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Abstract— Increasingly, applications of technology are being 

developed to provide care to elderly and vulnerable people living 

alone. This paper looks at using sensors to monitor a person’s 

wellbeing.  The paper attempts to recognise and distinguish 

falling, sitting and walking activities from accelerometer data. 

Fast Fourier Transformation (FFT) is used to extract 

information from collected data. The low-cost accelerometer is 

part of a Texas Instruments watch. Our experiments focus on 

lower sampling rates than those used elsewhere in the literature. 

We show that a sampling rate of 10Hz from a wrist-worn device 

does not reliably distinguish between a fall and merely sitting 

down. 

Keywords-Activity Detection, Fall Recognition, Accelerometer, 

Remote Healthcare Delivery  

I.  INTRODUCTION  

The number of elderly people who could benefit from the 
remote delivery of healthcare is rapidly increasing [1], so 
developments in this area could have a major benefit on the 
standard of care. This paper

1
 looks at ways in which we can use 

accelerometer data to recognise certain activities that would be 
useful in delivering remote care for the elderly. By successfully 
recognising what activity a user is doing, such as distinguishing 
between walking and falling, it is then possible to monitor their 
wellbeing and give care in an emergency situation. Improving 
fall detection methods would be extremely beneficial to the 
elderly population.  

Can we use accelerometer data successfully to recognise 
different activities? "An accelerometer is an electromechanical 
device that will measure acceleration forces. These forces may 
be static, like the constant force of gravity pulling at your feet, 
or they could be dynamic - caused by moving or vibrating the 
accelerometer"[2]. Accelerometers are able to measures forces 
and then transform these forces into data through X, Y and Z 
axes. Accelerometers are increasingly found in devices (e.g. 
mobile phones [3]), many of which are capable of supporting 
remote care delivery. The activities that will need to be 
recognised are falling, sitting down and walking. 

The literature shows several studies by groups attempting to 
recognise falls from accelerometer data, however reliability and 
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accuracy levels are still a problem [4]. This may be related to 
sampling rate.  

Maurer et al. [5] used 15-20Hz and achieved recognition 
accuracy rates of up to 90%.  A 90% recognition rate means 
that when a user is performing an activity (e.g. walk or run), 
then their method will successfully recognise the activity 90% 
of the time. Ravi et al. [4] and Pärkkä, Cluitmans and Ermes 
[6] use 50Hz for the sampling rate. Preece et al. [7] also use a 
high sampling rate of 64Hz, however there are certain issues 
using extremely high sampling frequencies which are that even 
the smallest movement can have a significant effect on the 
data. Preece et al. [7] say that at least 20Hz is needed for 
successful recognition of activities from the data; however 
Maurer et al. have already had success with lower rates than 
20Hz.  

Previous studies have all used sampling rates over 15Hz, 
but this paper investigates whether successful recognition can 
be achieved with cheap "off the shelf" components using a 
sampling rate of 10Hz. 10 samples per second should be fast 
enough to capture the necessary amount of data, yet slow 
enough not to capture unnecessary noise and anomalies. 

We used two-minute sections of data to see if activity 
recognition can still be achieved by having larger amounts of 
data. Whilst performing the different experiments it was 
important for the accelerometer to start in the same orientation, 
and show consistency between the tests. The lack of 
consistency of the orientation could lead to possible recognition 
problems. Maurer et al. developed a method of reducing the 
influence of orientation by ensuring it is consistent throughout 
the tests. “To reduce the dependency on the orientation, both X 
and Y values were combined calculating the squared length of 
the acceleration vector” [5]. There is a possibility of using just 
one axis rather than three. This would have the benefit of 
reducing the complexity of the data and the correlation aspects. 
Pärkkä [6] used only the vertical direction of the 3-axis 
accelerometer and had successful recognition results.  

We hypothesise that falling will show a clear peak in the 
frequency domain and it will be possible to differentiate the fall 
from the activity of sitting down. It is also expected that 
walking will show repeatable patterns due to the fact that an 
arm swing is a continuous repeatable action that will be 
represented in the frequency domain with a low frequency 
component. 
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II. METHOD 

A. Equipment and processing 

The hardware requirement was to use inexpensive off-the-
shelf components. We used a Texas Instruments eZ430-
Chronos 868 MHz development watch with altered firmware 
(customised to achieve equal time spacing between the 
accelerometer samples). The watch samples the X, Y and Z 
axes each 1/10th of a second, and each transmitted packet is 
consecutively numbered. The watch was attached to the 
subject's wrist. To guarantee consistency between tests, the 
accelerometer was worn in exactly the same position, ensuring 
the axes were always pointing towards the same way. Two of 
the authors (SB and CC) were used as the experimental 
subjects. 

Data was gathered using a software application (developed 
in C# using the C# Chronos.Net Library) that communicated 
with the Chronos USB RF receiver. The data was requested 
every 100 ms from the receiver, and then stored in an XML file 
and later processed and visualized.  

Processing consisted of a Fast-Fourier transformation (FFT) 
of the whole data set. The transformation from the time domain 
into the frequency domain was expected to show features of the 
data set that were not otherwise visible before. Noise is present 
in the data and needs to be acknowledged in the data analysis.  

B. Experiment procedure  

We focused on three main activities: walking, sitting down 
and falling. Each activity test lasted for 2 minutes (chosen 
arbitrarily) and was repeated 10 times for each of the two test 
subjects. This means that 20 different data sets for each activity 
were available for the data processing. It was hypothesised that 
this will provide enough data to form a consistent pattern in the 
analysis stage. For the walking experiment, the test subjected 
walked in a circle, allowing their arms to swing freely. For the 
task of sitting down, a standard office chair was used with a 
height of 40 cm. The fall experiment had to be designed in such 
a way that the test person did not hurt himself. For that reason 
we had the person “trip” and fall facing the floor, so that it was 
possible to use their hands to soften the impact.  

III. RESULTS 

The experiments produced 60 different datasets. Each of the 
datasets were analysed, however only one from each activity is 
presented due to space constraints of the paper. This paper will 
not discuss the raw data, because each activity resulted in over 
1000 single data points for each axis and is more meaningfully 
presented in a graph.  

A.   Walking  

The first experiment conducted was walking. It was 
expected to be the simplest activity and show the most peaks in 
the time domain. In the time domain, the free swinging of the 
arms was likely to be projected as an oscillation, while the 
frequency domain should have a component in the lower area 
corresponding to the oscillation frequency.   

 

Figure 1. Walking Time Domain 

Figure 1 shows the raw data of a walking experiment, 
presented in the time domain. The test started from time 150 
onwards. The three graphs show the X, Y and Z axes that were 
monitored. During the experiment the oscillation is only 
marginal. Comparing the time domain with the other collected 
data sets from the walking experiments show similar 
behaviour. The expected arm movement was not visible. Using 
FFT the data was transformed from the time domain into the 
frequency domain (see Figure 2). For walking experiments no 
particular frequency component could be detected. The 
frequency components from 0–5 Hz are equally distributed 
with no high peaks. After reviewing further walking data, these 
peaks were evident throughout.   

 

Figure 2. Walking Frequency Domain 

B.  Sitting 

The next step was to perform the activity of sitting. The 
motion of sitting down and falling can look very similar in the 
time domain but each should be distinguishable from the other. 
Figure 3 shows the accelerometer data from a sitting down 
experiment in the frequency domain.  

The movement evident at the beginning of the experiment 
is part of the movement to activate the RF link and is not 
relevant to the experiment. The activity of sitting down starts at 



the time 700. An increase in the acceleration can be seen for all 
three axes. The movements after this are the subject on the 
chair. 

 

Figure 3. Sitting Time Domain 

Figure 4 shows a high detail view of the activity in the time 
domain. A clear acceleration was detected in the X axis while 
the Y and Z axes only change slightly. The activity of sitting 
down occured in the time frame of 8-10s. 

 

Figure 4. High Detail View of Sitting Time Domain 

Transferring the data into the frequency domain is shown in 
Figure 5. 

 

Figure 5. Sitting Frequency Domain 

In the frequency domain, two main peaks can be detected in 
this data set. One peak is at 4.5Hz and another at 2.5Hz. The 
peak at 4.5Hz was also evident in the other data sets at slightly 
different frequencies (ranging from 4 – 4.5Hz).   

C. Falling  

The last activity was falling. While the motion is similar to 
sitting down, the hypothesis stated that it should look different, 
once transformed to the frequency domain.  

In Figure 6 the time domain data is presented. The fall 
occurred at 800 on the timescale. The movements before this 
time point are random movements of the subject.  

 

Figure 6. Falling Time Domain 

While looking at the activity of falling in more detail 
(Figure 7), similarities to the sitting activity can be observed 
(compare Figure 4). Strong acceleration was evident in the X 
and Z axes while the Y axis only had weak changes.  



 
Figure 7. High Detail View of Sitting Time Domain 

Figure 8 shows an FFT from the falling experiment. The 
same peak at 4.5Hz can be detected. This is the same as the 
sitting down experiment (compare Figure 5). Some of the other 
FFTs for this experiment also show a small peak at around 
1.5Hz. So a clear distinction between the two activities of 
sitting down and falling cannot be guaranteed.   

 
Figure 8. Falling Frequency Domain 

IV. DISCUSSION 

Looking at the data samples of the test, it is not possible to 
accept the stated hypothesis. However, it is possible to 
distinguish between the activities of walking (on the one hand) 
and falling/sitting down (on the other). The problem lies in the 
differentiation between falling and sitting. While one activity is 
part of normal daily life, the other is not and therefore needs to 
be treated as an emergency situation.  

The Fast-Fourier Transformations of the sitting down and 
falling datasets show peaks in the frequency domain. This 
confirms that sitting down and falling have a different spectrum 
from walking. This gives us encouragement to investigate 
variations in processing parameters and methods. From the 

recorded data it is only possible to view the acceleration - the 
orientation is not known. This aspect of an accelerometer was 
not foreseen but will be addressed in future work. The 
accelerometer is liable to be worn in slightly different 
orientations between tests and individuals; therefore the 
starting orientation of the axis will change during the 
experiments. This could be a possible reason for the lack of 
successful recognition whilst analysing the data. This issue is 
currently being investigated. Additionally, we have a second 
watch and are experimenting by wearing it at the waist. Future 
analysis will involve integrating the data from the two devices. 

 Another avenue which is being explored is the processing 
of the collected data using a moving window approach. In this, 
only the last few seconds will be used for the FFT. Huynh and 
Schiele recommend the optimum length of a window should be 
1-2 seconds[8]. Future work will look at reducing the 
momentary window size and comparing the findings. We also 
envisage taking a heuristic approach, where classification of 
the different activities will be carried out using data mining 
methods such as neural networks or fuzzy logic algorithms. 
Further work will also include a solution to the missing 
acceleration orientation. 

V. CONCLUSION 

The work and results presented are encouraging and point 
to the possibility of using inexpensive sensors to categorise and 
recognise human activities successfully, including falling. In 
summary, it is not fully possible to use accelerometers on the 
wrist as reliable fall detectors at this time. Using one 
accelerometer, it is not possible to differentiate between a 
normal situation and a serious fall.  
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