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Abstract—This paper presents an approach to structuring
knowledge and reasoning for high-level interpretation of sensor
data in e.g. independent living applications. The main contribu-
tion is to use generalized events, described in terms of ‘space-
time chunks’, as a unifying and simplifying structuring principle.
We use reasoning with ontologies and rules in combination with
a database system, and also incorporate numerical computation.
We show that an easy to use modeling formalism is obtained, and
that reasoning is feasible at the time of service request, by using
R-entailment, which enables efficient exploitation of ontologies
and rules in the presence of RDF data. Two applications were
built using the approach described in this paper, both of which
are related to monitoring well-being of elderly people, and both
of which use simple, low-cost sensors.

I. INTRODUCTION

The older population is growing rapidly. It is also known
that most of the elderly people who live alone, often having
lost a spouse, prefer to remain independent and age at a home
of their choice, whether it is a private home, apartment or
group home, for as long as possible.

Pervasive technology can help age in place. A variety of new
pervasive health applications is emerging. In general, these
applications share a common framework involving activity
monitoring using sensors, interpretation of sensor data, and
providing feedback. There are three user groups, each rep-
resenting a main class of applications: the elderly themselves
seeking better communication with family and friends, as well
as improved safety and security; the elderly people’s family
and relatives, who are looking for ‘peace-of-mind’ provided
through the support of an intelligent awareness system; and
care provider organizations, who can operate more efficiently,
and hence more cost effectively, by having access to a remote
monitoring system.

Activities of Daily Living (ADLs) concern basic activities
that everybody executes on a regular basis. This concept
stems from behavioral studies with the purpose of developing
a generic procedure that assists human caregivers to decide
whether an elderly person needs to be institutionalized or
not, i.e. to decide at what level the elderly person is able to
live independently. Researchers arrived at a couple of main
ADLs that together are typical and diverse enough to cover
the spectrum that arises in practice, such as bathing, dressing,
walking, eating, toilet use, etc. [14], [15]. Automatic and
reliable derivation of information on ADLs is an important

goal: if ADLs could be detected automatically, an indication of
well-being of an elderly person could be provided to relatives
or care-providers of the person and could form a basis for the
development of useful well-being monitoring applications.

Many home-based health and well-being monitoring appli-
cations and decision support applications depend on high-level
interpretation of sensor data. An interpretation step needs to
be made to bridge the gap between raw sensor data, which
is typically of a low semantic level, and the application and
user, to derive high-level information on the user and his
or her context. It is desirable to realize this interpretation
step in such a way that sensors are decoupled from appli-
cations [23]. Various approaches to realization of the sensor
data interpretation step have been investigated, ranging from
approaches that use only numerical computation, using e.g.
statistically based data mining techniques, to approaches such
as the one considered in this paper, which make extensive use
of reasoning using explicitly represented symbolic knowledge.
It should be noted that in practice, approaches that reason
using explicitly represented symbolic knowledge also need
to deal with numerical computation, since raw sensor data is
typically of numerical form.

This paper presents an approach to structuring of knowledge
and reasoning for interpretation of sensor data in applications
that reason using both explicitly represented symbolic knowl-
edge and numerical computation. The main contribution of
this paper is to structure knowledge and reasoning for inter-
pretation of sensor data using generalized events, described in
terms of ‘space-time chunks’ which may have a long duration.
This ‘four-dimensional’ way of looking at events, which was
introduced in AI in [6], leads to a unification of static and
dynamic aspects which is attractive from various perspectives,
in particular from an information management point of view.

In the approach presented in this paper we bridge the
gap between raw sensor data and user-level conclusions in
two parts, called abstraction and reasoning, in such a way
that sensors are decoupled from applications. The abstrac-
tion layer uses numerical computation to determine symbolic
conclusions from raw sensor data while the reasoning layer
uses explicitly represented knowledge to derive high-level
symbolic conclusions from the output of the abstraction layer.
In the applications we developed, uncertainty is handled in
the abstraction layer. We show that an easy to use modeling
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formalism is obtained, providing a flexible means to record
knowledge and configuration data for different contexts, and
that reasoning is feasible in practical applications at the time
of service request, using R-entailment [12], an integrated,
uniform approach to reasoning with rules and ontologies
which has attractive properties with respect to computational
complexity.1

Two applications were built using the approach described
in this paper, both of which are related to monitoring well-
being of elderly people living alone. One application aims at
enabling elderly people to live alone independently for a longer
period by using in-environment sensors to monitor, detect and
signal unsafe or undesirable situations; for example, a gas oven
or a water tap could be on while the elderly person is present
in a different room for a long period of time. The prototype
system that we built deals, in particular, with tracking the
elderly person’s presence at specific locations (i.e. rooms) in
the house. Such location information enables interesting use
cases supporting care providers in assessing well-being of a
person. For example, it allows checking whether an elderly
person moves enough per day between rooms; if a person is
not leaving the bathroom for a long time, this might indicate
a bathroom fall; spending little time in the kitchen or not
visiting it regularly could mean that a person is not eating
or drinking enough. The second application considered in this
paper supports elderly people by enhancing connectedness and
by promoting ‘peace-of-mind’ for their remote children. The
application detects, interprets and communicates an elderly
person’s ADLs in a way that allows the children to acquire
an overview of long-term trends of their elderly parents’
well-being. In particular, cooking and showering activities are
being tracked. Both applications make use of input sensor
data collected by simple, low-cost sensors for detecting, for
example, the status of doors (open/closed) or temperature.
Users do not need to wear RFID tags or other on-body sensors.
No specially designed positioning systems based on e.g. GPS,
RFID or WiFi are being used.

II. RELATED WORK

Many techniques have been proposed focusing on statis-
tical reasoning methods for pervasive health monitoring and
activity recognition, as in [25] [26] [5] [16] [24], whereas this
paper makes much use of symbolic reasoning using explicitly
represented knowledge. A number of papers have addressed
decoupling of sensors from applications through reasoning
based on sensor data using explicitly represented knowledge.
To the best of our knowledge, apart from earlier work by the
first author [10], there has been no other work in pervasive
computing or context awareness that structures knowledge and
reasoning for interpretation of sensor data using generalized
events, as proposed in this paper. The use of generalized events
makes modeling context more generic and hence simplifies
much of the context management.

1R-entailment is based on RDF and RDF Schema, includes a significant
part of OWL, and also supports rules with RDF-like statements in IF- and
THEN-sides.

The CML formalism [8] provides an approach to mod-
eling context information to support software engineering
for context-aware applications, which has been mapped to
XML [21]. In this paper we use the semantic web languages
RDF and OWL, defined on top of XML, which provide
standardized primitives for defining data and semantics, which
can be useful for context modeling.

The CARE middleware [1] supports context awareness
using reasoning with ontologies and rules. Ontologies are
developed using OWL DL. In CARE, ontological reasoning is
only loosely coupled to reasoning with rules, and avoided at
the time of service request, because of the high computational
complexity of reasoning with OWL DL. In [18] the ontology
language DAML+OIL is used, a predecessor of OWL DL with
the same high complexity. Also in [20] reasoning using on-
tologies is done offline for efficiency reasons. We do not avoid
reasoning with ontologies at the time of service request as the
computational complexity of the R-entailment formalism that
we use for reasoning with ontologies and rules is much lower
than that of OWL DL (see below for further details).

ACoMS [13] provides an approach to autonomic context
management which is in a certain sense complementary to
our approach. While the approach described in this paper gives
more attention to dealing with higher-level abstractions than
to dealing with raw sensor data, [13] focuses on arriving at
context facts on the basis of raw sensor data; these context
facts can be compared to our basic events.

In [3] a rule-based approach is presented with applica-
tions related to elderly care. Our approach strengthens the
expressivity of rules by using ontologies to provide machine-
understandable definitions of terminology used in rules. It is
also more expressive and flexible than that of [17], since we
allow rules to use types (classes) rather than instances. In this
paper we handle uncertainty in an abstraction layer, separate
from the symbolic reasoning process; there are other papers
where uncertainty is handled in the reasoning process, for
example using Bayesian networks or fuzzy logic, as in [19].

In [2] a list of requirements for context modeling and
reasoning is presented, together with an analysis of existing
approaches in terms of these requirements. It is of interest to
note that our approach provides at least a starting point for
all the requirements listed in [2]. Our abstraction layer (cf.
Fig. 1) ensures that heterogeneous types of sensor data can
be handled, while our data management framework supports
mobility of context information sources. Relationships and
dependencies, and reasoning, are supported by ontologies
and rules. Timeliness is handled and context histories are
incorporated through our use of generalized events. In this
paper we handle imperfection in the abstraction layer by
using thresholds based on statistics to transform raw sensor
data into symbolic ‘basic events’. Our approach provides
applications with an easy way of using and manipulating
context information, while our modeling formalism, being
based on RDF’s subject-predicate-value triples, is easy to
use by application designers. Finally, efficiency of context
provisioning is supported by the way we use a database



for managing events and by the relatively low computational
complexity of the R-entailment formalism used for knowledge
representation and reasoning.

III. APPROACH AND SYSTEM

The applications considered in this paper aim at detecting
activities of elderly people by interpretation of data com-
ing from simple unobtrusive sensors such as binary sen-
sors for detecting the status of the environment, e.g. doors
(open/closed), water taps, and light switches, and digitally-
sampled continuous-valued sensors for detecting parameters
such as temperature and humidity. We adopt sharing and
aggregation of sensor data. Data from one sensor could be used
by multiple applications, while the combination of data from
different sensors could improve quality of derived information.
In the home our approach could be used, for example, for
lighting control in combination with a well-being monitoring
application using an overlapping set of sensors.

A. Outline of approach

In order to bridge the gap between raw sensor data and
context-aware applications, we aim at what might be called
context determination, i.e. determination of a high-level (i.e.
user-level) description of the user context, given as input raw
sensor data. As in [4] we interpret the term context (or context
of use) in a broad sense, including the state of the user and the
surroundings of the user, activities being undertaken, and also
history. The high-level description of user context that results
from context determination can be viewed as corresponding to
the situation abstraction considered for example in [4] and [8]
(see also the section on high-level context abstractions in [2]).
We emphasize that the high-level description of context aimed
for should be understandable by the end users themselves, so
that any actions taken or advised on the basis of this high-level
description can be explained to the user.

It should be noted that in practice, the interplay of static and
dynamic aspects of context can lead to many complications.
Many investigations use a notion of state or situation as a
basis, considered at a specific instant in time, and consider
dynamic aspects by relating states at different instants in
time. We have adopted another idea which was proposed in
the AI literature [6] to consider an alternative for situation
calculus, a widely used technique in AI. The idea, which is
also described in [22], is to consider not only instantaneously
happening events, for example, but to consider generalized

events, described in terms of ‘space-time chunks’ which can
also have a long duration. This ‘four-dimensional’ way of
considering events makes modeling context more generic and
hence can lead to simplification. In this way, for example, not
only the ringing of a doorbell can be regarded as an event,
but also the presence of a person in a certain room during a
certain hour can be regarded as an event. We describe context
and also history as a set of such generalized events. Also,
knowledge that enables drawing conclusions about context is
phrased in terms of this generalized notion of event. The notion
of generalized event enables easy handling of simultaneous

Fig. 1. Context determination using abstraction and reasoning.

events of different duration, which are much more difficult to
handle using state-based approaches. In what follows we call
generalized events simply events.

We envision context determination to be realized by means
of a two-part approach which involves a procedure for
abstraction and a procedure for reasoning (see Figure 1).
Abstraction aims at algorithmic determination of symbolic,
qualitative conclusions. Typically, an abstraction procedure
involves signal processing and statistics. Reasoning aims at
drawing high-level symbolic conclusions about context using
output of the abstraction procedure and using knowledge
represented explicitly in knowledge bases or implicitly in
algorithms. In the system described in this paper, we use a
reasoner that reasons using knowledge expressed in ontologies
and rules. Abstraction procedures and reasoning procedures
both generate output data in the form of events and can use
events as input. Abstraction procedures can therefore also
use results obtained by reasoners as input. In this way, a
feedback loop is possible and hybrid combinations are enabled
of symbolic reasoning and reasoning through numerical, for
example statistical, computation. In the applications described
in this paper, a pipeline pattern is followed, with a distinction
between lower-level (sensor-level) reasoning and higher-level
reasoning: first an abstraction procedure generates a symbolic
description of context on a low or medium semantic level,
called basic events, then a reasoning procedure generates a
high-level (i.e. user-level) symbolic description of context,
called high-level events. In these applications uncertainty is
handled in the abstraction layer; it is assumed that the basic
events provided by the abstraction procedure form reliable
input for the reasoning procedure.

In our view database technology can be efficiently used as a
gluing component interfacing all components (i.e. abstractors,
reasoners and application clients) and for providing persistent
storage for example for results of abstraction algorithms
and conclusions of reasoning procedures. Our system uses
a database which stores events derived by abstractors and
reasoners; in addition to basic events and high-level events,
also intermediate-level events are stored. The use of database
technology also allows performing analysis of the sensor data
over a long period of time, for example through data mining. A
distributed database could be more efficient than a centralized



Fig. 2. Levels of information: sensors, events, application requests.

database from a reliability and scalability perspective. In the
system described in this paper, however, we did not use a
distributed database yet.

The core of our system consists of three main parts:
abstractors, reasoners, and data management. Applications can
either subscribe to and be notified about a relevant set of events
and conclusions or request the status by querying the system.
Abstractors and sensors could be automatically configured
based on higher-level context using a feedback loop. For
example, knowing that a person is not present in a room (a
high-level conclusion) could be used by sensor nodes in this
room to go to a lower power consumption mode.

We use a knowledge-based approach in which knowledge is
explicitly represented in knowledge bases used by reasoning
algorithms. An advantage of this setup is that knowledge in
a knowledge base is under explicit control of people, in a
relatively flexible way; knowledge bases can be developed
and changed more easily than computer programs that use
knowledge implicitly. A knowledge-based approach offers the
perspective of flexible adaptation to many different kinds of
context that can appear in practice, and could use but does
not need a learning phase. In the work reported here, we
used two kinds of knowledge bases: rule bases and ontologies.
Rule bases contain IF THEN rules which express that certain
conclusions are valid when certain conditions hold. Such rules
use concepts (i.e. notions) in both IF- and THEN-sides. The
meaning of these concepts can be defined in a machine-
understandable way in ontologies. In this way, ontologies lead
to an increase of expressivity of rules.

Figure 2 shows some examples dealing with the elderly
care applications considered in this paper. The left part of this
figure includes various sensors, while the right part of this
figure shows various needs for information from applications.
The middle part of the figure gives examples of various high-
level statements on users (events) which are of interest to
the applications. For example, to answer the question ‘how
frequently is the user visiting the bathroom’, information is
needed on the presence of the user in a room. Presence in
rooms could be detected in many different ways, for example,

using light switches or movement detectors or open/closed
sensors located on doors. Figure 2 does not show that there can
actually be multiple levels in the middle part: e.g., information
on walking can be deduced from information on presence.

B. Reasoning with rules and ontologies: R-entailment

Before turning to the kind of knowledge represented and
used in our system using rules and ontologies, we briefly
discuss our format for knowledge representation. Use of the
semantic web languages RDF and OWL offers the potential
to make use of the growing amount of machine-processable
knowledge expressed in these languages on the web. However,
as was already mentioned in the section on related work, in
several investigations where semantic web ontologies were
used in applications of pervasive computing, the issue of
computational complexity of reasoning was encountered. In
addition, there is the issue that semantic web technology
involves different reasoning paradigms which are not directly
compatible: RDF, description logics (OWL DL), and logic
programming. RDF allows data to be represented as subject-
predicate-value triples, and is accompanied by a simple ontol-
ogy language, RDFS (RDF Schema). RDF and RDFS include
higher-order expressivity allowing for example classes to be
used as instances, which is considered to be useful by many
developers of ontologies. OWL DL is based on a description
logic and provides primitives for specifying ontologies not
provided by RDFS, but does not provide RDFS’s higher-order
expressivity. OWL DL has a high computational complexity:
NEXPTIME [9]. OWL DL combined with basic primitives for
logic programming rules is undecidable.

The three reasoning paradigms mentioned - RDF, descrip-
tions logics, logic programming - have not been fully inte-
grated. In order to arrive at a technically coherent and tractable
way of reasoning with ontologies and rules on the semantic
web, a careful selection of possibilities needs to be made.
It is natural to start from RDF, the basic, standard format
for expressing data on the semantic web. In this paper we
use a relatively simple, uniform approach to reasoning with
ontologies and rules that fully includes RDF and RDFS, that
includes a significant part of part of OWL, and that also
supports rules with RDF-like statements in IF- and THEN-
sides. The notion of consequence is called R-entailment [12].
The part of OWL included [11] has been used by the W3C
for standardizing a new variant of OWL: OWL 2 RL.2 The
relatively low computational complexity of RDFS is preserved
by making the extension to R-entailment. Making the natural
assumptions that rules do not introduce blank nodes (i.e.
existentially quantified variables) in their THEN-sides and
satisfy a bound on the number of statements in their IF-sides,
R-entailment has NP-complexity [12]; R-entailment actually
has polynomial-time complexity in the commonly occurring
case, also applying to the applications considered in this paper,
where query statements do not include blank nodes [12].3

2http://www.w3.org/TR/owl2-profiles/
3R-entailment can be used with Jena (see http://jena.sourceforge.net) and is

also supported by the BaseVISor system (see http://vistology.com/basevisor).



C. Knowledge Representation and Reasoning

In this section we describe the way in which knowledge
is used for drawing semantically high-level conclusions on
context based on a lower-level description of the sensor data.
The reasoner that we use to determine a user-level description
of context of use, in the form of high-level events, uses a
symbolic summary of sensor data as input, in the form of basic
events (cf. Fig. 1 and the text discussing it). We distinguish
two kinds of basic events: value events and transition events. A
value event indicates that a certain value detected by a sensor
holds without interruption between a certain start time and a
certain end time. Here a value is a symbolic, qualitative value
such as ‘open’ or ‘closed’ for a door sensor or ‘low’ or ‘high’
for a humidity sensor. A transition event indicates that the
(discretized) value of the sensor has not been constant between
a certain start time and a certain end time. Determination of
value events and transition events requires relatively little data
preprocessing and can lead to significant data reduction, which
limits bandwidth usage in the system.

The two kinds of basic events for sensors are expressed as
input for our reasoning system in the form of RDF statements,
i.e. subject-predicate-value triples of one of the following two
forms:

[SensorID] hasValue [SensorValue]
[SensorID] hasTransition [SensorTransition]

With respect to the elderly care applications considered in
this paper, it is assumed that there is at most one person present
in the home under consideration, identified in this section as
User. This assumption makes sense in our application area
as this involves monitoring of elderly people living alone. It
is possible to detect the presence of multiple people and to
automatically disable monitoring when, for example, a guest
is present who can take care of the elderly person in case of
abnormality.

We describe the ontology used by our reasoning system by
describing its classes and properties (i.e. binary relations). The
more concrete parts of the ontology are rather specific to our
application setting. A central point is that the ontology could
easily be set up in an alternative way so as to apply to other
settings. We begin by describing the more abstract parts of the
ontology, which can be expected to apply in many settings.
The ‘root’ of the ontology consists of the class Object.
A central class of the ontology is the subclass Sensor of
the class Object. The class Sensor has another subclass:
SensorTP, which is defined to be the class of sensors for
which each transition indicates presence of the user.

The property relatedToObject is introduced to de-
scribe the background configuration, e.g. objects and rela-
tionships which are more or less fixed. This property has
two subproperties, i.e. specialized versions: presentAt and
presentInRoom. The presentAt property is used, for ex-
ample, to describe the connection between sensors and objects,
e.g. between a door sensor and the door to which it belongs.
The presentInRoom property is used, for example, to state,
as a conclusion, that the user is present in a certain room.

In order to take time into account in the reasoning in a
simple, symbolic way, there is also a property previously-
PresentInRoom, which is used to indicate that the user has
just been, but is no longer, in a certain room. The class
TemporalProperty is used to define the class of properties
which can only be used to make statements that have a limited
duration of validity.

In addition to the class Sensor, the class Object has
other subclasses, such as: Room, Cupboard, Bed, Door, and
Window. The class SensorTP, i.e. the class of sensors for
which each transition indicates presence of the user, has
subclasses such as CleanWaterSensor, CupboardDoor-
Sensor, and LightSwitchSensor. In addition to the class
SensorTP, the class Sensor also has subclasses such as
WindowSensor, DoorSensor, and TemperatureSensor,
for which transitions may not indicate presence of the user.

The ontology just described is populated with instance data,
which essentially describes the configuration of the context
considered, in particular the floor plan and the types and
placement of sensors. In order to facilitate management of this
configuration data, we developed a relational database appli-
cation, which can automatically provide convenient overview
reports of all the data and can also generate text files that
contain the instance data in the form of RDF statements.

In this paper we do not use the standard XML syntax of
RDF but use another, also quite widely used, abbreviated syn-
tax, in order to improve readability. This so-called N-Triples
syntax greatly facilitates the use of the R-entailment formalism
used here.4 The following rule deals with transitions of all
sensors of a type belonging to the class SensorTP:

IF ?s type SensorTP AND ?s hasTransition ?t
THEN User presentAt ?s

By means of this rule, the class SensorTP defined in the
ontology allows the combination of a number of ‘concrete’
rules into just one rule which is more abstract. For sensors of
a type that does not belong to the class SensorTP, transitions
are being handled by more specific rules.

The reasoner draws conclusions relating to the room where
the user is present using the following two rules:

IF ?o presentAt ?p AND ?p presentAt ?q
THEN ?o presentAt ?q

IF ?o presentAt ?p AND ?p presentInRoom ?q
THEN ?o presentInRoom ?q

Conclusions relating to cooking and showering events can
be drawn using the following two rules:

IF ?s type HumiditySensor
AND ?s hasTransition "LOW/HIGH"

THEN User uses Shower
IF ?s type TemperatureSensor

AND ?s hasTransition "LOW/HIGH"
THEN User uses Stove

With respect to handling time, all rules mentioned so far
just consider the ‘current’ moment (‘now’). The following

4We make various abbreviations in the standard vocabulary from RDF and
OWL. For example, the property rdf:type is abbreviated as type.



TABLE I
REASONING ALGORITHM (SEE TEXT FOR H AND C).

On input of new basic events
DO
B := set of new basic events (i.e. hasValue

and hasTransition statements)
H0 := H

H1 := set of statements with User as subject derived
from B ∪ C

IF H1 contains a presentInRoom statement
THEN H := H1
IF H0 contains a statement of the form
User p r

which is not contained in H1, while the ontology
entails the statement

p type TemporalProperty
THEN add to H the following statement:
User q r

where the name of q is that of p with previously
prefixed

RETURN H

rule combines the current moment with information on the
immediately preceding history. It can be used for drawing
conclusions relating to walking events:

IF User previouslyPresentInRoom ?r
AND User presentInRoom ?s
THEN User walksFrom ?r AND User walksTo ?s

The reasoning procedure uses the RDF statements summa-
rizing the floor plan and the types and placement of sensors.
This configuration data forms instance data for the ontology;
it is derived from a database in the manner indicated above.
Further input for the reasoner consists of RDF statements
summarizing the current status of sensors. This status is ex-
pressed using basic events in the form of hasValue statements
and hasTransition statements, as was already indicated.
The reasoning procedure applies the ontology and rules to
the input RDF statements, i.e. configuration data combined
with the current basic events, to derive presentAt and
presentInRoom statements and also statements relating to
activities such as showering, cooking and walking. As output,
a selection is made by the reasoner of all derived statements
with the user (i.e. User) as subject. The reasoning procedure
can continuously be triggered to draw conclusions from new
sensor data, using the algorithm presented in Table 1. In Table
1, the set of derived statements with User as subject is denoted
by H , which is short for high-level events. In the algorithm,
H is initialized to be empty. The set of RDF statements
describing the configuration data is denoted by C. The data
management system ensures that each event concluded by the
reasoner is recorded in the database with correct start time and
end time.

In addition to the rules explicitly described in the knowledge
base, our reasoning procedure also uses certain implicitly
available rules for exploiting the ontology. These implicitly
available rules, called entailment rules, ‘realize’ the underlying
semantics of RDF Schema [7] and the part of OWL used [11].
As an example of the use of these entailment rules in our
reasoner, for light switch sensors, the following statement in

Fig. 3. Architecture of prototype.

the ontology:
LightSwitchSensor subClassOf SensorTP

is being used in combination with the following standard
entailment rule for RDF Schema [7]:

IF ?v subClassOf ?w AND ?u type ?v
THEN ?u type ?w

to draw the conclusion that each instance of the class Light-
SwitchSensor is also an instance of the class SensorTP.

To illustrate the reasoning procedure and its use of the
knowledge base, we present a simple example, based on the
following input statement:

BedPresenceSensor01 hasValue "PRESENT"

The system combines this statement with the following con-
figuration data:

BedPresenceSensor01 type BedPresenceSensor
BedPresenceSensor01 presentAt Bed01
Bed01 presentInRoom Bedroom

to draw the following conclusion:
User presentInRoom Bedroom

Here the following three rules are being used:
IF ?s type BedPresenceSensor

AND ?s hasValue "PRESENT"
THEN User presentAt ?s

IF ?o presentAt ?p AND ?p presentAt ?q
THEN ?o presentAt ?q

IF ?o presentAt ?p AND ?p presentInRoom ?q
THEN ?o presentInRoom ?q

IV. APPLICATION AND DEPLOYMENT

We implemented and tested the proposed approach in an
experimental simulation of a living environment for an elderly
person. Our demonstrator deals, in particular, with tracking
the elderly person’s presence at specific locations in the living
environment. Figure 3 depicts the prototype system that draws
conclusions on presence of a user given as input sensor data
and shows this information on a screen in real-time.

The infrastructure (depicted in the grey box in Fig. 3)
includes 147 off-the-shelf sensors, mainly simple binary sen-
sors for detecting the status of, for example, doors, windows,
and drawers, but also digitally-sampled, continuous-valued
sensors, for detecting for example humidity and temperature.
These sensors were already installed before the work described
in this paper started. We used these sensors mainly to test
our approach and system. A question to be answered in future
work concerns the optimal number of sensors needed to detect
a certain context in a reliable way.



All the sensors are connected with wires to a LON server,5
which makes all the sensor readings available on the network.
In Fig. 3 the distribution of physical components is chosen
so that the main flow from low-level data to high-level
information is from left to right: from sensor, to abstractor,
event and data collection system, to database, to reasoning
system and finally to application.

Our architecture uses the commonly used event-driven soft-
ware pattern to provide high responsiveness. The abstractors
running on the abstractors and DB server receive the sensor
readings from the LON server, and update the basic events, in-
cluding timing information, in the database, if necessary. Many
off-the-shelf sensors already provide discretization, and for
some sensors, for example humidity sensors, discretization was
realized using thresholds on numerical values. Suitable values
for some of these thresholds were empirically determined in a
form appropriate for reuse, using statistics. In case of changes
to the basic events, the database triggers the reasoner, running
on the reasoning server, to perform the next reasoning cycle.
The inferred conclusions (e.g. high-level events) are, combined
with timing information, updated in the database, if necessary.
A change in an event in the database derived by the reasoner
is used to notify all clients subscribing to the event. In the
setup of the localization application, there is only one client;
this client puts the inferred data to the screen.

We use MonetDB,6 a relational database management sys-
tem which fulfils our data management requirements: support
for active database functionality, client/server architecture to
support multiple client programs accessing our database simul-
taneously, and small footprint to run on embedded hardware
with limited resources. The data is retrieved and managed
using SQL. The reasoning server uses Jena,7 which supports
RDF and OWL and also rules of the type used here. Jena also
supports the N-Triples syntax which we used in the examples
above and which helps to make our approach easy to use.

Figure 4 shows the screen of the application that visualizes
output of the system. The top part of the screen is occupied by
the map of the living environment showing all sensor firings
and conclusions (e.g. room localization, walking, cooking,
showering detection) as they happen. The bottom part shows
three images from the video cameras installed: kitchen view
(left), hall and bathroom view (middle) and bedroom view
(right). The camera images on Fig. 4 were only used to
evaluate the correctness of conclusions of the set-up against
reality. The camera images were not used by the system.

After having done a number of tests with colleagues, we
asked a woman aged 82 to perform normal daily activities
like walking to the kitchen, preparing a cup of tea (see
Fig.4), going to the dining table and drinking the cup of tea,
going back to the kitchen and cleaning the cup, going to the
bathroom to wash hands, and finally going to the bedroom to
lie on the bed. All activities described in our knowledge base

5http://www.echelon.com/products/lonworks
6http://www.monetdb.com
7http://jena.sourceforge.net

Fig. 4. Room localization application.

where detected correctly, no known activities were missed.
We can conclude from the performance analysis of the

prototype that there are no bandwidth issues. In our deployed
system, events are passed and processed fast enough to sup-
port activity recognition of a person living alone without
undue delay. The largest computational load is caused by
the reasoning process. This is expected as this process forms
the most complex task of the system. One way to resolve
this bottleneck is by running abstractors and local reasoners
on embedded hub nodes. A local reasoner could then make
conclusions based on the partial knowledge available at its
end. An example of such knowledge partitioning could involve
geometrical or topological information (e.g. perform reasoning
with basic events happening in one room). One reason for the
computational load caused by the reasoner is that Jena is a
general purpose semantic web tool which is not optimized
for R-entailment reasoning. Optimized implementations of
R-entailment are emerging, e.g. BaseVISor.8

We are currently integrating our system in a broader in-
frastructure for pervasive health monitoring - this involves
integrated, distributed data management - and continuing our
work on validation. Figure 5 describes the configuration which
we have recently introduced to homes of five elderly people
and their caregivers. The system consists of a number of
subsystems, one for each home, consisting of a relatively
powerful hub/gateway node with connections to a number
of heterogeneous sensors and possibly actuators. The optimal
number of sensors depends on the desired use cases (e.g.
activities to be detected), topology of the house or apartment,
and sensor area coverage. We use wireless sensor nodes from
Sensite Solutions.9 As hub nodes we use small-size devices,
gumstix,10 which act as the event vault for progress monitoring
and as internally used portals for distributed event handling.
Each hub node runs abstractors and a database management

8http://vistology.com/basevisor/basevisor.html
9http://www.sensite-solutions.com/
10http://www.gumstix.com



Fig. 5. Distribution of data in the system.

system, with currently a PC added for the reasoner. A backend
system is used to archive high-level events coming from the
home-based systems, perform long-term pattern analysis, and
present information to various clients, e.g. family members
and care specialists. This forms a hierarchical data distribution
system, which is attractive from a scalability and fault toler-
ance perspective. We envision that simple abstractors which
do not involve intensive data processing could run directly
on sensor nodes. Moreover, local reasoners could run on hub
nodes. We also envision a distributed database management
system to be used to further abstract from the underlying
sensor infrastructure and make distributed querying transparent
to the rest of the system.

V. CONCLUSIONS

We have demonstrated that generalized events can be used
to structure knowledge and reasoning for high-level interpre-
tation of sensor data in independent living applications. Using
R-entailment, a formalism for modeling knowledge is obtained
which is easy to use in practice, which provides a flexible
means to record knowledge and configuration data for different
contexts, and which enables feasible reasoning using rules and
ontologies at the time of service request. A database system
can be used to efficiently link system components by managing
and making available generalized events.
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