with 15% of older 
people falling at least twice each year [3]. Incidence rates in 
hospitals are higher, and in long-term care settings 
approximately 30–50% of people fall each year, with 40% 
falling recurrently [4]. The cost of falls each year, among 
elderly people in the U.S. alone, has been estimated to be in the 

region of U.S. $20 billion [5]. The combination of high 
frequency and high susceptibility to injury in older people 
make falls a “geriatric giant” in their own right. 

Common methods of falls risk assessment, including the 
Berg Balance Scale and the Timed Up and Go (TUG) test, are 
largely subjective, require clinically expertise to administer and 
are rarely used outside of clinical settings. While such tests do 
provide a cross-sectional snapshot into current health status, 
they do not provide an insight into circadian or inter-daily falls 
risk. These measurements are recorded in a clinical 
environment possibly resulting in data which is not 
representative of the real-world. For example, gait velocity 
measured in the clinic might not be representative of gait 
velocity measured in the home as patients may intentionally 
walk faster. It should also be noted that a changing gait is not 
pathological in itself; however a reduced health status may be 
inferred from impaired gait, slowing gait velocity or reduced 
daily activity.  

The home-based objective measurement of gait velocity 
and daily activity, and their diurnal variations, might provide a 
more accurate assessment of falls risk. This paper describes the 
development and home-deployment of a low power 
unobtrusive wireless sensor network designed to measure gait 
velocity and daily activity in the home. This is achieved 
through a low cost, easily deployable passive infrared (PIR) 
motion monitoring system. An overview of the previous work 
done in this area is given in Section II. A description of the 
technologies developed and their deployment is given in 
Section III. Details of the gait velocity and daily activity 
information derived from the home-based deployment are 
given in Section IV. Some results are collated in Section V and 
a discussion is given in Section VI. 

II. LITERATURE REVIEW 
The clinic-based measurement of gait velocity has been 

well defined and its benefit, particularly for falls risk 
estimation, has been widely investigated. Various modalities 
for In-home gait velocity measurement are currently under 
development. A ceiling-mounted PIR-based motion detection 
system has been experimentally validated and compared to the 
clinical gold standard, a GaitRite Walkway System [6]. 
Advanced calibration methods ensured a high accuracy, 
however this may be unsuitable for mass deployment. An 
optical motion detecting system has been shown to measure 
self-selected gait velocity [7]. This technology continuously 
tracks the position of a person within a pre-calibrated 
environment (e.g. the main living area). Initial results report 
precise measurement of gait velocity suitable for long term 

PervasiveHealth 2011, May 23-26, Dublin, Republic of Ireland
Copyright © 2012 ICST
DOI 10.4108/icst.pervasivehealth.2011.246077



placement. However, it is unclear whether multiple systems 
are required per house and whether the cost per unit is 
prohibitive. This system has the ability to analyse the 
variability of gait velocity. Its unobtrusive nature is 
particularly suitable for monitoring older adults and sensitive 
populations.  

The suitability of these technologies for long term 
deployment is central to their development. The ceiling-
mounted PIR system measured gait velocity of fourteen older 
adults, seven cognitively healthy and seven with mild 
cognitive impairment (MCI), living independently in the 
community over a mean duration of 315 days [8]. A higher 
variation in the median walking speed and also a higher 
variability in daily activity patterns in the MCI group 
compared to the cognitively healthy controls.  PIR sensors 
were deployed throughout the homes of 53 cognitively healthy 
elderly adults for approximately one year [9]. The Mini-
mental state examination (MMSE) was measured before and 
after the study. Participants who showed a cognitive decline 
(MMSE < 24; n=6) at the end of the study were found to have 
a significantly lower number of outings as well as having a 
decreased indoor movement compared to individuals who 
remained cognitively healthy (MMSE ≥ 24; n=44). A PIR 
based system capable of extracting spatiotemporal patterns 
typical of daily activity was deployed in a domestic 
environment for thirty days [10]. In this study, a relatively 
large number of 15 motion sensors were deployed in the 
environment. This resulted in a descriptive model of their 
frequent daily activities and patterns, such as sleep ->bath -> 
breakfast. Longitudinal analysis of such data, collected over 
extended periods, could provide valuable insights into health 
status and wellness. 

III. METHODS 

A. Subjects 
Data was collected from eight (1M, 7F) older adults (aged 

67-87). Patients were recruited as part of a wider study on 
aging (www.trilcentre.org) and each received a comprehensive 
psycho-social assessment including a 3m over-ground walking 
trial across an electronic walkway (GAITRite Inc.). Patients  

 

TABLE I. PARTICIPANT DEMOGRAPHICS AND FUNTIONAL 
CHARACTERISTICS 

 

ID Age Sex #PIRs #PIR 
Hits #Days 

#Vel. 
Rail 
Hits 

Mean 
Gait 
Vel. 
(m/s) 

St Dev 
Rail Vel. 

(m/s) 
GAITRite 
Vel. (m/s) 

074 84 F 4 1511 39 178 1.03 0.59 0.94 

140 87 F 6 6094 36 614 0.97 0.76 0.42 

149 83 F 6 160 7 11 1.07 0.55 0.49 

300 70 F 7 8720 41 273 0.71 0.46 0.44 

321* 72 F 6 6377 49 598 0.85 0.52 1.31 

378 70 F 8 5736 45 458 0.34 0.22 0.67 

386 83 M 8 1861 29 0 - - 0.95 

409 67 F 6 7077 43 384 1.2 0.92 1.4 

* indicates faller  

walked at a self-selected comfortable walking speed, these data 
are used here as a baseline for habitual walking speeds. 1 
patient had self-reported history of falling (‘fallers’) in the past 
5 years, whereas 7 patients had no history of falls (‘non-
fallers’). Inclusion criteria were patients aged 60 years and 
older and able to understand the instructions. The system was 
deployed over an eight week period. 

B. Data Acquisition 
Data were collected from PIR sensors in two configurations: 

1. Dwell sensor – individual PIR sensors strategically 
placed to determine frequency/duration of activity in 
the detection area or ‘dwell-zone’ of a given sensor 

2. Velocity rail sensor – three equally spaced, collinear 
PIR sensors mounted on a bespoke plastic rail. 

1) Dwell Sensor: Each dwell sensor consisted of a 
Shimmer wireless sensor [11] with a PIR daughter board 
(Panasonic NaPiOn Passive-Infrared motion sensor). Motion 
events were timestamped using the 32.768 kHz piezoelectric 
crystal on the Shimmer, and recorded temporarily onto RAM 
as movement was registered by the PIR motion sensor. Data 
from each sensor were collected from multiple locations 
within each home and transmitted wirelessly on an hourly 
basis, via the low-power 802.15.4 radio to a central aggregator 
within each house. Multiple units were deployed in the home 
of each participant. The exact number of PIR Shimmers 
deployed in each home, was dependent on the size and layout 
of each house (see TABLE I). Each PIR Dwell Sensor was 
placed on the ceiling over frequently passed locations such as 
the lintel of the bathroom door. The field of view of the PIR is 
conical in shape and by default covers a large area. An 
aperture covering was used to restrict the ‘dwell-zone’ of each 
PIR. In laboratory tests it was found that each PIR sensor 
continued to fire even after the person has exited the dwell 
zone of the PIR. However, it was found that the initial 
triggering time of the PIR dwell sensors could be relied upon. 

2) Velocity Rail: Three PIR dwell sensors were mounted, 
equally spaced on a horizontal custom built rail which allowed 
the estimation of habitual in-home velocity as shown in Figure 
1. Each of the three PIR dwell sensors were triggered 
sequentially as a person walked past the rail. Each rail was 2m 
in length except where the layout of the particular house 
confined this length. All events on each PIR sensor events 
were synchronized relative to one Shimmer and logged along 
with a timestamp onto an SD card. These data were 
transmitted hourly to the central aggregator. Valid gait 
velocity data was recorded on seven of the subjects; data 
collection errors resulted in no gait velocity measurements 
being recorded from one patient.  

 
Fig. 1. Velocity Rail Schematic. 

Subject PIR sensors mounted on velocity rail 
 

Detection areas of PIR sensors 



C. Analysis 
1) Data Gait Velocity Algorithm: As the distances between 

the first and second, second and third, and first and third PIRs 
are known, the time between each PIRs first trigger time can 
be used to calculate velocity as a person walks past the rail. 
The mean of these three velocity values was recorded as the 
gait velocity for a given gait event. The PIR dwell sensors 
registered motion detection beyond the initial triggering and 
continued to fire after the patient left the detection area of the 
PIR. Thus, only the first triggering of each individual PIR was 
used. The following checks were used to ensure valid walks: 
a) all three PIRs must trigger consecutively in the correct 
order, b) packets from each PIR are consecutive and any walk 
containing missing PIR motion event packets are discarded, c) 
a refractory period in assessing gait velocity is implemented, 
and d) gait velocity must be less than 4 m/s. Full details 
concerning the PIR Dwell Sensor data collected can be found 
in Table II.  

4) Collection Unit and Communications Protocol: Data 
were collected on the aggregator (Dell Inspiron 1501 laptop) 
running custom UDP server software over the 802.15.4 radio. . 
To ensure low powered operation on the sensors a protocol 
was defined to accept the transfer of data hourly from each 
pre-defined Shimmer existing within the environment, keeping 
the radio active for a minimal amount of time. A custom 
syncing packet was sent to the aggregator unit at the beginning 
of the hourly data transfer from each PIR dwell sensor. This 
process was used to time-lock the PIR Dwell event data with 
the aggregator’s internal clock. All PIR dwell event data 
within the environment were timestamped relative to this 
computer. Data were transmitted during separate pre-defined 
windows of time because all transfers shared the same 
802.15.4 RF channel. Each device and the data collection 
equipment were checked remotely from a backend console 
that communicated with all home aggregators. This allowed 
for the monitoring of the operating status of deployed 
equipment and for fixing any technical issues that arose during 
deployment. 

5) Ethnographic and patient diaries: Each patient was 
asked to provide self-reported scores (1-5) for mood, 
dizziness, energy, steadiness and wellness both in the morning 
and in the evening. Other information was also recorded in a 
diary including amount time spent out of the house, details of 
any visitors coming to the house, details of any falls occurring 
and any changes in daily routine. Space was also provided for 
any other comments the participant may have such. These data 
were reviewed manually during analysis. 

IV. DATA ANALYSIS 

A. Velocity Rail 
1) Gait Velocity per patient per day: The mean gait 

velocity for each patient per day was derived from the velocity 
rail. The mean and standard deviation of gait velocity per day 
was calculated as shown in Figure 2. These data were highly 
variable and no discernible patterns across days were evident.  

2) Gait Velocity per patient per hour: Circadian variations 
in gait velocity were also investigated (Figure 3 illustrates 
circadian variations). The mean velocity and standard 
deviation can be seen over each day. No discernible patterns 
were evident across all data, although some subjects did show 
a slower gait velocity early in the morning and before bedtime. 
There was a mean of 12.5 gait velocity events recorded over 7 
subjects over 201 days.  No valid gait velocity data was 
recorded for one patient.  

3) Longitudinal Distribution of Gait Velocity 
Measurements: The distribution and magnitude (mean velocity 
per hour) of gait velocity measurements over a day can be 
seen in Figure 4. A period is evident during the final ten days 
of data collection where no valid gait velocity measurements 
were recorded by the velocity rail. Upon examination it was 
found that this was due to errors in the communications 
protocol. As expected, no gait velocity events were recorded 
between the hours of 2am and 8am. The magnitude of the gait 
velocity for each hour is shown in the colour bar. If no gait 
velocty is recorded this is because no gait velocity hits were 
recorded as seen over all hours towards the end of the 
recording period in Figure 4. 

 
TABLE II. PARTICIPANT GAIT VELOCITY CHARACTERISTICS 

ID Age Sex #Rail 
Hits #Days GaitRite 

Velocity 

Mean of 
Daily 
Rail 

Velocity 

Mean SD 
of Daily 

Gait 
Velocity 

074 84 F 178 35 0.94 1.03 0.59 

140 87 F 614 36 0.42 1.23 0.76 

149 83 F 11 1 0.49 1.95 0.55 

300 70 F 273 38 0.44 0.88 0.46 

321 72 F 598 32 1.31 0.83 0.52 

378 70 F 458 24 0.67 0.29 0.22 

386 83 M - 0 0.95 - - 

409 67 F 384 35 1.4 1.33 0.36 

 

 
Fig. 2. Gait Velocity per Patient per Day for subject 409. 



B. PIR Dwell Sensors 
1) PIR dwell sensors: The PIR dwell sensors were 

deployed at highly frequented locations within a house. 
Between 4 and 8 PIR Dwell Sensors were installed in the 
environment on either ceilings, lintels of doorways or in the 
velocity rail. A PIR dwell sensor ‘hit’ occurs when motion is 
first detected by that sensor. A refractory period was used to 
concatenate multiple hits within a limited time span as these 
would result from the same set of movements. Full details 
concerning the PIR Dwell Sensor data collected can be found 
in Table III. 

2) Dwell Time: The time taken to travel through a PIR 
Dwell Sensor’s detection area was proposed as a method of 
estimating velocity and was referred to as ‘Dwell Time’. It 
was found upon initial investigation that the entry time into 
dwell zone was accurate and reliable. However, the exit time 
could not be located as the PIR Dwell Sensor continued to fire 
after the patient had left the dwell zone. ‘Dwell Time’ was not 
examined subsequently. 
 

 
Fig. 3. Gait Velocity per Patient per Hour averaged over all Days for 

subject 378. 

 
Fig. 4. Longitudinal Distribution of Gait Velocity Measurements for 

subject 409. 
 
 

TABLE III. PARTICIPANT PIR DWELL SENSOR CHARACTERISTICS 

ID Age Sex #PIRs #PIR 
Hits #Days 

Mean 
#Hits   

per  Day 

SD   
#Hits   

per  Day 

Min 
#Hits 
per  
Day 

Max 
#Hits 
per  
Day 

074 84 F 4 1511 39 37.8 33.5 4 124 

140 87 F 6 6094 36 171.6 89.7 57 404 

149 83 F 6 160 7 22.2 14.1 8 43 

300 70 F 7 8720 41 214.3 146.4 41 952 

321 72 F 6 6377 49 129.6 49.8 43 243 

378 70 F 8 5736 45 128.4 53.8 50 268 

386 83 M 8 1861 29 63.3 41.8 1 166 

409 67 F 6 7077 43 166.9 67.7 3 294 

 
3) PIR dwell sensor hits per Day per Patient: The total 

number of PIR dwell sensor hits per day per patient was 
extracted from the data set. An example of this can be seen in 
Figure 5. Towards the end of data collection the patient was 
away from the house for two days. This can be seen by the 
very low number of PIR dwell sensor hits in Figure 5.These 
sensors quantified levels of daily activity within the home, 
however due to the unique nature of each house no cross 
comparison across patients could be made. An investigation 
into the variation in daily patterns within each patient’s data 
was performed and no discernible patterns were evident.  

4) Location Specific PIR dwell sensor hits: The locations 
of PIR dwell sensor hits were also examined. An example of 
this can be seen in Figure 5. The sensor placed at the lintel of 
the kitchen door suffered from data collection errors resultant 
due to the zigbee communications protocol. Data integrity 
checks were performed every two weeks during this study. 
The variation in the amount of activity at a particular location 
did not result in any discernible pattern. 

5) Circadian Distribution of PIR dwell sensor hits: 
Estimations of the circadian aspect of daily activity, within the 
home, were derived using this system, see Figure 6. However, 
it must be noted that a very limited number of PIR dwell 
sensors were deployed in each house and as such this may not 
be fully descriptive of daily activity. 

 
Fig 5. PIR dwell sensor hits per Day, Separated into PIR Locations for 

subject 409. 
 



   
Fig 6. Circadian Distribution of PIR dwell sensor hits for Subject 140. 

 
 

6) Longitudinal Distribution of PIR dwell sensor hits: 
Methods of describing and visualising the mean daily activity 
patterns of an older adult in their home are described above. A 
longitudinal description of their daily activity is given in 
Figure 7. An actogram representation of this activity is given 
in Figure 7A, while a polar plot is also shown to represent this 
data well. Toward the start of data collection, a significant 
number of PIR dwell sensor hits were reported over a twenty 
hour period. Upon further investigation,it was found that this 
was due to a faulty PIR sensor which continually reported 
motion. 

7) Interdaily Circadian Stability Index: A stability index 
of the circadian rhythms,in terms of daily activity, of the older 
adults were calculated using the number and circadian 
distribution of PIR dwell sensor hits. This index was modified 
from inter-daily stability metrics which use wrist actigraphy to 
examine the changes in total daily activity over time [12]. In 
this analysis, the variances of hourly number of PIR dwell 
sensor hits was calculated per seven days of data and 
subsequently normalised by the total number of PIR dwell 
sensor hits over those seven days. This was defined as the 
inter-daily circadian stability index. Significant changes in 
total daily activity, and the distribution of this activity 
throughout a day, may be representative of a reduced health 
status. This data is presented in Table IV. An outlier can be 
seen in week 1 for patient 300. Upon investigation it was 
found that this deviation in circadian stability related to a 
faulty sensor, see Figure 7.  

8) Location of PIR dwell sensor hits: The total daily 
activity,and distribution of activity throughout a day, of an 
older adult may remain the same. However variations in the 
location of activity may provide valuable insights, such as an 
increased use of the bathroom throughout a day or excessive 
time spent in one location, indicaing possible injury or 
impairment. The average location of PIR dwell sensor hits 
over the entire data collection period for a patient can be seen 
in Figure 8.  

9) Room Transition Information: The PIR dwell sensor 
data contain information about how the participant moves 

 
Figure 7. Longitudinal Distribution of PIR dwell sensor hits. (a) 

Actogram of PIR dwell sensor hits for subject 300 on left, (b) Polar plot of 
PIR dwell sensor hits on right.  

 

 
TABLE IV. INTER-DAILY CIRCADIAN STABILITY INDEX 

Sub   Interdaily Circadian Stability 

ID Age Sex Week 1 Week 2 Week 3 Week 4 Week 5 

074 84 F 
1.49 1.33 3.21 1.76 0.78 

140 87 F 
2.17 3.57 2.67 1.78 1.66 

149 83 F 
- - - - - 

300 70 F 
5.08 2.22 2.94 1.95 2.32 

321 72 F 
1.39 1.01 1.36 1.63 1.52 

378 70 F 
1.67 1.67 0.76 1.26 - 

386 83 M 
1.28 1.22 1.29 0.82 - 

409 67 F 
1.8 1.53 2.34 2.27 2.34 

 
 

 
Figure 8. Location of PIR dwell sensor hits for subject 321. 

 

about the home. This can be extracted by tracking consecutive 
firings of the PIR dwell sensors over the recording period. 
Room transition information between PIR dwell sensors were 
investigated in order to examine common room 
transitions/habitual pathways. The usage of these pathways 
and also the time taken to travel between each PIR dwell 
sensor pair were calculated. A room transitioning quasi-
velocity measurement was calculated as the inverse of the time 

Rail: Living 
Room 

Hall / Bed 

Stairs 
Hall / 

Kitchen 

Front Porch 

Hall / 
Living 
Room 



taken to travel between two PIR dwell sensors. To ensure 
validity, each sensor was required to have fired continuously 
for at least ten seconds. A PIR room transition was defined to 
occur when two sensor hits occur within a limited time frame 
(empirically chosen to be 600 seconds). Data generated using 
these conditions, from patient 300, are presented in Figure 9; 
the relevant house floorplan for these data is given in Figure 
10. The average time taken for room transitions are given in 
Figure 11. 

 
 

 
Figure 9. Room Transition Information for patient 300 over the entire 

recording period. The number of transitions between rooms is 
highlighted. 

 

 
Figure 10. House Layout for Patient 300 

 

 
Figure 11. Room transition information for patient 140 over the entire 

recording period. The time taken to transition between rooms is 
highlighted. 

C. Ethnographic Information 
Mood, dizzy, energy, steadiness and wellness subjective 

data were collected twice daily (morning and evening) using a 
diary. Little variability was found in these data over the data 
collection period for each patient. This low variability 
suggests these metrics are ineffective; however this may be 
due to several other reasons. These include participants 
retrospectively filling out entries for multiple previous days at 
once to appear to adhere to the prescribed protocol, 
participants entering high scores falsely in order to appear 
healthier (to others and to themselves), or a participant’s lack 
of understanding of the metrics. 

V. RESULTS 
A number of hypotheses were tested for significance using 

the collected data set. 
1. The velocity value produced by the rail velocity did 

not significantly correlate to a PIR room transitioning 
quasi-velocity measurement (the inverse of the time 
taken to travel between PIR Dwell Sensors). 

2. The velocity rail data (both velocity and number of 
hits) did not correlate to any of the ethnographic 
metrics. 

3. The number of hits on the velocity rail was not 
correlated to the number of PIR dwell sensor hits. 

4. The room transitioning quasi-velocity or velocity rail 
velocity did not significantly correlate to 
ethnographic data or clinical data (including age, 
body mass index, timed-up-and-go test, activities of 
daily living (ADL) index, instrumented ADL index, 
and the mini-mental state examination).  

5. Any of the PIR-derived activity metrics did not 
significantly correlate to ethnographic or clinical 
data. 

6. A correlation suggesting significance was found 
between mean gait velocity and age, however further 
investigations would be required to substantiate this 
claim. 

7. No significant difference in gait velocity or variation 
of gait velocity was found between the faller and non-
fallers. 

VI. DISCUSSION 
 

The deployment, amongst an independent elderly 
population, of an in-home gait velocity and daily activity 
monitoring system is discussed in this paper. A velocity rail 
was developed using three equally spaced PIR dwell sensors, 
and a logical algorithm to extract the gait velocity of a patient 
walking past. An ambient, low-power network of PIR dwell 
sensors measured activity within the home for a mean of 36.13 
days over eight people. All metrics were analysed on a per-day 
basis, averaged per-hour, longitudinally and, where applicable, 
on a per-location basis. Higher-level metrics including the 
stability of circadian activity were extracted using this system 
as well as information regarding the transition between 
locations, including a quasi-velocity metric. A framework for 
recording gait velocity and activity metrics was also developed. 



Long term analyses will be able to investigate any correlation 
between deviations in these metrics from baseline with overall 
health status. 

This system was implemented using an 802.15.4 ZigBee 
communications protocol. All data was transferred using the 
same frequency staggered in time. This led to a strict setup 
protocol resulting in difficulties during data collection. Another 
source of error resulted from out-of-range PIR dwell sensors 
continuously attempting to connect to the basestation. This 
resulted in interference with other PIR dwell sensors in-range 
and led to multiple sensors failing. A resolution to packet 
interference could be found using a frequency hopping protocol 
although this may reduce the battery life of each wireless 
sensor. Testing should be carried out in simulated or test 
environments over a similar duration as the study. While 
experimental testing of this system (including the protocol) was 
successful, a well defined installation procedure must be 
carried out to ensure valid data collection. However, it must be 
noted that such experimental testing cannot cater for all real-
world eventualities. 

Similar research by OHSU details similar PIR-based gait 
velocity measurement systems [8,13,14]. Calibration of this 
system results in a high accuracy when compared to the 
GAITRite Walkway System [6]. However this is not efficiently 
realisable for large scale deployment as each system must be 
individually calibrated prior to operation in each environment 
with each particular participant. An extension of this system 
estimates bed entry/exit times [15]. However, it must be noted 
that this relates to the time at which activity in the house 
declines, not specifically to when sleep begins/ends. 

There is an inherent difficulty in ensuring that all 
movement profiles under analysis relate specifically to the 
particular resident under analysis, and not visitors or other 
residents in the environment. Radio frequency identification 
(RFID) has provided a means of circumventing this issue, 
however its long-term practicality or suitability for sensitive 
populations is questionable. In respect of this a fully ambient 
system was developed. Older adults living alone were included 
in the study and daily records of visitations were kept in an 
attempt to ensure valid data collection. However, this places a 
reliance upon retrospective diary entries, which inherently is 
not ideal. The accuracy of retrospective entries relates to how 
far back in time the visitation entry refers to from when the 
entry is logged by the participant. This can be further 
complicated by compliance issues, such as the participant 
entering data relating to previous days and reporting the current 
date falsely in order to be seen to adhere to the prescribed 
protocol. This problem is symptomatic of ambient monitoring 
systems in general and a well defined and thought-out 
methodology must be designed in order to ensure that results 
are not negatively affected.  

No significant correlations existed in this data set between 
health status (inclusive of clinical and ethnographic data) and 
gait velocity measurements or the derived metrics of daily 
activity. This may be more indicative of the overall positive 
health status of the participants in this study during the 
recording period. In order to clinically validate the benefits of 
this system, the collection of data surrounding both serious life 

events and longitudinal declines in overall health status is 
required. A longer term study over a larger cohort, such as that 
presented by Suzuki et al. [9], would provide more definitive 
results. The mean in-home gait velocity measurement did not 
show a strong correlation to the clinical gold standard 
(GAITRite Inc. Walkway System). This suggests that a clinical 
assessment does not provide an adequate estimate of the degree 
of diurnal and daily variation in gait speed. The participant’s 
velocity is different when measured in the clinical setting than 
that measured in the home as seen in Table II. This may be due 
to inter- and/or intra- daily variations. The clinical 
measurement of gait speed may suffer from the white coat 
effect (i.e. the patient may walk faster in the clinic as they are 
being watched by a healthcare professional). Similarly other 
inter- and intra- variations were found, such as deviations in the 
minimum and maximum number of hits per day, in activity 
monitoring, and in the distribution of the activity. These are 
likely reflective of the participant and their life during the 
recording period. A longer study duration over a larger cohort 
will provide a deeper understanding of how daily activity and 
gait velocity relate to the health status. 

An ambient monitoring approach to in-home monitoring 
provides minimal intrusion, is more suitable for sensitive 
populations and also requires less user interaction minimising 
user non-compliance. However, such technology suffers from 
an inability to distinguish participants (a problem inherent to its 
unobtrusive and non-contact design). The benefit of in-home 
self selected gait velocity monitoring remains under analysis, 
despite gait velocity being indicative of pathological changes. 
A long-term data set collected over various cohorts would 
inform us of the association between falls risk, overall health 
status and wellness with gait velocity and daily activity. This 
paper presents an easily deployable system capable of 
longitudinally analysing gait velocity and daily activity 
information. A number of metrics and visualisations of this 
data is also presented. 
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