
  

Passive, In-Home Gait Measurement Using an  

Inexpensive Depth Camera: Initial Results 
 

Erik E. Stone and Marjorie Skubic 

Center for Eldercare and Rehabilitation Technology 

Department of Electrical and Computer Engineering 

University of Missouri 

Columbia, MO, USA 

ees6c6@mizzou.edu, skubicm@missouri.edu 

 

 

Abstract— In-home gait measurement results from the 

apartments of seven older adults obtained using an 

environmentally mounted depth camera, the Microsoft Kinect, 

are presented. Previous work evaluating the use of the Kinect 

for in-home gait assessment in a lab setting has shown the 

potential of this approach. In this work, a single Kinect sensor 

and computer have been deployed in five apartments, two of 

which contain multiple residents, in an independent living 

facility for older adults. Data collected in the five apartments, 

along with techniques for generating automated gait 

measurements from the data, are presented.   
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I. INTRODUCTION 

ESEARCH has shown the importance of measuring a 

person’s gait [1] and that the parameters which describe 

locomotion are indispensible in the diagnosis of frailty and 

fall risk [2]. Studies have indicated that changes in gait 

parameters may be predictive of future falls and adverse 

events in older adults [3-6] and may precede cognitive 

impairment [7]. However, current methods for measuring 

gait, such as observation by a clinician or evaluation in a 

physical performance lab, often lead to sparse, infrequent 

assessments and may not be representative of a person’s true 

functional ability [8]. Systems capable of measuring gait on 

a continuous basis during normal daily activity could 

provide invaluable information for purposes ranging from 

automated fall risk assessment to early detection of illness.  

A number of technologies exist or are being developed for 

continuous gait monitoring outside of clinical and laboratory 

settings [8-12]. These technologies range from wearable 

accelerometer based devices to arrays of passive infrared 

motion sensors in the home. In [8], researchers were able to 

show that in-home walking speeds were associated with 

several neuropsychological and motor performance tests and 

that they allowed the calculation of previously unattainable 

metrics of physical function. 

Based on responses from older adults [13], an ideal 

monitoring system would be unobtrusive and not 

inconvenience the patient. Environmentally mounted vision 

sensors address this concern. In addition, vision sensors 

offer the precision necessary to measure detailed gait 

parameters such as stride time and stride length, which have 

been shown to be important to fall risk assessment, without 

the need for wearable devices. Finally, research has 

indicated that privacy concerns of older adults to vision-

based monitoring systems can be addressed by use of 

appropriate privacy preserving processing techniques [14]. 

Recently, Microsoft released the Kinect sensor for their 

Xbox gaming system. The sensor uses a pattern of actively 

emitted infrared light in combination with an image sensor 

to obtain a depth image that is generally invariant to ambient 

lighting. The sensor offers a single, low cost sensor device 

that allows for a three dimensional representation of the 

environment. Earlier work looked at developing algorithms 

for measuring gait parameters from the raw depth imagery of 

the Kinect sensor and validating the measurements against a 

Vicon marker-based motion capture system in a laboratory 

setting [11]. This evaluation showed good agreement 

between the two systems.  

This paper presents initial results of monitoring the gait of 

seven older adults, living in an independent living facility, 

continuously, in their homes, using a Kinect sensor. 

Preliminary data is presented along with a methodology for 

computing average gait parameters for the residents. 

Potential future work and challenges involved in capturing 

the data are discussed. 

II. SYSTEM OPERATION 

The Kinect sensor and a computer were deployed in the 

apartments of seven elderly residents in an independent 

living facility with the goal of assessing and monitoring their 

gait.  Figure 1 shows the Kinect sensor as mounted in one 

apartment. The Kinect is placed on a small shelf below the 

ceiling (height 9 feet), above the front door. For convenience 

to the resident, the computer is placed in a cabinet above the 

refrigerator. The arrangement has proven to be quite 

unobtrusive to residents, with some indicating that they do 

not notice the equipment after a short period of time. 

The Microsoft Kinect SDK, and the skeletal tracking it 

provides, is not used. Instead, the raw disparity values from 

the Kinect depth stream are processed as described in [11], 

with functionality added to allow the system to operate in 

dynamic environments and track segmented people. The 

main reason for not using the Kinect SDK is the limited 
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range of the skeletal tracking, approximately 1.5 to 4 meters 

from the Kinect. This range, combined with the positioning 

of the Kinect, is insufficient to capture walking sequences 

from beginning to end in many areas of the apartments, 

especially the larger ones, whereas the current approach has 

been shown to work at distances of up to 8 meters from the 

Kinect. Furthermore, the accuracy and reliability of the 

skeletal model provided by the SDK, in the usable range, has 

yet to be validated for gait measurement, whereas the 

accuracy and reliability of the current approach has been 

validated with good results.  

Walking sequences are identified from the path history of 

people tracked by the system. A set of criteria including path 

straightness, speed, duration, and distance are used to extract 

suitable walking sequences from the path histories. This is 

done online in real-time. Due to issues such as occlusion and 

bad segmentation, stride parameters cannot be extracted for 

every walking sequence. For this analysis, quality walks are 

defined as those for which a minimum of six steps were 

extracted which also met three screening criteria used to 

eliminate possibly invalid step sequences: 1- the steps were 

extracted in the correct temporal order (left, right, left, right, 

etc.), 2- the maximum amplitude of the correlation 

coefficient time series did not exceed 90 (see [11]), 3- the 

difference between the maximum and minimum stride times 

was less than half the mean stride time. 

III. RESULTS AND ANALYSIS 

The Kinect gait system has been deployed in five 

apartments in the independent living facility with the goal of 

deploying a total of ten systems for two years. Of the five 

apartments, three had a single resident while two had two 

residents. Ages of the residents range from 75 to 95 and four 

of the seven residents are male. For this analysis, data from 

the three week period November 3
rd

 through November 23
rd

, 

2011, was used. Two of the residents used a walker at some 

point during this time period. 

A. Apartment 1 

Figure 2 provides visualizations of the walk data from 

Apartment 1. During the three week period, a total of 1140 

walks were identified in the apartment. Of those, 297 were 

determined to be quality (as defined at the end of Section II). 

As can be seen in Figure 2(a), the Kinect system identified 

between 29 and 85 total walks per day and between 8 and 20 

quality walks per day. The histogram of walk lengths in 2(b) 

illustrates not only the difference in the length distributions 

of the quality walks vs. all of the walks, but conveys the 

constraints on walk length due to the floor plan of the 

apartment. Furthermore, the number of quality walks 

compared to the number of all walks illustrates the issues 

with capturing quality walks, such as occlusion, or simply 

lack of good walking paths in the apartment. Density plot 

2(c) indicates a tight, single cluster formed in the 2D feature 

space of height and speed. Finally, Figure 2(d) illustrates the 

paths of the extracted walks in the apartment. 

To obtain measures of habitual, in-home speed, stride 

time, and stride length for the resident, a single 4D Gaussian 

distribution was fit to the data from the quality walks. The 4-

dimensions were: [average speed, stride time, stride length, 

height]). Final mean values of the parameters for the resident 

are shown in Table I. 

In order to verify that these values were indeed computed 

from walks of the resident and to evaluate the impact of 

 
 

Figure 1: Kinect system deployed in an apartment in an independent living 

facility. The Kinect sensor is seated on a small shelf mounted close to the 

ceiling. A computer is placed in the cabinet above the refrigerator. 

 

 

 

 

 
 

 

 
 

Figure 2: Data from Apartment 1. (a) Plot of the number of identified walks 

per day: all (blue square), quality (red circle). (b) Histogram of the walk 

lengths: all (blue), quality (red). (c) Density plot of speed vs. height for the 

quality walks. (d) Density plot of the paths of the quality walks. 
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visitor walks on the automatically estimated parameters, a 

person familiar with the resident hand labeled approximately 

one third of the quality walks from the apartment; which 

were selected randomly. (For the other apartments, if this 

resulted in less than 95 labeled walks, the percentage was 

increased). This labeling was achieved by viewing videos of 

the Kinect depth imagery of the walks. Although it cannot be 

guaranteed that these labels are 100 percent accurate, 

someone familiar with the resident is able to label the Kinect 

video of a walk with high confidence.   

The results of this hand labeling are provided in Table I. 

First, 98% of the labeled walks in Apartment 1 were from 

the resident. Furthermore, 100% of the labeled walks used in 

the automated estimate of average speed, average stride 

time, average stride length, and height were from the 

resident. This provides persuasive evidence that the 

measurements obtained for this resident are accurate and not 

significantly impacted by visitor walks in the apartment.  

Finally, Table I contains gait parameters for the resident 

computed solely from the labeled quality walks (shown in 

brackets [ ]) for comparison purposes. 

B. Apartment 2 / 3 

Apartments 2 and 3 were processed in the same manner as 

Apartment 1 and the gait measurement results are shown in 

Table I. Although the residents in Apartment 2 and 3 both 

used a walker for all or part of the three week period, the 

system was still able to extract the parameters of stride time 

and stride length for a number of the identified walks. The 

large difference in the total number of walks and quality 

TABLE I 
SUMMARY OF IN-HOME DATA AND MEASUREMENTS FROM KINECT SYSTEMS 

NOVEMBER 3
RD

 - NOVEMBER 23
RD

 , 2011 (21 DAYS) 

 APART. 1 APART. 2 APART. 3 APARTMENT 4 APARTMENT 5 

Number of walks identified  1140 1721 2255 4700 596 

Number of quality walks identified 297 136 392 699 39 

Percentage of labeled walks from Resident 1 98.0 81.8 93.9 69.1 44.7 

Percentage of labeled walks from Resident 2 - - - 21.0 50.0 

Percentage of labeled walks from visitor 2.0 18.2 6.1 9.9 5.3 

 RES. 1 RES. 1 RES. 1 RES. 1 RES. 2 RES. 1 RES.  2 

Number of quality walks used in estimate 

      Automated [Computed using labeled walks] 
224 

[98] 

94 

[81] 

290 

[123] 

363 

[161] 

129 

[49] 

3 

[17] 

21 

[19] 

Percentage of labeled walks used from resident 

      Automated [Computed using labeled walks] 
100 

[100] 

100 

[100] 

100 

[100] 

94.6 

[100] 

97.7 

[100] 

100 

[100] 

35.0 

[100] 

Average speed(cm/sec) 

      Automated [Computed using labeled walks] 
62.2 

[61.0] 

30.5 

[29.7] 

40.1 

[39.4] 

57.2 

[58.4] 

44.5 

[42.7] 

50.5 

[40.4] 

33.0 

[31.2] 

Average stride time(sec) 

      Automated [Computed using labeled walks] 
1.17 

[1.17] 

2.03 

[2.06] 

1.46 

[1.47] 

1.50 

[1.49] 

1.31 

[1.34] 

1.26 

[1.44] 

1.62 

[1.64] 

Average stride length(cm) 

      Automated [Computed using labeled walks] 
71.6 

[70.1] 

59.9 

[59.7] 

57.2 

[56.1] 

83.1 

[83.8] 

56.9 

[55.9] 

63.2 

[56.4] 

52.3 

[51.6] 

Height(cm) 

      Automated [Computed using labeled walks] 
162.1 

[161.8] 

156.5 

[156.5] 

140.7 

[139.4] 

162.6 

[162.1] 

137.9 

[136.7] 

154.9 

[157.7] 

154.4 

[153.7] 

 

 

 

 
 

 

Figure 3: Data from Apartment 4. (a) Plot of the number of identified walks 

per day: all (blue square), quality (red circle). (b) Histogram of the walk 

lengths: all (blue), quality (red). (c) Density plot of speed vs. height for the 

quality walks. (d) Density plot of the paths of the quality walks. 
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walks per day between the three apartments reflects the 

impact of a variety of factors involving both the residents 

themselves and their environments. Finally, although almost 

a fifth of the walks in Apartment 2 were from visitors, these 

did not significantly change the gait parameter estimates. 

C. Apartment 4 

Figure 3 provides visualizations of the walk data obtained 

from Apartment 4, which had two residents. Density plot 

3(c) shows two clusters formed in the 2D feature space of 

height and speed. In a similar manner to Apartment 1, a 4D 

Gaussian Mixture Model (GMM) with the number of 

distributions set to two was fit to the data from the quality 

walks. Final mean values are shown in Table I. (In the 

multiple resident apartments, the manually measured heights 

of the residents were used to match them to the 

distributions.) 

As with the other apartments, a random sampling of the 

quality walks were hand labeled by someone familiar with 

the residents. Approximately 95 percent of the labeled walks 

used in the automated estimate for Resident 1 were actually 

from Resident 1, and approximately 98 percent of the 

labeled walks used for Resident 2 were actually from 

Resident 2, even as Resident 2 was responsible for only 21 

percent of all the labeled walks in the apartment.  

D. Apartment 5 

Although Apartment 5 had two residents, the data from 

the apartment forms a single, sparse cluster. This is a result 

of three factors. First, the residents are very similar in height 

and functional ability. Second, the residents live a rather 

sedentary life style. Third, the apartment contains a single 

viable walking path that is slightly curved and suffers from 

occlusion issues. As a result, the number of identified walks 

in the apartment is greatly reduced and the walks that are 

identified are quite similar in the 4D space.  

Despite the limitations of the data from Apartment 5, a 4D 

GMM with the number of distributions set to two was fit to 

the data from the quality walks. As the results in Table I 

indicate, the GMM is essentially unable to identify two 

separate distributions and, thus, one distribution is modeled 

on the majority of the data points while the other is modeled 

on a small group of relative outliers. Although this small 

group of outliers does consist of walks from the correct 

resident, they are not representative of the entire data set, as 

illustrated by a comparison against the parameter estimates 

computed from the labeled walks.  

IV. DISCUSSION 

As shown in Section III, Kinect systems deployed in the 

apartments of elderly residents in an independent living 

facility were able to unobtrusively identify walking 

sequences and automatically generate habitual, in-home gait 

parameter estimates for the residents. This was achieved in 

both one and two resident homes and in the presence of 

visitors. Furthermore, the stride parameters of time and 

length were obtained from walking sequences of residents 

using a walker. 

Analysis of the data indicated that a methodology of fitting 

a GMM with the number of distributions equal to the 

number of residents was successful in filtering out the 

majority of non-resident walking sequences, allowing 

accurate gait parameter estimates to be made. In future work, 

mode finding algorithms, which may be less sensitive to 

outliers, will also be investigated for this purpose. 

The potential cost of the systems is relatively minimal. The 

Kinect sensor currently retails for $150 and a suitable 

computer can also be obtained inexpensively. Current goals 

and future work include developing a system for generating 

automatic fall risk assessments, as well as evaluating the 

usefulness of different in-home gait parameters in detecting 

early signs of illness.  
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